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Abstract

Assume that we observe a small set of entries or linear combinations of en-
tries of an unknown matrix A0 corrupted by noise. We propose a new method for
estimating A0 which does not rely on the knowledge or on an estimation of the
standard deviation of the noise σ. Our estimator achieves, up to a logarithmic
factor, optimal rates of convergence under the Frobenius risk and, thus, has the
same prediction performance as previously proposed estimators which rely on the
knowledge of σ. Some numerical experiments show the benefits of this approach.

AMS 2000 subject classification: 62J99, 62H12, 60B20, 60G05. Keywords and
phrases: unknown variance of the noise, low rank matrix estimation, matrix com-
pletion, matrix regression

1 Introduction

In this paper we focus on the problem of high-dimensional matrix estimation from
noisy observations with unknown variance of the noise. Our main interest is the high
dimensional setting, that is, when the dimension of the unknown matrix is much larger
than the sample size. Such problems arise in a variety of applications. In order to
obtain a consistent procedure in this setting we need some additional constraints. In
sparse matrix recovery a standard assumption is that the unknown matrix is exactly
or near low-rank. Low-rank conditions are appropriate for many applications such as
recommendation systems, system identification, global positioning, remote sensing (for
more details see [6]).

We propose a new method for approximate low-rank matrix recovery which does not
rely on the knowledge or on an estimation of the standard deviation of the noise. Two
particular settings are analysed in more details: matrix completion and multivariate
linear regression.

In the matrix completion problem we observe a small set of entries of an unknown
matrix. Moreover, the entries that we observe may be perturbed by some noise. Based
on these observations we want to predict or reconstruct exactly the missing entries.
One of the well-known examples of matrix completion is the Netflix recommendation
system. Suppose we observe a few movie ratings from a large data matrix in which
rows are users and columns are movies. Each user only watches a few movies compared
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to the total database of movies available on Netflix. The goal is to predict the missing
ratings in order to be able to recommend the movies to a person that he/she has not
yet seen.

In the noiseless setting, if the unknown matrix has low rank and is “incoherent”,
then, it can be reconstructed exactly with high probability from a small set of entries.
This result was first proved by Candès and Recht [7] using nuclear norm minimization.
A tighter analysis of the same convex relaxation was carried out in [8]. For a simpler
approach see [21] and [13]. An alternative line of work was developed by Keshavan et
al in [15].

In a more realistic setting the observed entries are corrupted by noise. This question
has been recently addressed by several authors (see, e.g., [6, 14, 22, 19, 20, 17, 18, 10,
16]). These results require knowledge of the noise variance, however, in practice, such
an assumption can be difficult to meet and the estimation of σ is non-trivial in large
scale problems. Thus, there is a gap between the theory and the practice.

The multivariate linear regression model is given by

Ui = ViA0 + Ei i = 1, . . . , l, (1.1)

where Ui are 1×m2 vectors of response variables, Vi are 1×m1 vectors of predictors,
A0 is an unknown m1×m2 matrix of regression coefficients and Ei are random 1×m2

vectors of noise with independent entries and mean zero. This model arises in many
applications such as the analysis of gene array data, medical imaging, astronomical
data analysis, psychometrics and many other areas of applications.

Previously multivariate linear regression with unknown noise variance was consid-
ered in [5, 11]. These two papers study rank-penalized estimators. Bunea et al [5], who
first introduced such estimators, proposed an unbiased estimator of σ which required an
assumption on the dimensions of the problem. This assumption excludes an interesting
case, the case when the sample size is smaller than the number of covariates. The
method proposed in [11] can be applied to this last case under a condition on the rank
of the unknown matrix A0. Our method, unlike the method of [5], can be applied to the
case when the sample size is smaller than the number of covariates and our condition
is weaker than the conditions obtained in [11]. For more details see Section 3.

Usually, the variance of the noise is involved in the choice of the regularization
parameter. Our main idea is to use the Frobenius norm instead of the squared Frobenius
norm as a goodness-of-fit criterion, penalized by the nuclear norm, which is now a well-
established proxy for rank penalization in the compressed sensing literature [8, 13].
Roughly, the idea is that in the KKT condition, the gradient of this square-rooted
criterion is the regression score, which is pivotal with respect to the noise level, so
that the theoretically optimal smoothing parameter does not depend on the noise level
anymore.

This cute idea for dealing with an unknown noise level was first introduced for
square-root lasso by Belloni, Chernozhukov and Wang [4] in the vector regression model
setting. The estimators proposed in the present paper require quite a different anal-
ysis, with proofs that differ a lot from the vector case. Other methods dealing with
the unknown noise level in high-dimensional sparse regression include e.g. the scaled
Lasso [24] and the penalized Gaussian log-likelihood [23]. For a very complete and
comprehensive survey see [12]. It is an interesting open question if these other methods
could be adapted in the matrix setting.
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1.1 Layout of the paper

This paper is organized as follows. In Section 1.2 we set notations. In Section 2 we
consider the matrix completion problem under uniform sampling at random (USR).
We propose a new square-root type estimator for which the choice of the regularization
parameter λ is independent of σ. The main result, Theorem 2, shows that, in the case
of USR matrix completion and under some mild conditions that link the rank and the
“spikiness” of A0, the prediction risk of our estimator measured in Frobenius norm is
comparable to the sharpest bounds obtained until now.

In Section 3, we apply our ideas to the problem of matrix regression. We introduce
a new square-root type estimator. For this construction, as in the case of matrix
completion, we do not need to know or estimate the noise level. The main result for
matrix regression, Theorem 4 gives, up to a logarithmic factor, minimax optimal bound

on the prediction error
∥∥∥V (Â−A0

)∥∥∥2

2
.

In Section 4 we give empirical results that confirms our theoretical findings.

1.2 Notation

For any matrices A,B ∈ Rm1×m2 , we define the scalar product

〈A,B〉 = tr(ATB),

where tr(A) denotes the trace of the matrix A.
For 0 < q ≤ ∞ the Schatten-q (quasi-)norm of the matrix A is defined by

‖A‖q =

min(m1,m2)∑
j=1

σj(A)q

1/q

for 0 < q <∞ and ‖A‖∞ = σ1(A),

where (σj(A))j are the singular values of A ordered decreasingly.
We summarize the notations which we use throughout this paper

• ∂G is the subdifferential of G;

• S⊥ is the orthogonal complement of S;

• PS is the orthogonal projector on the linear vector subspace S and P⊥S = 1−PS ;

• ‖A‖sup = max
i,j
| aij | where A = (aij).

• In what follows we will denote by c a numerical constant whose value can vary
from one expression to the other and is independent from n,m1,m2.

• Set m = m1 +m2, m1 ∧m2 = min(m1,m2) and m1 ∨m2 = max(m1,m2).

• The symbol . means that the inequality holds up to multiplicative numerical
constants.

