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Introduction and preliminaries

Iteration on M n (R), the set of n × n real matrices, can be viewed as a natural generalization of iteration on R n or C n , concerning the algebraic structure of matrix algebras. In [START_REF] Nascimento Baptista | Difference equations on matrix algebras[END_REF] we have analyzed the iteration of the quadratic polynomial z → z 2 + c on M 2 (R), see also [START_REF] Serenevy | Dynamics of polynomial maps of 2 × 2 real matrices[END_REF]. Note that this example itself contains, as a subcase, the complex iteration and the related well-known Mandelbrot set, with all its dynamical, analytical and combinatorial complexity, see [START_REF] Milnor | Dynamics in one complex variable[END_REF] for details.

In the following we define the assumptions needed in order to obtain the iteration on the set of symmetric stochastic matrices. The iteration is made under a quadratic map (a one parameter family), conjugated to the logistic map, for which the one dimensional version exhibits complex behavior, in particular, the coexistence of an infinite number of periodic points and the sensitivity to initial conditions or, in other words, exhibits chaotic behavior, see [START_REF] Guckenheimer | Sensitive dependence to initial conditions for one-dimensional maps[END_REF].

Moreover, the symmetric stochastic matrices determine reversible Markov chains, which are used in many applications and also have great interest from a theoretical point of view.

The stochastic matrices are matrices X = (x ij )

n i,j=1
with non-negative entries, i.e., x ij ≥ 0 for which n j=1 x ij = 1. In this case, the vector u := (1, 1, ..., 1) ∈ R n is a right Perron eigenvector of X with Perron eigenvalue equal to 1 (spectral radius ρ (X) = 1). Now, consider the polynomial map g λ (x) := 1λx (1x), which is a modified logistic map so that x = 1 is a fixed point. This fact is essential in order to the iteration of a stochastic matrix still be a stochastic matrix. We denote by G λ the induced matrix map G λ (X) := 1 -λX (1 -X), where 1 denotes the identity matrix, with λ ∈ [0, 4] .

In the present paper we consider the restriction of the matrix set to the set of n × n positive definite symmetric stochastic matrices (necessarily doubly-stochastic since they are symmetric and stochastic), which we denote by Ω n . Therefore, a matrix X in Ω n has nonnegative entries, the Perron eigenvalue 1 and spectrum contained in ]0; 1].

To deal with Markov chains we would like to have G λ (X) ∈ Ω n whenever X ∈ Ω n . However, this is false, in general. Assuming X ∈ Ω n , then G λ (X) is necessarily positive definite, symmetric and will have u as Perron eigenvector associated with the Perron eigenvalue 1 (see Lemma below). However G λ (X) may have negative entries. The alternative is to consider the minimal invariant subset of Ω n which, under iteration of G λ , maintains the property of non-negativeness of the entries, so that the iterates are stochastic. This is not a new situation, since it is similar to the case of interval maps dynamics, when the invariant set, instead of the whole interval, is a Cantor set, a self-similar fractal subset of the interval, see for example [START_REF] Falconer | Techniques in fractal geometry[END_REF].

The paper is organized as follows: In section 2 we give preliminary general results on Ω n , relating the periodic points of the dynamics on Ω n with those on onedimensional dynamics. We also study two particular cases, for n = 2 and n = 3. Finally, in section 3 we focus on the dynamical behavior on the Markov chain set, considering a reducible case and a primitive case.

Discrete dynamics on the set of positive definite matrices

General results

Consider X ∈ M n (R). Let sp (X) denote the spectrum of X and X T denote the transpose matrix of X. The symmetric positive definite matrices are those which satisfy X = Y 2 , for some matrix Y ∈ M n (R); a symmetric matrix is positive definite if and only if all its eigenvalues are positive.

We say that X, Y ∈ M n (R) are equivalent if and only if they have the same spectrum, counting multiplicities. Since every symmetric matrix is diagonalizable, two matrices X, Y are equivalent if and only if there is an invertible P such that Y = P XP -1 .

