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Abstract 

Gene coexpression relationships that are phylogenetically conserved between human and 

mouse have been shown to provide important clues about gene function that can be 

efficiently used to identify promising candidate genes for human hereditary disorders.  

In the past, such approaches have considered mostly generic gene expression profiles 

that cover multiple tissues and organs. The individual genes of multicellular organisms, 

however, can participate in different transcriptional programs, operating at scales as 

different as single cell types, tissues, organs, body regions or the entire organism. 

Therefore, the systematic analysis of tissue-specific coexpression could be, in principle, a 

very powerful strategy to dissect those functional relationships among genes that emerge 

only in particular tissues or organs. In this report, we show that, in fact, conserved 

coexpression as determined from tissue-specific and condition-specific datasets can 

predict many functional relationships that are not detected by analyzing heterogeneous 

microarray datasets. More importantly, we find that, when combined with disease 

networks,  the simultaneous use of both generic (multi-tissue) and tissue-specific 

conserved coexpression allows a more efficient prediction of human disease genes than 

the use of generic conserved coexpression alone. Using this strategy, we were able to 

identify high-probability candidates for 238 orphan disease loci. We provide the proof of 

concept that this combined use of generic and tissue-specific conserved coexpression can 

be very useful to prioritize the mutational candidates obtained from deep-sequencing 

projects, even in the case of genetic disorders as heterogeneous as X-linked mental 

retardation.  



 3

Introduction 

Despite the recent progress in mapping and sequencing technologies, the identification of 

genes involved in human diseases remains a very demanding task. Indeed, genome-wide 

techniques such as linkage analysis, SNP profiling or even deep sequencing of genetically 

heterogeneous disorders may select hundreds of candidates, whose experimental 

verification is time and resource-consuming 1. A deep knowledge of the modular 

organization of biological functions may significantly increase the efficiency of this 

identification process.  Indeed, biological phenomena are emergent properties of complex 

interaction networks, composed of proteins, DNA, small molecules and different classes of 

RNA, capable of self-organizing in discrete functional modules 2,3. The dissection of the 

molecular basis of many diseases has evidenced that in most cases abnormal phenotypes 

are caused by the derangement of an entire module, due to single gene defects, to a 

combination of genetic abnormalities or to the interaction between gene variants and 

environmental factors 3,4. Thus, when trying to identify the best candidates for a given 

phenotype or to establish the phenotypic significance of a particular gene variant, it would 

be very helpful to know whether the genes under study are involved in functional 

processes directly relevant to that phenotype. In theory, the use of functional gene 

annotations would represent the most straightforward support for this task. However, 

although this strategy has been used successfully in many cases 5,6, it is clearly limited by 

the lack of complete information about the function of most human genes.  

Coexpression relationships derived from microarray data represent an extremely rich and 

less biased source of information, potentially relevant for functional annotation and disease 

gene prediction. Indeed, it has been extensively shown that functionally interacting genes 

tend to display very similar expression profiles, as a result of common regulatory 

mechanisms 7,8. Moreover, the probability for two genes to be functionally correlated is 

remarkably higher when they are strongly coexpressed in more than one species 
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(conserved coexpression) 9,10. Accordingly, the systematic integration of phenotype 

information with conserved coexpression may allow the efficient prediction of the best 

positional candidates in wide genomic regions associated to genetic diseases 11,12. Despite 

these important results, most of the coexpression studies so far reported have been 

performed on heterogeneous datasets covering multiple tissues and organs, thus partly 

overlooking the complex control of gene expression within specific tissues or organs that is 

essential for higher eukaryotes. This is a very important shortcoming, because the 

transcriptional units that compose the human genome display an extremely flexible 

organization, allowing complex qualitative and quantitative control of gene expression in 

the different cell types 13. 

In this report we show that the study of tissue-specific conserved coexpression allows an 

extended exploration of the transcriptional co-regulation of mammalian genes, with strong 

implications for their functional annotation. As an example, we identify a cluster of genes 

potentially implicated in the transcriptional programs of pluripotent stem cells. Moreover, 

we show that the simultaneous use of multi-tissue and tissue-specific conserved 

coexpression networks, combined with phenome analysis, allows efficient candidate gene 

prediction. In particular, we analyze the potential of combining our predictive strategy with 

high-throughput mutational screenings using X-linked mental retardation as a case study. 