2 Matrix Completion

In this section we construct a square-root estimator for the matrix completion problem
under uniform sampling at random. Let A0 ∈ Rm1×m2 be an unknown matrix, and
consider the observations (Xi, Yi) satisfying the trace regression model

Yi = tr(XT
i A0) + σξi, i = 1, . . . , n. (2.1)
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Here, Yi are real random variables; Xi are random matrices with dimension m1 ×m2.
The noise variables ξi are independent, identically distributed and having distribution
Φ such that

EΦ(ξi) = 0, EΦ(ξ2
i ) = 1 (2.2)

and σ > 0 is the unknown standard deviation of the noise.
We assume that the design matrices Xi are i.i.d uniformly distributed on the set

X =
{
ej(m1)eTk (m2), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2

}
, (2.3)

where el(m) are the canonical basis vectors in Rm. Note that when Xi = ej(m1)eTk (m2)
we observed (j, k)−th entry of A0 perturbed by some noise. When number of observa-
tions n is much smaller then the total number of coefficients m1m2, we consider the
problem of estimating of A0, i.e. the problem of reconstruction of many missing entries
of A0 from n observed coefficients.

In [18], the authors introduce the following estimator of A0

Â = arg min
A∈Rm1×m2

{
‖ A−X ‖22 +λ‖A‖1

}
(2.4)

where

X =
m1m2

n

n∑
i=1

YiXi. (2.5)

For this estimator, the variance of the noise is involved in the choice of the regularisation
parameter λ. We propose a new square-root type estimator

Âλ,µ = arg min
A∈Rm1×m2

{‖A−X‖2 + λ‖A‖1} . (2.6)

The first part of our estimator coincides with the square root of the data-depending
term in (2.4). This is similar to the principle used to define the square-root lasso
for the usual vector regression model, see [4]. Despite taking the square-root of the
least squares criterion function, the problem 2.6 retains global convexity and can be
formulated as a solution to a conic programming problem. For more details see Section
4.

We will consider the case of sub-Gaussian noise and matrices with uniformly bounded
entries. Let a denote a constant such that

‖A0‖sup ≤ a. (2.7)

We suppose that the noise variables ξi are such that

E(ξi) = 0, E(ξ2
i ) = 1 (2.8)

and there exists a constant K such that

E [exp(tξi)] ≤ exp
(
t2/2K

)
(2.9)

for all t > 0. Normal N(0, 1) random variables are sub-Gaussian with K = 1 and (2.9)
implies that ξi has Gaussian type tails:

P {|ξi| > t} ≤ 2 exp
{
−t2/2K

}
.

Condition Eξ2
i = 1 implies that K ≤ 1.
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Let us introduce the matrix M

M =
1

m1m2
(X−A0) . (2.10)

Note that M is centred. Its operator and Frobenius norms play an important role in
the choice of the regularisation parameter λ (and we will show that they are “small”
enough). We set

∆ =
‖M‖∞
‖M‖2

. (2.11)

The next theorem provides a general oracle inequality for the prediction error of our
estimator. Its proof is given in the Appendix A.

Theorem 1. Suppose that
ρ√

2rank(A0)
≥ λ ≥ 3∆ for some ρ < 1, then

‖Â−A0‖22 ≤ inf√
2rank(A)≤ρ/λ

{
(1− ρ)−1 ‖A−A0‖22 +

(
2λm1m2

1− ρ

)2

‖M‖22 rankA
}

where ∆ and M are defined in (2.11) and (2.10).

In order to specify the value of the regularization parameter λ, we need to estimate
∆ with high probability. Therefore we use the following two lemmas.

Lemma 1. For n > 8(m1 ∧m2) log2m, with probability at least 1− 3/m, one has

‖M‖∞ ≤ (c∗σ + 2a)

√
2 log(m)

(m1 ∧m2)n
(2.12)

where c∗ is a numerical constant which depends only on K.
If ξi are N(0, 1), then we can take c∗ = 6.5.

Proof. The bound (2.12) is stated in Lemmas 2 and 3 in [18]. A closer inspection of the
proof of Proposition 2 in [17] gives an estimation on c∗ in the case of Gaussian noise.
For more details see the Appendix D.

The following Lemma, proven in the Appendix E, provides bounds on ‖M‖2.

Lemma 2. Suppose that 4n ≤ m1m2. Then, for M defined in (2.10), with probability
at least 1− 2/m1m2 − c1 exp{−c2n}, one has

(i)

2

(
‖A0‖22
nm1m2

+
σ2

n

)
≥ ‖M‖22 ≥

σ2

2n
;

(ii) ∥∥∥∥∥ 1

n

n∑
i=1

YiXi

∥∥∥∥∥
2

2

≥
‖A0‖22
nm1m2

≥
4 ‖A0‖22
(m1m2)2

;

(iii)

‖M‖2 ≥
1

2

∥∥∥∥∥ 1

n

n∑
i=1

YiXi

∥∥∥∥∥
2

where (c1, c2) are numerical constants which depends only on K, a and σ.
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Recall that the condition on λ in Theorem 1 is that λ ≥ 3∆. Using Lemma 1 and
the lower bounds on ‖M‖2 given by Lemma 2, we can choose

λ = 2c∗

√
logm

m1 ∧m2
+ 4a

√
2n logm

m1 ∧m2

1∥∥∥∥ n∑
i=1
YiXi

∥∥∥∥
2

. (2.13)

Note that in (2.13) λ is data driving and is independent of σ. With this choice of λ,

the assumption of Theorem 1,
ρ√

rank(A0)
≥ λ, takes the form

ρ√
rank(A0)

≥ 2c∗

√
logm

m1 ∧m2
+ 4a

√
2n logm

m1 ∧m2

1∥∥∥∥ n∑
i=1
YiXi

∥∥∥∥
2

. (2.14)

Using (ii) of Lemma 2 we get that (2.14) is satisfied with a high probability if

ρ√
rank(A0)

≥ 2 c∗

√
logm

m1 ∧m2
+

4 a
√
m1m2

‖A0‖2

√
2 logm

m1 ∧m2
. (2.15)

Note that as m1 and m2 are large, the first term in the rhs of (2.15) is small. Thus
(2.15) is essentially equivalent to

ρ ≥ 4

√
2 logm

(m1 ∧m2)

√
rank(A0)αsp (2.16)

where αsp =

√
m1m2 ‖A0‖sup

‖A0‖2
is the spikiness ratio of A0. The notion of “spikiness”

was introduced by Negahban and Wainwright in [20]. We have that 1 ≤ αsp ≤
√
m1m2

and it is large for “spiky” matrices, i.e. matrices where some “large” coefficients emerge
as spikes among very “small” coefficients. For instance, αsp = 1 if all the entries of A0

are equal to some constant and αsp =
√
m1m2 if A0 has only one non-zero entry.