Consider the modified logistic map

G λ : Ω n -→ M n (R) X → 1 -λX (1 -X)
, where 1 denotes the identity matrix, with the real parameter λ ∈ [0, 4] . Lemma 1 Let X ∈ Ω n , then G λ (X) is symmetric, positive definite and u := (1, ..., 1) ∈ R n is the Perron eigenvector associated with the Perron eigenvalue 1.

Proof We first show that G λ (X) is symmetric; as X T = X, then (G λ (X)) T = 1 -λ 1 -X T X T = 1 -λX T 1 -X T = 1 -λX (1 -X) = G λ (X) .
Now, since X is diagonalizable, there is an invertible matrix P such that D = P -1 XP is diagonal and

G λ (X) = G λ P DP -1 = P G λ (D) P -1 . Since D = diag (x 1 , ..., x n ) is diagonal and x i ∈ [0, 1], i = 1, ..., n, we have G λ (D) = diag (g λ (x 1 ) , ..., g λ (x n )). Therefore the spectrum of G λ (X) is contained in [0, 1] , and G λ (X) is positive definite. Finally, G λ (X) u = u -λX (1 -X) u = u -λX (u -Xu) = u,
since u is the Perron eigenvector associated with the Perron eigenvalue 1 of X.

Notice that, in order to G λ (X) ∈ Ω n , the only necessary condition that might fail is that some of the entries of G λ (X) might be negative. Now, let

Λ n (λ) := X ∈ Ω n : G k λ (X) ∈ Ω n , for all k ∈ N . This is an invariant set, that is G λ (Λ n (λ)) = Λ n (λ),
and it is the analogue of the invariant Cantor set for the iteration on the interval, see [START_REF] Falconer | Techniques in fractal geometry[END_REF].

In the following we analyze how the matrix dynamics in some aspects can be reduced to the onedimensional dynamics on the spectrum. For every X ∈ Ω n there is an invertible matrix P such that D = P -1 XP is diagonal, in particular the diagonal entries, which correspond to the spectrum of X, belong to the interval [0, 1]. We thus have

G λ (X) = G λ P DP -1 = P G λ (D) P -1 . Since D = diag (x 1 , ..., x n ) is diagonal and x i ∈ [0, 1], i = 1, ..., n, we have G λ (D) = diag (g λ (x 1 ) , ..., g λ (x n )). Moreover, G k λ (X) = G k λ P DP -1 = P G k λ (D) P -1 = = P diag g k λ (x 1 ) , ..., g k λ (x n ) P -1
. This last expression allows us to use the results of iteration on interval maps in order to obtain results on the matrix dynamics.

Proposition 1

The matrix X ∈ Ω n is a periodic point, with respect to G λ , if and only if the sp (X) is a set of periodic points with respect to g λ . Moreover the period of X is the minimum common multiple of the periods of the eigenvalues of X.

Proof Let X ∈ Ω n , which is diagonalizable with a certain P such that P -1 XP = diag (sp (X)). If sp (X) is a set of periodic points of g λ , then there is a positive integer m (minimum common multiple of the periods) for which

diag (g m λ (x 1 ) , ..., g m λ (x n )) = diag (x 1 , ..., x n ) , therefore G m λ (X) = P diag (x 1 , ..., x n ) P -1 = X. Con- versely, if there is a matrix X ∈ Ω n such that G m λ (X) = X, for some positive integer m, then this implies that diag (g m λ (x 1 ) , ..., g m λ (x n )) = diag (x 1 , ..., x n )
and that the spectrum of X consists of periodic points with respect to g λ .

Some results in low dimension

The n = 2 case

In this situation we have

G λ (Ω 2 ) = Ω 2 . A symmetric stochastic matrix X ∈ M 2 (R) is X = x 1 -x 1 -x x , x ∈ [0, 1] .
The eigenvalues of X are 1 and 2x -1. Therefore, to ensure that X is positive definite, we must consider x ∈ ]1/2, 1]. On the other hand, we have