Finally, we provide a user-friendly web resource allowing both the access to pre-computed 

predictions and the execution of custom analysis for functional annotation and disease 

gene identification. 

 

Results 

Generation of conserved coexpression networks and coexpression clusters. 

To evaluate the potential of tissue-specific conserved coexpression, we studied a large 

microarray dataset downloaded from the Gene Expression Omnibus (GEO) 14, covering 
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many tissues, cell types and experimental conditions in both human (5188 experiments) 

and mouse (2310 experiments). Based on the description given in GEO, the samples were 

manually annotated to allow the selection of condition-specific subsets of the desired 

anatomical depth (see Methods), which we used to generate the corresponding single-

species coexpression networks (SCNs) or human-mouse conserved coexpression 

networks (CCNs), by the procedures previously described 12. Briefly, CCNs are obtained 

by intersecting a human SCN with a mouse SCN that reflect the same selection of tissues 

and/or conditions, keeping only the coexpression links that are observed in both species. 

We generated multi-tissue CCNs, covering for example all samples from normal (non-

tumoral) tissues, and tissue-specific CCNs from normal samples from heart, kidney, 

breast, etc. In multi-tissue coexpression networks, it has been shown that phylogenetic 

conservation is a strong filter for functionally relevant links 10,12, because it is highly unlikely 

that the artifactual correlations generated in one species by possible sample outliers or by 

other factors are reproduced in a corresponding dataset of a second species. We verified 

that this principle holds true also in tissue-specific CCNs (see supplementary data for the 

details). 

From each of the CCNs we then extracted a set of "coexpression clusters", consisting of a 

gene together with its nearest neighbours, i.e. together with those genes that show a 

conserved coexpression with it 12. 

Complementarity and biological relevance of multi-tissue and tissue-specific 

conserved coexpression. 

As expected, a direct pairwise comparison of all the different networks revealed in every 

case a highly significant overlap, consistent with the existence of transcriptional modules 

composed of genes highly coexpressed in most mammalian cell types. For instance, the 

least significant overlap was found between the embryonic tissues and the adipose tissue 

CCNs, where only 0.6% of the edges present in either network were found in both: such a 
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small overlap is however much larger than expected by chance (about 100 standard 

deviations above the mean overlap obtained from 100 nework randomizations). 

However, the overlap between the different tissue-specific CCNs or between the tissue-

specific CCNs and multi-tissue CCNs was always much lower than the intersection 

between different multi-tissue CCNs (Figure 1A). Altogether, these data indicate that 

tissue-specific CCNs capture a large number of conserved coexpression relationships that 

cannot be detected using the promiscuous approach and vice versa. 

To address the functional relevance of these correlations, we evaluated their capability to 

provide functionally characterized coexpression clusters, in comparison with those 

obtained from multi-tissue CCNs. Therefore, for every CCN, we analyzed the 

overrepresentation of GO keyword in all coexpression clusters extracted from the CCN. 

Both tissue-specific CCNs and multi-tissue CCNs showed a strongly increased number of 

functionally enriched clusters (Figure S2), when compared with 100 randomized versions 

of the same networks. Moreover, the distribution of the enriched GO terms showed that 

the different networks are strongly complementary, because a high percentage of them 

were specifically identified in one network and the majority was found in only a few CCNs 

(Figure 1B). Most importantly, we found that evolutionary conservation as a filter tends to 

preserve those coexpression edges that are of higher functional significance (see 

supplementary data for the details). Finally, tissue-specific CCNs displayed also a high 

prevalence of edges between proteins that are known to physically interact from the HPRD 

15 (Figure S2). 