Condition (2.16) is a kind of trade-off between “spikiness” and rank. If αsp is
bounded by a constant, then, up to a logarithmic factor, rank(A0) can be of the order
m1 ∧m2, which is its maximal possible value. If our matrix is “spiky”, then we need
low rank. To give some intuition let us consider the case of square matrices. Typically,
matrices with both high spikiness ratio and high rank look almost diagonal. Thus,
under uniform sampling and if n � m1m2, with high probability we do not observe
diagonal (i.e. non-zero) elements.

Theorem 2. Let the set of conditions (2.8) - (2.7) be satisfied and λ be as in (2.13).

Assume that 8(m1 ∧m2) log2m < n ≤ m1m2

4
and that (2.15) holds for some ρ < 1.

Then, with probability at least 1− 4/m− c1 exp{−c2n}

1

m1m2
‖Â−A0‖22 ≤ C∗

(m1 ∨m2)

n
rank(A0) logm. (2.17)

Here C∗ =
16
(
2c∗σ

2 + (18 + 2c∗)a
2
)

(1− ρ)2
, c∗ is an absolute constant that depends only on

K and (c1, c2) are numerical constants that depend only on K, a and σ.
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Proof. This is a consequence of Theorem 1 for A = A0. From (2.13) we get

‖Â−A0‖22 ≤
8(m1m2)2

(1− ρ)2

c∗
√

4 logm

m1 ∧m2
+ 2a

√
2n logm

m1 ∧m2

1∥∥∥∥ n∑
i=1
YiXi

∥∥∥∥
2


2

× ‖M‖22 rank(A0).

(2.18)

Using triangle inequality and (ii) of Lemma 2 we compute

‖M‖2 ≤

∥∥∥∥∥ 1

n

n∑
i=1

YiXi

∥∥∥∥∥
2

+
1

m1m2
‖A0‖2

≤ 3

2

∥∥∥∥∥ 1

n

n∑
i=1

YiXi

∥∥∥∥∥
2

.

Using (i) of Lemma 2 and (2), from (2.18), we get

‖Â−A0‖22 ≤
16 log(m)(m1m2)2

(1− ρ)2(m1 ∧m2)

(
2 c∗

(
‖A0‖22
nm1m2

+
σ2

n

)
+

18a2

n

)
rank(A0).

Then, we use ‖A0‖22 ≤ a2m1m2 to obtain

‖Â−A0‖22
m1m2

≤16 log(m)(m1 ∨m2)

(1− ρ)2n

(
2c∗σ

2 + (18 + 2c∗)a
2
)

rank(A0).

This completes the proof of Theorem 2.

Theorem 2 guarantees that the normalized Frobenius error
‖ Â−A0 ‖2√

m1m2
of the es-

timator Â is small whenever n > C(m1 ∨m2) log(m)rank(A0) with a constant C large
enough. This quantifies the sample size, n, necessary for successful matrix completion
from noisy data with unknown variance of the noise. Remarkably, this sampling size
is the same as in the case of known variance of the noise. In Theorem 2 we have an
additional restriction 4n ≤ m1m2. In matrix completion setting the number of observed
entries n is always smaller then the total number of entries m1m2 and this condition
can be replaced by n ≤ αm1m2 for some α < 1.

Theorem 2 leads to the same rate of convergence as previous results on matrix
completion which treat σ as known. In order to compare our bounds to those obtained
in past works on noisy matrix completion, we will start with describing the result of
Keshavan et al [14]. Under a sampling scheme different from ours (sampling without
replacement) and sub-Gaussian errors, the estimator proposed in [14] satisfies, with
high probability, the following bound

1

m1m2
‖Â−A0‖22 . k4√α(m1 ∨m2)

n
rank(A0) log n. (2.19)

Here k = σmax(A0)/σmin(A0) is the condition number and α = (m1 ∨m2)/(m1 ∧m2)
is the aspect ratio. Comparing (2.19) and (2.17), we see that our bound is better: it
does not involve the multiplicative coefficient k4√α which can be big.
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Negahban et al in [20] propose an estimator which, in the case of USR matrix
completion and sub-exponential noise, satisfies

1

m1m2
‖Â−A0‖22 . αsp

m

n
rank(A0) logm. (2.20)

Here αsp is the spikiness ratio of A0. For αsp bounded by a constant, (2.20) gives the
same bound as Theorem 2. The construction of Â in [20] requires a priori information
on the spikiness ratio of A0 and on σ. This is not the case for our estimator.

The estimator proposed by Koltchinskii et al in [18] achieves the same bound as
ours. In addition to prior information on ‖A0‖sup, their method also requires prior
information on σ. In the case of Gaussian errors, this rate of convergence is optimal up
to a logarithmic factor (cf. Theorem 6 of [18]) for the class of matrices A(r, a) defined
as follows: for given r and a, A0 ∈ A(r, a) if and only if the rank of A0 is bounded by
r and all the entries of A0 are bounded in absolute value by a.

One important difference with previous works on matrix completion is that Theorem

2 requires the additional growth restriction on λ, that is the condition
ρ√

2rank(A0)
≥ λ.

The consequence of this growth restriction is that our method can not be applied to
matrices which have both large spikiness ratio and large rank. Note that the square-
root lasso estimator also requires an additional growth restriction on λ (see Theorem
1 in [4]). We may think that these restrictions is the price of not knowing σ in our
framework.

3 Matrix Regression

In this section we apply our method to matrix regression. Recall that the matrix
regression model is given by

Ui = ViA0 + Ei i = 1, . . . , n, (3.1)

where Ui are 1×m2 vectors of response variables; Vi are 1×m1 vectors of predictors;
A0 is an unknown m1 × m2 matrix of regression coefficients; Ei are random 1 × m2

noise vectors with independent entries Eij . We suppose that Eij has mean zero and

unknown standard deviation σ. Set V =
(
V T

1 , . . . , V
T
n

)T
, U =

(
UT1 , . . . , U

T
n

)T
and

E =
(
ET1 , . . . , E

T
n

)T
.

We propose new estimator of A0 using again the idea of the square-root estimators:

Â = arg min
A∈Rm1×m2

{‖U − V A‖2 + λ‖V A‖1} ,

where λ > 0 is a regularization parameter. This estimator can be formulated as a
solution to a conic programming problem. For more details see Section 4.

Recall that PV denote the orthogonal projector on the linear span of the columns
of matrix V . We set

∆′ =
‖PV (E)‖∞
‖E‖2

.

Minor modifications in the proof of Theorem 1 yield the following result.

Theorem 3. Suppose that
ρ√

2rank(V A0)
≥ λ ≥ 3∆′ for some ρ < 1, then

∥∥∥V (Â−A0

)∥∥∥2

2
≤ inf√

2rank(V A)≤ρ/λ

{
‖V (A−A0)‖22

1− ρ
+

(
2λ

1− ρ

)2

‖E‖22 rank(V A)

}
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Proof. The proof follows the lines of the proof of Theorem 1 and it is given in the
Appendix G.

To get the oracle inequality in a closed form it remains to specify the value of
regularization parameter λ such that λ ≥ 3∆′. This requires some assumptions on the
distribution of the noise (Eij)i,j . We will consider the case of Gaussian errors. Suppose
that Eij = σξij where ξij are normal N(0, 1) random variables. In order to estimate
‖PVE‖∞ we will use the following result proven in [5].