G λ (X) = 1 + λ -3xλ + 2x 2 λ -1 + 3x -2x 2 λ -1 + 3x -2x 2 λ 1 + λ -3xλ + 2x 2 λ . Since λ ∈ [0, 4], for x ∈ ]1/2, 1], the matrix G k λ (X) has non-negative entries for every k ∈ N. Thus the equality G λ (Ω 2 ) = Ω 2 follows, that is, Ω 2 = Λ 2 (λ), for every λ ∈ [0, 4].
For each cycle {a 1 , ..., a k } of g λ , with period k, we have the orbit

a1+1 2 1-a1 2 1-a1 2 a1+1 2 , ..., a k +1 2 1-a k 2 1-a k 2 a k +1 2
, of G λ , with the same period. Note that, after diagonalization, we have

a i 0 0 1 , i = 1, ..., k;
nevertheless, this matrix is not stochastic, since a i = 1 for all i = 1, ..., k, otherwise we would have the trivial case of the fixed point. When n = 2 there is no Y ∈ Ω 2 equivalent to a given X ∈ Ω 2 , that is, there is no nontrivial P ∈ GL n such that P XP -1 ∈ Ω 2 . Moreover, there is a one-to-one correspondence between orbits in Ω 2 , under G λ , and orbits in [0, 1], under g λ . Therefore the matrix dynamics in Ω 2 is essentially equivalent to the one-dimensional dynamics.

The n = 3 case

In this case, it is not true that Ω 3 = Λ 3 (λ), for every λ. For example, consider the matrix X ∈ Ω 3 , The eigenvalues of X are 1, 0.50132 and 0.191458 (roundoff to the 7 th digit). For λ = 3.9 the second iterate

X = ⎛ ⎝ 0.
G 2 λ (X) = G λ (G λ (X)) has two negative entries (al- though G λ (X) does not have it), G 2 λ (X) = ⎛ ⎝ 0.79695 -0.107963 0.311013 -0.107963 0.79695 0.311013 0.311013 0.311013 0.377974 ⎞ ⎠ , and therefore G 2 λ (X) / ∈ Ω 3 .
In this case we have that X, given above, does not belong to Λ 3 (λ), for λ = 3.9.

For n = 3, a symmetric stochastic matrix is given by

X = ⎛ ⎝ x y 1 -x -y y z 1 -y -z 1 -x -y 1 -y -z x + 2y + z -1 ⎞ ⎠ , with x, y, z ∈ [0, 1].
In this case, both the explicit positivity condition on x, y, z and the condition for the nonnegativity of the entries are more complicated than the ones for the n = 2 case. Let us analyze the subfamily that is characterized by z = x. In this case, G λ (X) also belongs to this subfamily and we obtain an invariant subset of Λ 3 (λ). This leads to an interesting theoretical question which is to know what are the minimal invariant subsets of Λ n (λ), given n. The set Λ n (λ) itself is not minimal as we see here for n = 3. As we mentioned, let us now consider the family of matrices

X = ⎛ ⎝ x y 1 -x -y y x 1 -x -y 1 -x -y 1 -x -y 2y + 2x -1 ⎞ ⎠ , (1) with x, y ∈ [0, 1].
We must impose additional conditions on x, y to guarantee that X ∈ Ω 3 . The eigenvalues of X are 1, x-y and 3x+3y -2. Therefore, to ensure that X is positive definite, we must consider x > y and x > 2/3y.

Let Λ (λ) be the subset of Λ 3 (λ) of matrices in the form (1). In the Figure 1 we show the invariant subset Λ (λ), for λ = 3.9, which illustrates how different can be the sets Ω 3 and Λ 3 (λ). In the Figure 2 we show a detail of the Figure 1. The example given in the beginning of this section was taken from this picture, searching for pairs (x, y) for which the color is close to white (in the example given we have chosen x = 0.615903 and y = 0.114583). Note that is much more difficult to give, with the same method, a pair (x, y) for which G k λ (X) has non-negative entries for every positive integer k. This difficulty arises because the invariant set Λ (λ) is a set with nontrivial fractal structure. A more efficient way to give X ∈ Λ (λ), that is, X in the form [START_REF] Berman | Nonnegative matrices in the mathematical sciences[END_REF] for which G k λ (X) has non-negative entries for every positive integer k, is to give the periodic points of G λ . Nevertheless, some careful is needed, since even in this case we must assure the non-negativity of the entries. Let a = xy and b = 3x + 3y -2 be the eigenvalues of X in terms of the entries x, y. Determining x, y, we can explicitly write