As a case study that illustrates the added value of tissue-specific CCNs, we report the 

example of mammalian pluripotency genes. The elucidation of the molecular circuitry 

underlying the establishment and the maintenance of pluripotency is a crucial issue in 

biology 16, especially after the discovery that the expression of a small set of genes can 

reprogram differentiated cells to a pluripotent state 17. Proteomic screenings have been so 
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far quite successful in mapping the interactome of some crucial pluripotency factors 18,19, 

but cannot identify functional correlations that do not require stable protein-protein 

interactions. We thus explored the possibility that this approach may identify pluripotency 

factors. In particular, we asked which genes are connected to the crucial pluripotency gene 

POU5F1 in the above-mentioned multi-tissue and tissue-specific CCNs. The network 

obtained from normal adult tissues contained no edges for this gene and very few edges 

were found in most tissue-specific networks (Table S3). In contrast, POU5F1 had a very 

high connectivity in the network obtained from embryonic tissues and was even more 

connected in a CCN obtained specifically from human and mouse stem cell datasets 

(Table S3). Strikingly, the neighborhood of POU5F1 in the latter networks contained most 

of the other genes that have been successfully used to reprogram differentiated cells to 

induced pluripotent stem (iPS) cells, such as NANOG, LIN28, SOX2 and NMYC and many 

other genes that have been functionally associated with the establishment and 

maintenance of the pluripotent state (Figure 2 and Table S3). This result indicates that in 

the stem cells CCN, most of the key pluripotency factors form a very tight cluster. 

Considering that the identification of this cluster by our method was completely 

independent from previous knowledge, it is very likely that it may comprise also a 

significant portion of the unknown core pluripotency machinery, including both other 

master control genes and at least some of the most direct targets of the core transcription 

factors. 

In summary, these results indicate that the tissue-specific approach significantly extends 

the potential of human-mouse conserved coexpression to provide new functional 

hypotheses about mammalian genes. The observed complementarity to the multi-tissue 

approach suggests that it is best to use both approaches jointly, because both 

coexpression accross multiple tissues and coexpression within specific tissues can yield 

important clues to gene function. 
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Tissue-specific conserved coexpression and phenotype information 

In our previous work we have demonstrated that the analysis of conserved coexpression in 

multi-tissue microarray datasets can be a powerful tool to evaluate candidate genes for 

human genetic diseases 12. Therefore, we asked whether tissue-specific CCNs as well can 

provide important clues for disease gene prediction and whether the disease-related 

information they contain overlaps with or rather complements the information obtained 

from multi-tissue CCNs. 

For this purpose we derived OMIM phenotype coexpression networks (PCNs) from 13 

different tissue-specific CCNs and from one multi-tissue CCN, obtained from normal tissue 

data. In these PCNs, the nodes represent OMIM phenotypes and two nodes are joined by 

an edge if the phenotypes are similar 20 and there is at least one edge in the CCN between 

genes associated to the two phenotypes.  In other words PCN edges indicate that, in the 

underlying CCN, genes involved in one phenotype are directly linked to genes involved in 

a similar phenotype and therefore that the CCN edges contain useful information to 

evaluate candidate genes for related disease phenotypes with so far unknown molecular 

basis. 

Interestingly, 505 (34.2%) of 1477 OMIM phenotype IDs and 3348 (73.4%) of 4562 OMIM-

OMIM edges were present in only one PCN. Although the multi-tissue PCN provides more 

unique OMIM IDs and edges than any of the tissue-specific PCNs, 68.1% of all unique 

phenotypes and 61.8% of all unique edges can be exclusively found in one of the tissue-

specific networks (Figure 3A). These data suggest that tissue-specific CCNs can provide 

valuable information for disease gene prediction that is not contained in multi-tissue CCNs. 

A good example of this complementarity is given by the small subnetwork of OMIM 

phenotypes directly linked to Charcot-Marie Tooth disease type 4D (CMT4D; OMIM 

601455) and their respective neighbors in both the central nervous system (CNS)  and the 

normal tissues (NT) PCNs (Figure 3B). While many of the phenotypes and of the 
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relationships between them can be found in both PCNs, a significant part can be found in 

only one of the two PCNs. 

Identification of high-confidence disease gene candidates by multi-tissue and 

tissue-specific conserved coexpression 

As we have shown in our previous work, multi-tissue conserved coexpression can be 

efficiently combined with phenotype correlation data to provide high confidence candidates 

within genetic disease loci (see reference 12 and Methods). The results described above 

indicated not only that high-confidence candidates could be obtained from tissue-specific 

expression data, but also that such results would likely be complementary to those 

obtained from multi-tissue CCNs. 