Lemma 3 ([5], Lemma 3). Let r = rank(V ) and assume that Eij are independent
N(0, σ2) random variables. Then

E(‖PVE‖∞) ≤ σ(
√
m2 +

√
r)

and
P {‖PVE‖∞ ≥ E(‖PVE‖∞) + σt} ≤ exp

{
−t2/2

}
.

We use Bernstein’s inequality to get a bound on ‖E‖2. Let α < 1. With probability
at least 1− 2 exp

{
−c α2 nm2

}
, one has

(1 + α)σ
√
nm2 ≥ ‖E‖2 ≥ (1− α)σ

√
nm2. (3.2)

Let β > 0 and take t = β
(√
m2 +

√
r
)

in Lemma 3. Then, using (3.2), we can take

λ =
(1 + β)

(√
m2 +

√
r
)

(1− α)
√
nm2

. (3.3)

Put γ =
1 + β

1− α
> 1. Thus, condition

ρ√
2 rank(V A0)

≥ λ gives

rank(V A0) ≤ ρ2nm2

2γ2
(√
m2 +

√
r
)2 (3.4)

and we get the following result.

Theorem 4. Assume that ξij are independent N(0, 1). Pick λ as in (3.3). Assume
(3.4) is satisfied for some ρ < 1, α < 1 and β > 0. Then, with probability at least
1− 2 exp {−c(m2 + r)}, we have that∥∥∥V (Â−A0

)∥∥∥2

2
. σ2(m2 + r) rank(V A0).

Proof. This is a consequence of Theorem 3.

Let us now compare condition (3.4) with the conditions obtained in [5, 11]. In [5]
the authors introduce a new rank-penalised estimator and consider both cases when
the variance of the noise is known or not. In the case of known variance of the noise, in
[5], minimax optimal bounds on the mean squared errors are established (it does not
need growth restriction on λ and, thus, applies to all rank(V A0)). In the case when
the variance of the noise is unknown, un unbiased estimator of σ is proposed. This
estimator requires an assumption on the dimensions of the problem. In particular it
requires m2(n − r) to be large, which holds whenever n � r or n − r ≥ 1 and m2 is
large. This condition excludes an interesting case n = r � m2. On the other hand
(3.4) is satisfied for n = r � m2 if

rank(A0) . n
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where we used rank(V A0) ≤ r ∧ rank(A0).
The method of [11] requires the following condition to be satisfied

rank(A0) ≤ C1(nm2 − 1)

C2

(√
m2 +

√
r
)2 (3.5)

with some constants C1 < 1 and C2 > 1. This condition is quite similar to condition
(3.4). Note that, as rank(V A0) ≤ rank(A0), condition (3.4) is weaker than (3.5). To
the opposite of [11], our results are valid for all A0 provided that

r ≤ ρ2nm2

2γ2
(√
m2 +

√
r
)2 .

For large m2 � n, this condition roughly mean that n > cr for some constantc.

4 Simulations

In this section, we give empirical results that confirms our theoretical findings. We
illustrate the fact that using the Frobenius norm instead of the square Frobenius norm
as a goodness-of-fit criterion makes the optimal smoothing parameter λ independent
of the noise level, allowing for a better stability of the procedure with respect to the
noise level, as compared to other state-of-the-art procedures. We focus on the matrix
regression problem only, since our conclusions are the same for matrix completion. We
compare in particular the following procedures:

argminA

{1

2
‖U − V A‖22 + λ‖A‖1

}
, (4.1)

which is based on the classical least-squares penalized by the trace norm,

argminA

{
‖U − V A‖2 + λ‖A‖1} (4.2)

which uses trace norm penalization with square-root least squares, and

argminA

{
‖U − V A‖2 + λ‖V A‖1

}
(4.3)

which is the procedure introduced in this paper. We illustrate in particular the fact
that (4.2) and (4.3), which are based on a goodness-of-fit using the Frobenius norm
instead of the squared Frobenius norm, provide a choice of λ which is independent of
the noise level σ.

4.1 Optimization algorithms

In this section, we describe the convex optimization algorithms used for solving prob-
lems (4.1), (4.2) and (4.3). For this we need to introduce the proximal operator [1]
proxg of a convex, proper, low-semicontinuous function g, given by

proxg(W ) = arg min
Y

{1

2
‖W − Y ‖22 + g(Y )

}
.

In the algorithms described below, we need to compute such proximal operator for
specific functions. The proximal operator of the trace norm is given by spectral soft-
thresholding, namely

proxtg(W ) = St(W ) for g(W ) = ‖W‖1
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for any t > 0, where

St(W ) = UW diag[(σ1(W )− t)+ · · · (σrank(W )(W )− t)+]V >W ,

with UW diag[σ1(W ) · · · σrank(W )(W )]V >W the singular value decomposition of W , with
the columns of UW and VW being the left and right singular vectors of W , and σ1(W ) ≥
· · · ≥ σrank(W )(W ) its singular values.

Problem (4.1) is solved using accelerated proximal gradient, also known as Fista [2],
since the loss is gradient-Lipschitz. Fista allows to minimize an objective of the form

F (A) = f(A) + g(A),

where f is smooth (gradient-Lipshitz) with Lipschitz constant L = ‖V ‖∞ (the operator
norm of V ) and g is prox-capable. In our setting we consider f(A) = 1

2‖U − V A‖
2
2

and g(A) = λ‖A‖1, so that ∇f(A) = V >(V A− U) and proxtg(A) = St(A). The Fista
algorithm is described in Algorithm 1 below. In our experiments we used backtracking
linesearch, instead of fixing the step-size constant and equal to 1/L.

Algorithm 1 Fista

Require: Starting points B1 = A0, Lipschitz constant L > 0 for ∇f , t1 = 1
1: for k = 0, 1, 2, . . . do
2: Ak ← proxL−1g(B

k − 1
L∇f(Bk))

3: tk+1 =
1+
√

1+4t2k
2

4: Bk+1 = Ak + tk−1
tk+1

(Ak −Ak−1)

5: end for
6: return Ak

Problem (4.2) is solved using a primal-dual algorithm [9], see Algorithm 2. It allows to
minimize an objective of the form

F (A) = f(KA) + g(A), (4.4)

where both f and g are prox-capable (with f non-smooth) and K a linear operator.
In our setting we choose this time K = V , f(A) = ‖A− U‖2 and g(A) = λ‖A‖1. It is
easily proved that

proxtf (A) =

{
U if ‖A− U‖2 ≤ t
A− t A−U

‖A−U‖2 if ‖A− U‖2 > t,

which allows to instantiate Algorithm 2 for problem (4.2), using also the Moreau’s
identity proxf∗(A)− A− proxf (A), see [1], where f∗ is the Fenchel conjugate of f . In
Algorithm 2 we use the heuristics described in [9] to choose the step-sizes η and τ .
Problem (4.3) is solved using parallel splitting [1]. First, we need to reformulate the
problem. Let us observe that if Â is a solution to (4.3), then any Â+B with B ∈ ker(V ),
where ker(V ) = {A ∈ Rm1×m2 : V A = 0}, is also a solution. Thus, we will solve the
problem on a splitted variable W = V A. We define the linear space col(V ) = {W ∈
Rn×m2 : ∃A ∈ Rm1×m2 , V A = W}. Then, we have