X = 1 6 ⎛ ⎝ 3a + b + 2 -3a + b + 2 2 -2b -3a + b + 2 3a + b + 2 2 -2b 2 -2b 2 -2b 2 + 4b ⎞ ⎠ .
The conditions on the eigenvalues a, b, in order to x, y ∈ [0, 1] are 1 6 (3a + b + 2) ≥ 0 and 1 6 (-3a + b + 2) ≥ 0. To ensure that X is positive definite we have also 0 < a, b ≤ 1, therefore there is a domain, in the plane (a, b), of possible eigenvalues of a matrix in Ω 3 , see the Figure 3. Let Δ be this domain, which is the region defined by Let {a 1 , ..., a k } be a cycle of period k, with respect to g λ , that is, g λ (a i ) = a i+1 , i = 1, 2, ..., k -1 and g λ (a k ) = a 1 . To obtain a periodic matrix orbit for G λ it is necessary to choose a pair of points from {a 1 , ..., a k }. In the considered set, this pair (a i , a j ) will determine a periodic orbit for G λ if and only if (a i+r , a j+r ) ∈ Δ for every positive integer r (reminding that g λ (a k ) = a 1 ). Since (a, a) ∈ Δ, for which a ∈ [0, 1], a possible choice is the pair (a i , a i ); in this case we say that the matrix orbit is in phase. Otherwise we call it out of phase. The pair (a i , a j ) gives the matrix

Δ = (a, b) ∈ R 2 : 0 < a ≤ 1, 0 < b, 3a -2 ≤ b ≤ 1 . Note that (a, b) ∈ Δ does not imply that (b, a) ∈ Δ.
1 6 ⎛ ⎝ 3a i + a j + 2 -3a i + a j + 2 2 -2a j -3a i + a j + 2 3a i + a j + 2 2 -2a j 2 -2a j 2 -2a j 2 + 4a j ⎞ ⎠ with i, j = 1, ..., k.
We can implement an algorithm to obtain all the periodic points of G λ . Let λ ∈ [0, 4]. Each cycle, with respect to g λ , can be determined using numerical routines or using symbolic dynamics and combinatorial arguments, see [START_REF] Lampreia | Subtrees of the unimodal maps tree[END_REF] and [START_REF] Ramos | Finite dimensional representations of * -algebras arising from a quadratic map[END_REF]. For the unidimensional orbit {a 1 , ..., a k } of least period k we have a periodic matrix orbit in phase, generated by the pair (a 1 , a 1 ) . To obtain the other matrix orbits, the out of phase orbits, we only need to check if (a 1+r , a i+r ) ∈ Δ, with r = 1, ..., k -1, for each pair (a 1 , a i ), with i = 2, ..., k.

Example 1 Consider

X = 1 6 ⎛ ⎝ 3a i + a j + 2 -3a i + a j + 2 2 -2a j -3a i + a j + 2 3a i + a j + 2 2 -2a j 2 -2a j 2 -2a j 2 + 4a j ⎞ ⎠ .
Let λ = 4. The two cycles of period 3, with respect to g λ , are {a 1 , a 2 , a 3 } = {0.0301537, 0.883022, 0.586824} and {a 4 , a 5 , a 6 } = {0.0495156, 0.811745, 0.38874} (obviously we exclude the fixed points and present approximate values). Remark that not all the pairs (a i , a j ) generated by the elements of the cycles of g λ , give a matrix orbit. In the table below, the symbol × represent the pairs (a i , a j ) that generate periodic orbits for G λ .