Thus, using the 14 CCNs from Figure 3A, we applied our procedure to 1074 mapped 

“orphan loci” associated to 1028 OMIM phenotype entries with unknown molecular basis. 

At a 1% false discovery rate (FDR), estimated separately for each CCN, we identified an 

average of 7.1 candidates for 238 of these “orphan loci”, thus obtaining a total of 1692 

high-confidence candidates (see the detailed table at http://87.253.99.109/ts-

coexp/disease_gene_precomp_table.php). 

This is a significantly reduced number, considering that the orphan loci contain on average 

149 candidate genes. A leave-one-out test performed on artificial loci of the same size, 

centered on the known disease genes (see Methods), displayed a precision of 44%. 

Therefore, we expect that in approximately half of the cases the positional candidates 

selected by our procedure will contain the actual disease-causing gene. 

Evaluation of XLMR candidates obtained by X-chromosome exome sequencing 

Beside the proof of concept already provided by the leave-one-out test, we decided to 

specifically evaluate the usefulness of our method in the prioritization of the mutational 

candidates obtained by exome sequencing projects in genetically heterogeneous 

disorders. In particular, we concentrated on X-linked mental retardation (XLMR) as a case 
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study, because Tarpey and co-workers have recently resequenced a large fraction of X-

chromosome coding exons of patients or carriers from 208 different XLMR families 21. 

Interestingly enough, although this survey identified three novel genes (SYP, ZNF711 and 

CASK), as well as several other genes already implicated in XLMR, it also underscored 

the limits of such kind of mutational screenings 21. For example, truncating mutations were 

identified in 30 genes, but after extensive validation only a minority of them could be 

proven to be actually disease-causing. Moreover, despite the identification of a very large 

number of missense mutations on conserved residues and of several potential splice site 

mutations, the statistical power of the study allowed to define a reasonable genetic 

explanation of the phenotypes only for 25% of the cases 21.  

Therefore, to evaluate conserved coexpression as an additional criterion for scoring 

mutated genes, we asked how many known XLMR genes could be predicted as strong 

candidates using our approach. Importantly, to perform this test we considered as 

candidates all the genes that have been sequenced in the mentioned study and removed 

from the list of the reference genes all known XLMR genes, hence pretending XLMR to be 

a disease phenotype without any known molecular basis. Since the number of reference 

genes (disease genes involved in similar phenotypes) was still large at a MimMiner 

phenotype similarity threshold score (see Methods) of 0.4 (401 genes), we decided to use 

a more stringent MimMiner threshold of 0.5 that yielded a total of 64 reference genes. 

Afterwards, we used the previously mentioned CCNs to predict the candidates with a 10% 

FDR cutoff. We obtained a total of 222 predictions, corresponding to 102 candidate genes 

(Table S4). Although this number may appear very large,  it must be considered that 90 

genes on the X chromosome are known to be associated to some form of intellectual 

disability and that a similar number probably remains to be identified 22,23. Among our 

candidates, only 25 were retrieved from the normal tissue CCN, while the majority was 
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derived from tissue-specific networks, with 40% coming from the central nervous system 

or from brain networks.  

Our list of candidates was strongly enriched for known XLMR genes, since 32% of them 

were included (P= 2.5 E-06, Table S4). Moreover, the global prevalence of validated 

XLMR genes was 11.8% among the 288 genes in which the authors found missense 

substitutions of conserved residues, but almost three times as much among the 57 

mutated genes that were also found as candidates by our approach (Tables S4). 

 Even more strikingly, the comparison of the 30 genes in which the authors found 

truncating mutations with our candidates showed only 7 common genes (AP1S2, BRWD3, 

CUL4B, SLC9A6, UPF3B, USP9X and ZNF711), 6 of which have been validated by the 

authors in the same study (P=2.2 E-08). The only non-validated gene of this kind is 

USP9X, whose role has remained uncertain because only a single truncating mutation was 

found in patients. Thus, our data further underscore USP9X as a strong XLMR candidate. 