V Â = arg min
W∈col(V )

‖U −W‖2 + λ‖W‖1,

so that we end up with the problem

minimize ‖U −W‖2 + λ‖W‖1 + δcol(V )(W ), (4.5)
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Algorithm 2 Primal-dual algorithm

Require: Starting points A0, Ā0, Z0, step-sizes η, τ > 0 such that
1: for k = 0, 1, 2, . . . do
2: Zk+1 ← proxηf∗(Z

k + ηV Āk)

3: Ak+1 ← proxτg(A
k − τV >Zk+1)

4: Āk+1 ← Ak+1 + θ(Ak+1 −Ak)
5: end for
6: return Ak

where δC(X) stands for the indicator function of a convex set C, defined by δC(X) = 0
when X ∈ C and δC(X) = +∞ when X /∈ C. Then, we solve (4.5) using parallel
splitting [1]. Each function in (4.5) are prox-capable. Let us define

f1(W ) = ‖U −W‖2, f2(W ) = λ‖W‖1, f3(W ) = δcol(V )(W ).

We gave above proxf1 and proxf2 . We have that

proxf3(W ) = Pcol(V )(W ) = V (V >V )†V >W,

where Pcol(V ) is the projection operator onto the set col(V ), and where Z† stands for
the pseudo-inverse of Z. The parallel splitting algorithm is described in Algorithm 3
below.

Algorithm 3 Parallel splitting

Require: Step-sizes γ > 0, τk ∈ [0, 2], initial values W 0
1 ,W

0
2 ,W

0
3

1: for k = 0, 1, 2, . . . do
2: P k ← 1

3(W k
1 +W k

2 +W k
3 )

3: Zki ← proxγfi(W
k
i ) for i = 1, 2, 3

4: Qk ← 1
3(Zk1 + Zk2 + Zk3 )

5: W k+1
i ←W k

i + τk(2Q
k − P k − Zki ) for i = 1, 2, 3

6: end for
7: return P k

Convergence is guaranteed for τk ∈ [0, 2] such that
∑

k≥0 τk(2− τk) = +∞, see [1], we
simply choose τk = 1.9 in our experiments. An alternative (but somewhat less direct)
method for solving (4.5) is to write an equivalent conic formulation, and smooth the
primal objective by adding a strongly convex term. Then, the corresponding dual
problem can be solved using first order techniques. This method, called TFOCS, is the
one described in [3] for solving general convex cone problems.

4.2 Numerical illustration

We give several numerical illustrations. First, we show that the optimal choice of λ is
almost independent of the noise level for the procedures (4.2), (4.3), while it needs to be
increased with σ for procedure (4.1). This fact is illustrated in Figures 1 and 2. Then,
we compare the best prediction errors (among prediction errors obtained for several λ)
of solutions of problems (4.1), (4.2) and (4.3). This is illustrated in Tables 1 and 2.

We simulate data as follows. We pick at random A1 and A2 as, respectively, m1× r
and m2×r matrices with N(0, 1) i.i.d entries, and we fix A0 = A1A

>
2 , which is a m1×m2

matrix with rank r a.s. We pick at random a n ×m1 matrix V , with lines Vi ∈ Rm1 ,
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i = 1, . . . , n, distributed as a centered Gaussian vectors with covariance equal to the
Toeplitz matrix Σ = (ρ−|i−j|)1≤i,j≤m1 . We finally compute U = V A0 + σE, where the
noise matrix E contains N(0, 1) i.i.d entries and σ > 0 is the standard deviation.

We consider the setting n = 1000, m1 = 200, m2 = 100, r = 10 and ρ = 0.5, called
“experiment 1” in Figures and Tables, while we choose n = 200, m1 = 100, m2 = 400
and other parameters unchanged for “experiment 2”.

In Figure 1, 2 Table 1, 2 we consider values of σ in {0.1, 0.5, 1.0, 5.0}, and for each
value of σ we plot the prediction error ‖V (Âλ −A0)‖2 for a parameter λ in a grid. We
repeat this 10 times, and plot each time the prediction error in Figure 1 and print the
average best prediction errors (and standard deviation) in Table 1.

The conclusion of this experiment is the following: we observe that the minimum
of the prediction error is achieved for a parameter λ that increases with σ for proce-
dure (4.1), while it is almost constant for procedures (4.2) and (4.3). This confirms
numerically the fact, when using square-root least-squares instead of least-squares, the
optimal choice of λ can be done independently of the noise level. We observe also that
the minimum prediction errors of each procedure are of the same order for experiment 1,
with a slight advantage for procedure (4.3) for each considered values of σ, while there
is a strong advantage for procedure (4.3) for experiment 2, which corresponds to the
case where the number of tasks m2 is larger than the sample size n.

Noise level σ 0.1 0.5 1.0 5.0

Procedure (4.1) 3.56e-04 1.03e-02 4.01e-02 1.17e+00
(4.90e-05) (2.23e-04) (4.02e-03) (1.52e-01)

Procedure (4.2) 3.54e-04 8.87e-03 3.54e-02 8.72e-01
(8.66e-06) (2.01e-04) (8.34e-04) (2.17e-02)

Procedure (4.3) 3.47e-04 8.65e-03 3.43e-02 8.54e-01
(5.16e-06) (1.44e-04) (6.73e-04) (1.56e-02)

Table 1: Average best prediction error (and standard deviation) for experiment 1 of the
considered procedures for several values σ. Procedure (4.3) introduced in this paper
always leads to a slight improvement.

Noise level σ 0.1 0.5 1.0 5.0

Procedure (4.1) 1.50e-02 6.37e-02 2.24e-01 6.87e+00
(7.82e-03) (5.59e-03) (1.42e-02) (1.17e-01)

Procedure (4.2) 2.05e-03 5.01e-02 2.01e-01 4.95e+00
(5.37e-05) (4.93e-04) (1.79e-03) (5.63e-02)

Procedure (4.3) 1.64e-03 4.10e-02 1.64e-01 3.93e+00
(2.61e-05) (4.40e-04) (2.78e-03) (5.87e-02)

Table 2: Average best prediction error (and standard deviation) for experiment 2 of the
considered procedures for several values σ. Procedure (4.3) introduced in this paper
leads to a strong improvement in this case.