The symbol ∅ represent the other cases.

a 1 a 2 a 3 a 4 a 5 a 6 a 1 × ∅ ∅ × ∅ ∅ a 2 ∅ × ∅ ∅ × ∅ a 3 ∅ ∅ × ∅ ∅ × a 4 × × ∅ × ∅ ∅ a 5 ∅ × × ∅ × ∅ a 6 × ∅ × ∅ ∅ ×
This means that there exists 2 distinct matrix orbits of G λ of period three that are in phase, 

Discrete dynamics on the Markov chain set

As we discussed in the introduction, each stochastic matrix determines a Markov chain. Therefore, the dynamics on Λ n (λ) generated by G λ corresponds to a certain dynamical system on the set of reversible Markov chains (reversible since we deal with symmetric matrices). Since the set Λ n (λ) is too large, we will study families of matrices belonging to Λ n (λ), for a certain positive integer n, which are invariant under iteration of G λ with potential interest for Markov chains analysis. We stress that many different Markov chains can be obtained, although the same iterative map G λ is considered.

Let us explain the general idea. Let λ ∈ [0, 4]. We start with a particular Markov chain characterized by a stochastic matrix X ∈ Λ n (λ). This Markov chain can be seen as a model of a certain system in a regular regime. The periodic structural changes in the system are characterized by iteration of the map G λ . After a singular regime (corresponding to an iteration under G λ ), in the next regular regime, the system is modeled again by a Markov chain characterized by the stochastic matrix G λ (X). Therefore, we obtain an evolutionary process for Markov chains and we use some useful techniques from iterated maps on the interval, that allow us to analyze this evolution.

A reducible case

A n × n matrix X is reducible if there is a permutation matrix P such that

P XP -1 = A B 0 C , ( 2 
)
where A, B, C are non necessarily square matrices, see [START_REF] Falconer | Techniques in fractal geometry[END_REF]. A reducible matrix X has the property that the powers of X, X k , have entries which are equal to 0 for every positive integer k (it must have at least n -1 zero entries). Consider the following reducible matrix

Y = ⎛ ⎜ ⎜ ⎝ y 0 0 z 0 0 0 y 0 0 z 0 z 0 0 y 0 0 0 z 0 0 y 0 ⎞ ⎟ ⎟ ⎠ .
In order to Y be stochastic, we must have 0 ≤ y 0 , z 0 ≤ 1 and y 0 + z 0 = 1. The eigenvalues of Y are y 0z 0 and y 0 + z 0 = 1, both with multiplicity 2. Therefore, if y 0 > z 0 we have that Y is positive definite and in that case Y ∈ Ω 4 . The k th -iterate of Y will have the form

G k λ (Y ) = ⎛ ⎜ ⎜ ⎝ y k 0 z k 0 0 y k 0 z k z k 0 y k 0 0 z k 0 y k ⎞ ⎟ ⎟ ⎠ ,
with

y k+1 = 1 -λy k + λy 2 k + λz 2 k and z k+1 = (2y k -1) λz k . ( 3 
)
We conclude that G λ preserves the initial matrix form and the eigenvalues of G λ (Y ) are y kz k and y k + z k = 1. Therefore, we have in fact a one-dimensional system with

y k+1 = 1-λy k +λy 2 k +λ (1 -y k ) 2 = 1+λ-3λy k +2λy 2 k . ( 4 
)
Now we are in position to analyze the dynamical behavior of G λ directly from the matrix entries and, in particular, to analyze if any entry will eventually be negative. The map x → h λ (x) := 1 + λ -3λx + 2λx 2 , restricted to x ∈ [1/2, 1] (in order to satisfy the previous conditions, given in paragraph 2.2.1) remains in [1/2, 1] . This means that, for every λ ∈ [0; 4], all the entries of G k λ (Y ) are non-negative, and that, for every k, the set of considered matrices is invariant under G λ , in particular

y k ∈ [1/2, 1].
We can see that we have two Markov chains, with underlying vertices {1, 3} and {2, 4}, each one associated with a 2-full-shift, coupled by the recursion (3). For a given k we obtain a Markov chain for which the probability of maintaining the same state is y k and to change the state is z k = 1y k . In the next iteration (generation), the probability of maintaining the same state is

y k+1 = h λ (y k ) = 1+λ -3λy k + 2λy 2 k .
In Figure 4 we exemplify how this probability evolves, starting from y 0 = 0.7 and considering different values of λ.