Considering the efficiency of our approach in ‘re-discovering’ XLMR genes even when 

none of them was considered as a reference gene, we speculate that it may be even more 

effective in identifying new candidates when the validated genes are correctly considered 

as reference. We therefore provide in Table 1 a list of the candidates with an FDR of 10% 

or lower, obtained using only the known XLMR genes as reference.  Also in this case, 

USP9X was highlighted as a promising candidate. The fact that it was predicted with two 

completely distinct sets of reference genes further supports the significance of its XLMR 

candidacy. 

One of the most appealing features of our system is that, besides selecting promising 

candidate genes for a particular disease, it may give good indications about the underlying 

molecular mechanisms, through the functional analysis of the candidates’ neighboring 

genes in the coexpression networks. Interestingly, the analysis of the genes that are 

connected with USP9X revealed a strong prevalence of enzymes involved in the ubiquitin 
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cycle (Figure 4). This result is fully consistent with USP9X being a deubiquitinating enzyme 

24 and offers testable predictions about the specific proteins that may functionally 

cooperate with it and/or about the possible targets of its activity. 

 

Discussion 

Although deep sequencing techniques are setting new benchmarks for the analysis of 

gene expression, microarray data deposited in public databases still represent an 

incredibly rich source of information. Therefore, it is quite surprising to observe that, with 

notable exceptions 25-29, coexpression relationships based on DNA microarrays are not 

used extensively to support the identification of new disease-causing genes. The main 

reason for this discrepancy may well reside in the low specificity of the functional 

predictions obtained by coexpression analysis. In other words, it is well known that if two 

genes are involved in similar functions and disease phenotypes they tend to have strongly 

correlated expression profiles, but it is known as well that two or more genes may display 

strongly correlated expression profiles even though they are not functionally related. The 

studies conducted by different groups, including ourselves 10-12, have shown that very 

simple filters, such as phylogenetic conservation, can strongly increase the predictive 

power of coexpression analysis. Here we have demonstrated that another simple filter, i.e. 

the selection of tissue-specific subsets of a large data repository, can significantly extend 

the potential usefulness of the coexpression- based predictions. It is important to 

underscore that, if used in isolation, the tissue-specific approach would be even noisier 

than a multi-tissue approach, independently of the size of the starting microarray dataset 

(Table S1). However, when combined with conservation, the tissue-specific approach can 

provide a high percentage of accurate predictions that could not be obtained using 

heterogeneous datasets. In agreement with our previous studies, we showed that this 

information can be used effectively to identify high-confidence disease gene candidates. 
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Moreover, and perhaps most importantly, we provide a proof of concept that the 

combination of conserved coexpression and phenomic networks could be successfully 

used to support the identification of disease genes by massive sequencing strategies, 

which in the case of genetically heterogeneous disorders can identify a much higher 

number of mutated candidates than previously suspected 21.  

As a side-product of our analysis, we obtained a list of high confidence candidates for 

XLMR. The relevance of this list is supported by two recent observations. Indeed, while the 

manuscript was in preparation, we realized that the RAB39B had been just discovered as 

an actual XLMR gene 30. Moreover, during the revision process, the GSPT2 gene has 

been independently proposed as a strong XLMR candidate by a copy number variation 

study 31.  

We think that the case of  USP9X illustrates particularly well the potential usefulness of our 

approach for selecting the most promising candidates and making hypothesis about their 

functional interactions with the validated genes. The mutational screening by Tarpey and 

co-workers 21 found a single truncating mutation in this gene, which so far has not been 

validated by clear additional mutational evidence (Joseph Gecz, personal communication). 

USP9X is a de-ubiquitinating enzyme, encoded by a strongly conserved gene that 

escapes X inactivation 24,32. Moreover, the Drosophila ortholog faf is known for its role in 

synaptic development and the expression pattern of the mouse ortholog is suggestive of a 

synaptic function 33,34. 

Thus, the finding that the gene is consistently coexpressed with many other genes 

involved in intellectual disability (namely UBE3A, UBR1, OPA1 and CRBN) and with genes 

involved in the ubiquitin cycle is very suggestive. In particular, since UBE3A and UBR1, 

two of the most strongly connected genes, display both features, we propose the working 

hypothesis that the three proteins they encode may directly cooperate in regulating the 
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ubiquitination/deubiquitination cycle of common substrates involved in synaptic function, 

some of which could be possibly included in our list of potential partners. 