A Proof of Theorem 1

The proof of Theorem 1 is based on the ideas of the proof of Theorem 1 in [18]. However,
as the statistical structure of our estimator is different from that of the estimator
proposed in [18], the proof requires several modifications and additional information
on the behaviour of the estimator. This information is given in Lemmas 4 and 5. In
particular, Lemma 4 provides a bound on the rank of our estimator. Its proof is given
in Appendix B

13



10-5 10-4 10-3 10-2 10-1

10-3

10-2

10-1

100

101

102

10-3 10-2 10-1 100 101

10-3

10-2

10-1

100

101

102

10-3 10-2 10-1 100

10-3

10-2

10-1

100

101

102

103

10-5 10-4 10-3 10-2 10-1

10-2

10-1

100

101

102

10-3 10-2 10-1 100 101

10-2

10-1

100

101

102

10-3 10-2 10-1 100

10-2

10-1

100

101

102

103

10-5 10-4 10-3 10-2 10-1

10-1

100

101

102

10-3 10-2 10-1 100 101

10-1

100

101

102

10-3 10-2 10-1 100

10-1

100

101

102

103

10-5 10-4 10-3 10-2 10-1

100

101

102

10-3 10-2 10-1 100 101

100

101

102

10-3 10-2 10-1 100

100

101

102

103

Figure 1: Prediction errors (y-axis) for experiment 1 (see text) for a varying λ (x-axis)
for procedure (4.1) (first column), procedure (4.2) (second column) and procedure (4.3)
(third column). We plot the estimation errors over 10 simulated datasets (corresponding
to a line in each figure), for an increasing noise level σ = 0.1 (first line), σ = 0.5 (second
line), σ = 1.0 (third line), σ = 5.0 (fourth line). We can observe that the optimum λ
for (4.1) increases with σ (see the position of minimum along the first column), while
it can be kept almost constant for procedures (4.2) and (4.3)
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Figure 2: Prediction errors (y-axis) for experiment 2 (see text) for a varying λ (x-axis)
for procedure (4.1) (first column), procedure (4.2) (second column) and procedure (4.3)
(third column). We plot the estimation errors over 10 simulated datasets (corresponding
to a line in each figure), for an increasing noise level σ = 0.1 (first line), σ = 0.5 (second
line), σ = 1.0 (third line), σ = 5.0 (fourth line). We can observe that the optimum λ
for (4.1) increases with σ (see the position of minimum along the first column), while
it can be kept almost constant for procedures (4.2) and (4.3)
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Lemma 4.
rank(Â) ≤ 1/λ2.

Lemma 5. Suppose that
ρ√

rank(A0)
≥ λ ≥ 3∆ for some ρ < 1, then

‖Â−X‖2 ≥

(
3−

√
1 + ρ2

3 +
√

1 + ρ2

)
‖A0 −X‖2 (A.1)

If Â = X, then (A.1) implies that A0 = X and we get ‖Â−A0‖2 = 0.
When Â 6= X, we will use the fact that the subdifferential of the convex function
A→ ‖A‖1 is the following set of matrices (cf. [27])

∂‖A‖1 =


rank(A)∑
j=1

uj(A)vTj (A) + PS⊥1 (A)WPS⊥2 (A) : ‖W‖∞ ≤ 1

 . (A.2)

Here uj(A) and vj(A) are respectively the left and right orthonormal singular vectors
of A, S1(A) is the linear span of {uj(A)}, S2(A) is the linear span of {vj(A)}. For
simplicity we will write uj and vj instead of uj(A) and vj(A). A necessary condition of
extremum in (2.6) implies that there exists V̂ ∈ ∂‖Â‖1 such that for any A ∈ Rm1×m2

2〈Â−X, Â−A〉
2‖Â−X‖2

+ λ〈V̂ , Â−A〉 ≤ 0. (A.3)

By the monotonicity of subdifferentials of convex functions we have that 〈V̂ −V, Â−
A〉 ≥ 0 where V ∈ ∂‖A‖1. Then (A.3) and 2〈Â−A0, Â−A〉 = ‖Â−A0‖22 +‖Â−A‖22−
‖A−A0‖22 imply

‖Â−A0‖22 + ‖Â−A‖22 + 2λ‖Â−X‖2
〈
PS⊥1 (A)WPS⊥2 (A), Â−A

〉
≤ ‖A−A0‖22 + 2〈X−A0, Â−A〉 − 2λ‖Â−X‖2

〈
r∑
j=1

ujv
T
j , Â−A

〉
.

(A.4)

For B, a m1 ×m2 matrix, let PrA(B) = B − PS⊥1 (A)BPS⊥2 (A). Since

PrA(B) = PS⊥1 (A)BPS2(A) + PS1(A)B

and rank(PSi(A)B) ≤ rank(A) we have that rank(PrA(B)) ≤ 2rank(A).
Now, we consider each term in (A.4) separately. First, using the trace duality and

triangle inequality, we get

〈X−A0, Â−A〉 ≤ ‖X−A0‖∞‖Â−A‖1

≤ ‖X−A0‖∞
∥∥∥PrA

(
Â−A

)∥∥∥
1

+ ‖X−A0‖∞
∥∥∥PS⊥1 (A)

(
Â−A

)
PS⊥2 (A)

∥∥∥
1
.

(A.5)

Note that

∥∥∥∥∥ r∑
j=1

ujv
T
j

∥∥∥∥∥
∞

= 1. Then, the trace duality implies

〈
r∑
j=1

ujv
T
j , Â−A

〉
=

〈
r∑
j=1

ujv
T
j ,PrA

(
Â−A

)〉
≤
∥∥∥PrA

(
Â−A

)∥∥∥
1
. (A.6)
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From the trace duality, we get that, there exists W with ‖W‖∞ ≤ 1 such that〈
PS⊥1 (A)WPS⊥2 (A), Â−A

〉
=
〈
W,PS⊥1 (A)

(
Â−A

)
PS⊥2 (A)

〉
=
∥∥∥PS⊥1 (A)

(
Â−A

)
PS⊥2 (A)

∥∥∥
1
.

(A.7)

Using (A.1) and the definition of λ we derive

λ‖Â−X‖2
∥∥∥PS⊥1 (A) Â PS⊥2 (A)

∥∥∥
1
≥ λ3−

√
1 + ρ2

3 +
√

1 + ρ2
‖A0 −X‖2

∥∥∥PS⊥1 (A) Â PS⊥2 (A)

∥∥∥
1

≥ 3
3−

√
1 + ρ2

3 +
√

1 + ρ2
‖A0 −X‖∞‖PS⊥1 (A) Â PS⊥2 (A)‖1.

(A.8)

Note that 6
3−

√
1 + ρ2

3 +
√

1 + ρ2
≥ 2 for any ρ < 1. Thus, putting (A.5), (A.6) and (A.8) into

(A.4) yield

‖Â−A0‖22 + ‖Â−A‖22 ≤ ‖A−A0‖22 + 2‖X−A0‖∞‖PrA

(
Â−A

)
‖1

+ 2λ‖Â−X‖2‖PrA

(
Â−A

)
‖1.