It is interesting to note that the map h λ , with λ ∈ [0, 4] , reproduces the different features of the quadratic maps dynamics, as we can see in the bifurcation diagram in Figure 5.

If λ = 2 (or λ < 3), every initial condition in [1/2, 1[ is attracted, under h λ , to the fixed point. If λ = 3.56995... we have the Feigenbaum point, the beginning of "chaos". If λ > 3.56995... we have positive topological entropy and an infinity of repulsive periodic points, see [START_REF] Sharkovsky | Dynamics of one-dimensional maps[END_REF].

A natural generalization is considered in the next result:

Theorem 1 Let Y ∈ Ω 2n+2 , n ≥ 1, be a stochastic matrix of the form Y = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ y 0 z 0 z • • • 0 0 y 0 z 0 • • • z z 0 y 0 z • • • 0 0 z 0 y 0 • • • z z 0 z 0 y 0 • • • • • • • • • 0 z 0 z 0 • • • y ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ . ( 5 
)
Then

Y k := G k λ (Y ) = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ y k 0 z k 0 z k • • • 0 0 y k 0 z k 0 • • • z k z k 0 y k 0 z k • • • 0 0 z k 0 y k 0 • • • z k z k 0 z k 0 y k • • • 0 • • • • • • • • • 0 z k 0 z k 0 • • • y k ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ , with y k+1 = 1 -λy k + λy 2 k + λnz 2 k , z k+1 = (2y k -1) λz k + λ (n -1) z 2 k (6)
and

y 0 = y, z 0 = z, y k + nz k = 1. ( 7 
)
In particular

G k λ (Y ) ∈ Ω 2n+2 for every positive integer k, with λ ∈ [0, 4].
Proof If Y is in the form (5) and stochastic, then y = 1nz and z ∈ [0, 1/n]. The eigenvalues of a matrix in the form (5) are y + nz and yz. As Y is positive definite, we have y > z and G λ (Y k ) belongs to Ω 2n+2 . Moreover, by direct computation of G λ (Y k ) , we obtain the claimed relation for y k+1 and the matrix Y k+1 also in the form [START_REF] Milnor | Dynamics in one complex variable[END_REF]. Therefore, y k+1 + nz k+1 = 1. By induction, the result follows for every positive integer k.

A primitive case

A matrix X is primitive if there is a positive integer k such that every entry of X k is positive. If X is a nonnegative primitive matrix then, by the Perron Frobenius theorem, one of its eigenvalues is positive (a simple root of the characteristic equation of X) and greater (in absolute value) than all the other eigenvalues, see [START_REF] Berman | Nonnegative matrices in the mathematical sciences[END_REF].

Let

Y = ⎛ ⎝ x 0 y 0 y 0 y 0 x 0 y 0 y 0 y 0 x 0 ⎞ ⎠ .
This matrix is primitive iff y 0 = 0. In order to Y be stochastic, we must have 0 ≤ y 0 , x 0 ≤ 1 and 2y 0 + x 0 = 1. The eigenvalues of Y are 1 and 1 -3y 0 with multiplicity 2. In this case, we have to consider y 0 < 1/3 to ensure that Y is positive definite so that Y ∈ Ω 3 . Now, it can be easily seen that G k λ (Y ) has the form

G k λ (Y ) = ⎛ ⎝ x k y k y k y k x k y k y k y k x k ⎞ ⎠ ,
and consequently, we have x k = 1 -2y k . Moreover, a simple calculation shows that y k = λy k-1 (1 -3y k-1 ).

This means that in this case the dynamics of the matrix entries can be given explicitly (and also using the spectrum). Note that the quadratic f λ,3 (y) = λy (1 -3y) maps the interval [0, 1/3] into itself and reproduces the dynamics of the logistic equation on the unit interval. Furthermore, this shows that all the entries of G k λ (Y ) are non-negative for every y 0 ∈ [0, 1/3[ and every k.