In conclusion, we propose multi-tissue and tissue-specific conserved coexpression 

networks as highly valuable resources for predicting and exploring the functional 

properties of genes in relation to human diseases. To support the scientific community in 

this task, this manuscript is accompanied by the TS-CoExp browser 

(http://www.cbu.mbcunito.it/ts-coexp), an open user-friendly web interface described in 

more detail in the supplementary text. 

 

Methods 

Gene expression database annotation and normalization 

The gene expression series that we used comprise 5188 human and 2310 mouse 

microarray experiments, performed on the Affymetrix platforms Human Genome U133 

Plus 2.0 and Mouse Genome 430 2.0, respectively, obtained from the Gene Expression 

Omnibus (GEO). To allow the efficient selection of tissue- and condition-specific subsets of 

the whole database, the experiments were manually annotated according to the following 

scheme. First of all, the anatomical annotation of the samples was reported to the 

standard MeSH ontology, by associating every experiment to the most specific keywords 

that correctly described the sample. Secondly, we recorded for every sample whether the 

RNA was derived from whole tissues or from isolated cells. Third, were reported whether 

the sample corresponded to a normal, tumor-related or other diseased condition. Finally, 

we reported whether the sample was of adult or embryonic origin.  

To avoid the spurious correlation links that may be introduced by the RMA procedure 35,  

we downloaded  CEL files for each experiment and normalized them by using MAS5 

algorithm. This procedure was used as implemented in software packages available from 

Bioconductor (http://www.bioconductor.org), using the default parameters. 
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Generation of conserved-coexpression networks 

Generic and tissue-specific conserved coexpression networks were generated using the 

procedures described in 12. Briefly, after selecting corresponding subsets of the human 

and mouse gene expression datasets, we first generated single species gene 

coexpression networks (SCN) and then integrated them on the basis of human-mouse 

orthology. SCNs were generated by calculating the Pearson correlation coefficients 

between all the probeset of the expression matrix.  A directed edge was established from 

probeset  p1 to probeset p2 if  p2 fell within the top 1% of all the correlation values 

calculated respect to p1. The directed networks where then converted into undirected 

SCNs by mapping the rows to the corresponding Entrez Gene identifiers. Finally, CCNs 

were built from SCNs by mapping every Entrez Gene identifier to the corresponding 

homology cluster, defined as the union of the information contained in Homologene (built 

63) and Ensembl homology (release 53) databases.  

Measure of phenotype similarity 

To measure the pairwise similarity of disorders (described by independent OMIM 

phenotype entries) we downloaded the OMIM database on June 17th, 2009 and 

processed it using MimMiner, essentially as described 20.  

MimMiner scores are normalized and range from 0 (unrelated) to 1 (highly related or 

identical). Since van Driel et al. showed that similar phenotypes can be identified with 

reasonable accuracy considering a minimum score of 0.4, we used the same threshold for 

our work. Hence, when mentioning “similar phenotypes”, if not otherwise stated, we refer 

to pairs of OMIM phenotype entries that have a MimMiner similarity score of at least 0.4 in 

our updated database. 

Generation of OMIM phenotype coexpression networks (PCNs): 

Genes (nodes) in a given conserved coexpression network (CCN) were mapped to the 

disorders (OMIM phenotype IDs) in which they are known to be involved using Entrez 



 16

(mim2gene, downloaded on June 16th, 2009). Each edge in the CCN involving two genes 

both associated to OMIM phenotypes was translated into a corresponding OMIM-OMIM 

edge. For genes involved in multiple phenotypes several corresponding OMIM-OMIM 

edges could be obtained. For the final PCN, however, only OMIM-OMIM edges involving 

two similar phenotypes (MimMiner score ≥0.4; see above) were kept, while OMIM-OMIM 

edges that connect unrelated phenotypes were dropped. Therefore, PCNs can be 

considered to capture the valuable knowledge contained in CCNs for the purpose of 

disease gene prediction by means of identifying candidate genes that show a conserved 

coexpression with genes known to cause similar disorders. 