(A.9)

Now, using the triangle inequality and the fact that∥∥∥PrA

(
Â−A

)∥∥∥
1
≤
√

2rank(A)‖Â−A‖2

we get

2 ‖X−A0‖∞
∥∥∥PrA

(
Â−A

)∥∥∥
1

+ 2λ
∥∥∥Â−X

∥∥∥
2

∥∥∥PrA

(
Â−A

)∥∥∥
1

≤ 2
(
‖X−A0‖∞ + λ ‖X−A0‖2

)√
2rank(A)

∥∥∥Â−A∥∥∥
2

+ 2λ‖Â−A0‖2
√

2rank(A)‖Â−A‖2.

(A.10)

From the definition of λ we get that ‖X−A0‖∞ ≤ λ ‖X−A0‖2 /3. For A such that
λ
√

2rank(A) ≤ ρ, (A.10) implies

‖Â−A0‖22 + ‖Â−A‖22 ≤ ‖A−A0‖22 +
8

3
λ‖X−A0‖2

√
2rank(A)‖Â−A‖2

+ 2ρ‖Â−A0‖2‖Â−A‖2.

Using 2ab ≤ a2 + b2 twice we finally compute

(1− ρ)‖Â−A0‖22 ≤ ‖A−A0‖22 +
4

1− ρ
λ2‖X−A0‖22rank(A)

which implies the statement of Theorem 1.

B Proof of Lemma 4

That Â is the minimum of (2.6) implies that 0 ∈ ∂F (Â). For Â 6= X, (A.2) implies
that there exists a matrix W such that ‖W‖∞ ≤ 1 and

Â−X

‖Â−X‖2
= −λ

rank(Â)∑
j=1

uj(Â)vTj (Â)− λPS⊥1 (Â)WPS⊥2 (Â). (B.1)
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Calculating the ‖ · ‖22 norm of both sides of (B.1) we get that 1 ≥ λ2rank(Â).
When Â = X, instead of the differential of ‖Â−X‖2 we use its subdifferential: in

(B.1) the term
Â−X

‖Â−X‖2
is replaced by a matrix W̃ such that ‖W̃‖2 ≤ 1 and we get

again 1 ≥ λ2rank(Â).

C Proof of Lemma 5

If A0 = X, then, we have trivially ‖Â−X‖2 ≥ 0.
If A0 6= X, by the convexity of the function A→ ‖A−X‖2, we have

‖Â−X‖2 − ‖A0 −X‖2 ≥
〈A0 −X, Â−A0〉
‖A0 −X‖2

≥ −‖A0 −X‖∞
‖A0 −X‖2

‖Â−A0‖1

≥ −‖A0 −X‖∞
‖A0 −X‖2

√
rank(Â) + rank(A0)‖Â−A0‖2.

(C.1)

Using Lemma 4, the bound
ρ√

rank(A0)
≥ λ and the triangle inequality, from (C.1) we

get

‖Â−X‖2 − ‖A0 −X‖2 ≥

−
√

1 + ρ2

λ

‖A0 −X‖∞
‖A0 −X‖2

(
‖Â−X‖2 + ‖A0 −X‖2

)
.

(C.2)

Note that
‖A0 −X‖∞
λ‖A0 −X‖2

≤ 1/3 which finally leads to(
1 +

√
1 + ρ2

3

)
‖Â−X‖2 ≥

(
1−

√
1 + ρ2

3

)
‖A0 −X‖2.

This completes the proof of Lemma 5.

D Proof of Lemma 1

Our goal is to get a numerical estimation on c∗ in the case of Gaussian noise. Let
Zi = ξi (Xi − EXi) and

σZ = max


∥∥∥∥∥ 1

n

n∑
i=1

E
(
ZiZ

T
i

)∥∥∥∥∥
1/2

∞

,

∥∥∥∥∥ 1

n

n∑
i=1

E
(
Z

T

i Zi

)∥∥∥∥∥
1/2

∞

 =
1

m1 ∧m2
.

The constant c∗ comes up in the proof of Lemma 2 in [18] in the estimation of

∆1 =

∥∥∥∥∥ 1

n

n∑
i=1

ξiXi

∥∥∥∥∥
∞

≤

∥∥∥∥∥ 1

n

n∑
i=1

ξi (Xi − EXi)

∥∥∥∥∥
∞

+
1

√
m1m2

∣∣∣∣∣ 1n
n∑
i=1

ξi

∣∣∣∣∣ .
A standard application of Markov’s inequality gives that, with probability at least
1− 1/m

1
√
m1m2

∣∣∣∣∣ 1n
n∑
i=1

ξi

∣∣∣∣∣ ≤ 2

√
logm

nm1m2
. (D.1)
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In [18], the authors estimate

∥∥∥∥ 1

n

n∑
i=1
ξi (Xi − EXi)

∥∥∥∥
∞

using [17, Proposition 2]. To get

a numerical estimation on c∗ we follow the lines of the proof of [17, Proposition 2]. In
order to simplify notations, we write ‖ ‖∞ = ‖ ‖ and we consider the case of Hermitian
matrices of size m′. Its extension to rectangular matrices is straightforward via self-
adjoint dilation, cf., for example, 2.6 in [25].

Let Yn =
n∑
i=1
Zi. In the proof of [17, Proposition 2], after following the standard

derivation of the classical Bernstein inequality and using the Golden-Thompson in-
equality, the author derives the following bound

P (‖Yn‖ ≥ t) ≤ 2m′e−λt‖EeλZ1‖n (D.2)

and

‖EeλZ1‖ ≤ 1 + λ2

∥∥∥∥∥EZ2
1

[
eλ‖Z1‖ − 1− λ‖Z1‖

λ2‖Z1‖2

]∥∥∥∥∥ . (D.3)

Using that ‖Z1‖ ≤ 2|ξi|, from (D.3), we compute

∥∥∥EeλZ1

∥∥∥ ≤ 1 + λ2

∥∥∥∥∥E [(Xi − EXi)
2
]
E

(
ξ2
i

[
e2λ|ξi| − 1− 2λ|ξi|

4λ2ξ2
i

])∥∥∥∥∥
≤ 1 + λ2σ2

ZE
(

(2|ξi|)2

2!
+
λ(2|ξi|)3

3!
+ · · ·

)
.

(D.4)

Assume that λ < 1, then (D.4) implies∥∥∥EeλZ1

∥∥∥ ≤ 1 + λ2σ2
ZEe2|ξi| ≤ 1 + 2λ2σ2

Ze
2 ≤ exp{2λ2σ2

Ze
2}.

Using this bound, from (D.2) we get

P (‖Yn‖ ≥ t) ≤ 2m′ exp{−λt+ 2λ2σ2
Ze

2}.

It remains now to minimize the last bound with respect to λ ∈ (0, 1) to obtain that

P (‖Yn‖ ≥ t) ≤ 2m′ exp

{
− t2

4e2σ2
Zn

}
where we supposed that n is large enough.