As a generalization of this case, we can consider a family of n × n matrices Y for which the entries outside the diagonal are equal to y and in the diagonal are equal to x = 1 -(n -1) y. Let f λ,n (y) = λy (1ny). The map f λ,n (y) sends the interval [0, 1/n] into itself and reproduces the dynamics of the logistic equation on the unit interval. Now, we have:

Theorem 2 Let Y ∈ Ω n be a stochastic matrix of the form Y = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ x y • • • y y x . . . . . . . . . . . . . . . y y • • • y x ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ . ( 8 
)
Then 

Y k := G k λ (Y ) = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ x k y k • • • y k y k x k . . . . . . . . . . . . . . . y k y k • • • y k x k ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ , with x k+1 = 1 -(n - 

Conclusions

In this paper we have analyzed the dynamical behavior of iterated matrices under quadratic maps. Choosing an appropriate one-parameter family of quadratic maps it was possible to preserve the stochasticity of a matrix. Therefore, we have obtained a discrete dynamical system on certain invariant subsets of n×n matrices. These invariant sets depend on the size and the internal structure (relations between certain entries, fixed zero entries, etc.) of the initial matrix. In the case of a general 3 × 3 stochastic matrix the invariant subset reveals a fractal structure resulting from discarding the matrices which have eventually negative entries. Different classes of n × n stochastic matrices, with certain given relations between the entries, such as those in 3.1 and 3.2, have as invariant sets domains in R 2 (more generally R n ). Since the behavior of quadratic maps is well known and studied we are now able to study and analyze in detail the dynamical behavior of reversible Markov chains, arising from the symmetric stochastic matrices, which evolve under the iteration of the quadratic map G λ . This study can be made regarding the choice of the initial conditions (an initial Markov chain) and the dependence on the parameter λ ∈ [0, 4]. For instance, if λ ≤ 2 for every initial condition the correspondent orbit is attracted to the fixed point. If λ ≤ 3.56995... (Feigenbaum point) the occurrence of periodic points is limited to those with period 2 k , for certain positive integer k. If λ > 3.56995... then there are infinite repulsive periodic points with periods conditioned by the Sharkovsky theorem. This is reflected directly in the dynamics of the stochastic matrices and the evolving Markov chains. As an example we have considered in section 3.2 a family of n × n stochastic matrices, characterized by two variables: x (associated with the probability of staying in a certain state) and y (associated with probability of changing the state). This family is preserved by the map G λ and the dynamics is, regarding the matrix entries, determined by a one-dimensional map f λ,n , where n is the matrix size.

Starting with λ = 0 and increasing its value we follow the route to chaos by period doubling (and more generally by bifurcation phenomena). We obtain, therefore, successive oscillating Markov chains, first a fixed point, then period two, period four, and so on. In this setting, and choosing the appropriate parameter we obtained orbits of Markov chains which are aperiodic (as in example 2).
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 45 Fig. 4 Evolution of the transition probability y k of maintaining the same state, with the initial condition y 0 = 0.7. The probability of transition to a different state is, for each iterate k, z k = 1y k . (a) with λ = 3. (b) with λ = 4.
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 2 1)y k+1 , y k+1 = λy k (1ny k ) , and y 0 = y, x 0 = x. In particular G k λ (Y ) ∈ Ω n for every positive integer k, with λ ∈ [0, 4]. Proof If Y is in the form (8) and belongs to Ω n , then x = 1 -(n -1) y and y ∈ [0, 1/n]. The eigenvalues of a matrix in the form (8) are x + (n -1) y and xy. As Y is positive definite, we have x > y and G λ (Y k ) belongs to Ω n . Moreover, by direct computation of G λ (Y k ) , we obtain the claimed relation for y k+1 and a matrix Y k+1 also in the form (8). Therefore, x k+1 + (n -1) y k+1 = 1. The result follows by induction, for every positive integer k. Let us consider n = 5 and λ = 4. In the Figure 6 we can see the iterates of the Markov chains for different initial conditions y 0 = 0.1850217...(period 4), y 0 = 0.1889865... (aperiodic).

Fig. 6

 6 Fig. 6 Evolution of the transition probability y k of changing the state, with λ = 4. The probability of transition to the same state is for each iterate k, x k = 1 -(n -1) y k . (a) with y 0 = 0.1850217... (period 4). (b) with y 0 = 0.1889865... (aperiodic).