Disease gene prediction 

We applied our previously described method for disease gene prediction 12 to 1 multi-

tissue and 13 tissue-specific CCNs. Here, we briefly summarize the method, for more 

details see reference 11. 

We define gene clusters in the network, consisting of a given gene plus all its nearest 

neighbours (i.e. all genes that show conserved coexpression with the given gene). Hence 

each network composed of N genes will yield N gene clusters (one for each gene). 

For these clusters we establish associations to OMIM phenotype entries in the following 

way: each cluster containing at least 2 genes known to be involved in a given phenotype p 

or similar phenotypes (see above) is consider as “potentially disease-relevant” with respect 

to p. 

To identify promising candidate disease genes for phenotypes with currently unknown 

molecular basis (OMIM category “%”, as of June 2009) but already mapped gene map 

locus (e.g. via linkage analysis), we determine which (if any) of the candidate genes fall 

within the respective disease-relevant gene clusters taken from our networks. In other 

terms, we select the “best” candidates as those that show a conserved coexpression, 



 17

within a given context depending on the CCN (e.g. tissue-specific), with other genes 

involved in the given or similar phenotypes.  

False discovery rate (FDR) for the disease gene prediction: In order to estimate the 

quality of our predictions we performed 20 randomizations of each CCN (keeping the 

network structure intact and instead randomizing only gene labels) and applied the same 

candidate selection method as described above. Please note that the FDR is computed for 

each CCN separately, hence there is some limited amount of multiple testing not yet 

considered by the computed FDRs. Therefore, with the exception of the evaluation of 

XLMR candidates, we present only predictions that satisfy a stringent FDR of 1%, instead 

of the 10% threshold used in our previous study 12.  

Leave-one-out test procedure: To verify the effectiveness of the method in identifying 

disease genes, we performed a leave-one-out cross-validation on all genes known to be 

involved in phenotypes described in OMIM (Entrez mim2gene, downloaded on June 16th, 

2009), with the exception of those genes that could not be mapped to their precise 

genome location via Ensembl 55 (http://www.ensembl.org ). For each evaluated gene-

phenotype pair we constructed an artificial locus, centred around the disease gene, 

containing 149 genes (Ensembl 55), corresponding to the average number of genes 

present in the orphan loci associated to phenotypes with currently unknown molecular 

basis (OMIM; June 17th, 2009). Additionally, we removed all associations regarding 

possible known disease genes from the given phenotype. We then applied the prediction 

procedure on the same CCNs, and considered as positive predictions those that satisfied 

a CCN-specific p-value threshold corresponding to the 1% FDR of the true predictions. We 

defined the precision as the fraction of cases in which the positive predictions contained 

the true disease gene. 
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Figure legends 

Figure 1: (A) Heatmap representing the fraction of common edges between different 

conserved-coexpression networks. The two random cases are representative examples of 

networks obtained from 10% of the experiments that compose the indicated dataset, 

chosen at random. The scale bar represents the percentage of common links 

(intersection/union). (B) Number of Gene Ontology keywords significantly enriched in the 

indicated number of conserved coexpression networks.  

Figure 2: Neighbourhood of the POU5F1 gene in the conserved coexpression network 

obtained from stem cells microarray experiments. The size of the nodes and their distance 
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from the centre are a function of their connectivity. The genes displayed in orange have 

been successfully used to reprogram differentiated cells to iPS cells.  The genes displayed 

in yellow have been experimentally linked to the pluripotent state or are considered as 

pluripotency markers. 

Figure 3: (A) Number of OMIM-OMIM links unique to each of the phenotype coexpression 

networks (PCNs). (B) Charcot-Marie Tooth disease type 4D (CMT4D; OMIM 601455) and 

its first and second level neighbours in the CNS and NT PCNs. Grey nodes and black 

edges were found in both PCNs. Red and green nodes/edges were specifically found in 

the CNS or in the NT PCNs, respectively. Legend: CMT = Charcot-Marie-Tooth disease; 

MMZ = Myopathy, myofibrillar, ZASP-related; NEM = Nemaline myopathy; HMN = 

neuronopathy, distal hereditary motor; SNCV = slowed nerve conduction velocity; CHN = 

neuropathy, congenital hypomyelinating; HSAN = neuropathy, hereditary sensory and 

autonomic; RLHAD = Roussy-Levy hereditary areflexic dystasia; HNPP = neuropathy, 

hereditary, with liability to pressure palsies; HNDS = hypertrophic neuropathy of Dejerine-

Sottas. 

Figure 4: Representation of a subset of the neighbourhood of the USP9X gene in the 

three CCNs from which it was predicted as a candidate XLMR gene (normal tissues, CNS 

and skeletal muscle) via related phenotypes. It includes all the nodes that were connected 

to USP9X in at least one network.  Thick edges represent links found in all three networks. 

The genes shown in orange are functionally involved in the Ubiquitin cycle, while those 

with a cyan border are involved in diseases related to XLMR (MimMiner score ≥ 0.4) 
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Table captions 

Table 1: List of the candidate genes for X-linked mental retardation generated from CCNs 

with a false discovery rate (FDR) of 0.1 or less, considering as reference genes all 

knownXLMR genes. The mutational score was obtained from reference 22, and “T” 

indicates that in the same study a truncating mutation was detected in the gene. 
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Table 1 

Gene symbol 
Number of 
networks 

Mutational 
Score 

Best p-
value 

Best 
FDR 

GPRASP1 4 1 1.78E-07 0 
GPM6B 1 NA 1.78E-07 0 
GSPT2 2 11 3.49E-07 0 
NAP1L3 2 4 3.49E-07 0 
MAGEE1 2 2.04 3.49E-07 0 
ARMCX1 2 NA 3.49E-07 0 
NAP1L2 2 NA 3.49E-07 0 
TCEAL1 2 NA 3.49E-07 0 
USP9X 2 T 3.89E-07 0 
ARMCX3 2 11.84 2.86E-06 0 
RAB39B 2 NA 2.86E-06 0 
CHIC1 1 NA 6.61E-06 0 
DYNLT3 1 NA 6.61E-06 0 
NKRF 2 NA 6.61E-06 0 
TRO 2 NA 6.61E-06 0 
RLIM 2 NA 1.00E-05 0.04 
THOC2 1 10.528 1.71E-05 0 
DIAPH2 1 3.87 1.71E-05 0 
PLS3 1 NA 1.71E-05 0 
REPS2 2 NA 1.71E-05 0 
SH3BGRL 1 NA 1.71E-05 0 
TMEM47 1 NA 1.71E-05 0 
ZFX 1 NA 1.71E-05 0 
ZXDA 1 NA 2.01E-05 0.08 
ZXDB 1 NA 2.01E-05 0.1 
CLCN4 2 21.359 2.47E-05 0.07 
BEX2 2 1.37 2.47E-05 0.06 
EIF1AX 1 NA 2.53E-05 0.03 
TMEM164 1 NA 2.53E-05 0.05 
YIPF6 2 NA 2.53E-05 0.04 
ZMAT1 2 NA 2.53E-05 0.06 
F9 1 13.068 3.14E-05 0.03 
SMARCA1 1 24 3.30E-05 0 
GPRASP2 3 4 3.30E-05 0 
MAP7D2 1 3.172 3.30E-05 0 
BEX1 3 NA 3.30E-05 0 
BEX4 1 NA 3.30E-05 0 
NUDT11 2 NA 3.30E-05 0 
CHM 2 6.96 5.07E-05 0.08 
CNKSR2 1 20.678 6.28E-05 0.07 
PDZD4 1 NA 6.28E-05 0.08 
PJA1 1 2.44 6.46E-05 0.07 
LRCH2 1 16.2 6.51E-05 0.02 
SYAP1 1 NA 7.67E-05 0.04 
FGF13 1 NA 8.66E-05 0.08 
USP11 1 NA 8.66E-05 0.08 
MBNL3 1 6.354 9.92E-05 0.04 
HMGN5 1 NA 9.92E-05 0.03 
MAP3K7IP3 1 NA 9.92E-05 0.03 
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