Putting 2m′ exp

{
− t2

4σ2
Ze

2n

}
= 1/(2m′), we get t = 2e

√
2 log(2m′)n

m1 ∧m2
. Using (D.1)

we compute the following bound on c∗

c∗ ≤ 2e+ 1 ≤ 6.5.

This completes the proof of Lemma 1.
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E Proof of Lemma 2

Let εi = σξi. To prove (i) we compute

〈M,M〉 =
‖A0‖22

(m1m2)2 +

(
1− 2n

m1m2

)
1

n2

n∑
i=1

〈A0, Xi〉2︸ ︷︷ ︸
I

+
1

n2

n∑
i=1

ε2i︸ ︷︷ ︸
II

+

(
1− n

m1m2

)
2

n2

n∑
i=1

〈A0, Xi〉 εi︸ ︷︷ ︸
III

+
4

n2

∑
i<j

εi 〈A0, Xj〉 〈Xi, Xj〉︸ ︷︷ ︸
IV

+
2

n2

∑
i<j

εiεj 〈Xi, Xj〉︸ ︷︷ ︸
V

+
1

n2

∑
i 6=j
〈A0, Xi〉 〈A0, Xj〉 〈Xj , Xi〉︸ ︷︷ ︸

VI

.

(E.1)

We estimate each term in (E.1) separately with a good probability.

I : We have that E
(

1

n2

n∑
i=1
〈A0, Xi〉2

)
=
‖A0‖22
nm1m2

and |〈A0, Xi〉| ≤ a.

Using Hoeffding’s inequality , we get that, with probability at least
1− 2 exp

{
−2σ4n/(8a)2

}
‖A0‖22
nm1m2

+
σ2

8n
≥ 1

n2

n∑
i=1

〈A0, Xi〉2 ≥
‖A0‖22
nm1m2

− σ2

8n
.

II: ε2i are sub-exponential random variables and E
(

1

n2

n∑
i=1
ε2i

)
=
σ2

n
. Using Bernstein

inequality for sub-exponentials random variables (cf. [26, Proposition 16] ) we get
that, with probability at least

1− 2 exp
{
−cnmin

[
σ2K/82, σ

√
K/8

]}
σ2

n
+
σ2

8n
≥ 1

n2

n∑
i=1

ε2i ≥
σ2

n
− σ2

8n
.

III: We have that E
(

2

n2

n∑
i=1
〈A0, Xi〉 εi

)
= 0, using Hoeffding’s type inequality for sub-

Gaussian random variables (cf. [26, Proposition 10]) we get that, with probability
at least 1− e exp

{
−cσ2Kn/a2

}
σ2

8n
≥ 2

n2

n∑
i=1

〈A0, Xi〉 εi ≥ −
σ2

8n
.

IV: We compute E

(
4

n2

∑
i<j
εi 〈A0, Xj〉 〈Xi, Xj〉

)
= 0. We use the following lemma

which is proven in the Appendix F.

Lemma 6. Suppose that n ≤ m1m2. With probability at least

1− 2

m1m2 ∑
i<j

〈Xi, Xj〉 ≤ n.
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Lemma 6 and Hoeffding’s type inequality imply that, with probability at least
1− 2/m1m2 − e exp

{
−cσ2nK/a2

}
σ2

8n
≥ 4

n2

∑
i<j

εi 〈A0, Xj〉 〈Xi, Xj〉 ≥ −
σ2

8n

V: We have that E

(
2

n2

∑
i<j
εiεj 〈Xi, Xj〉

)
= 0. Using Bernstein inequality for sub-

exponentials random variables (cf. [26, Proposition 16] ) and Lemma 6 we get

that, with probability at least 1− 2 exp
{
−cnmin

[
σ2K/82, σ

√
K/8

]}
σ2

8n
≥ 2

n2

∑
i<j

εiεj 〈Xi, Xj〉 ≥ −
σ2

8n
.

VI: We compute that

E

 1

n2

∑
i 6=j
〈A0, Xi〉 〈A0, Xj〉 〈Xj , Xi〉

 =
1

n2

∑
i 6=j
〈E (〈A0, Xj〉Xj) ,E (〈A0, Xi〉Xi)〉

=
1

n2

∑
i 6=j

‖A0‖22
(m1m2)2

≤
‖A0‖22

(m1m2)2 .

Using Lemma 6 and Hoeffding’s type inequality for sub-Gaussian random vari-
ables (cf. [26, Proposition 10]), we get that, with probability at least 1−2/m1m2−
2 exp

{
−2σ4n/(8a)2

}
1

n2

∑
i 6=j
〈A0, Xi〉 〈A0, Xj〉 〈Xj , Xi〉 ≤

‖A0‖22
(m1m2)2

+
σ2

8n
.

To obtain the lower bound, note that, for i 6= j, 〈Xi, Xj〉 6= 0 iff Xi = Xj . This implies
that

∑
i 6=j
〈A0, Xi〉 〈A0, Xj〉 〈Xj , Xi〉 ≥ 0. We use that 2n < m1m2 to get

‖A0‖22
(m1m2)2 +

(
1− 2n

m1m2

)
1

n2

n∑
i=1

〈A0, Xi〉2 ≥ 0.

Putting the lower bounds in II−V together we compute from (E.1)

‖M‖22 ≥
σ2

2n
.

To obtain the upper bound, we use the upper bounds in I−VI. From (E.1) we get

‖M‖22 ≤
2 ‖A0‖22
(m1m2)2 +

‖A0‖22
nm1m2

+
14σ2

8n
≤ 2

(
‖A0‖22
nm1m2

+
σ2

n

)

where we used that 2n ≤ m1m2. This completes the proof of part (i) in Lemma 2.
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To prove (ii) we use that 〈Xi, Xi〉 = 1 and 〈Xi, Xj〉 6= 0 iff Xi = Xj . We compute

1

n2

〈
n∑
i=1

YiXi,
n∑
i=1

YiXi

〉
=

1

n2

n∑
i=1

Y 2
i +

2

n2

∑
i<j

YiYj 〈Xi, Xj〉

=
1

n2

n∑
i=1

(
〈A0, Xi〉2 + ε2i + 2 〈A0, Xi〉 εi

)
+

2

n2

∑
i<j

〈A0, Xi〉2 〈Xi, Xj〉

+
4

n2

∑
i<j

εi 〈A0, Xj〉 〈Xi, Xj〉+
2

n2

∑
i<j

εiεj 〈Xi, Xj〉 .

This implies that

1

n2

〈
n∑
i=1

YiXi,
n∑
i=1

YiXi

〉
≥ 1

n2

n∑
i=1

〈A0, Xi〉2︸ ︷︷ ︸
I

+
1

n2

n∑
i=1

ε2i︸ ︷︷ ︸
II

+
2

n2

n∑
i=1

〈A0, Xi〉 εi︸ ︷︷ ︸
III

+
4

n2

∑
i<j

εi 〈A0, Xj〉 〈Xi, Xj〉︸ ︷︷ ︸
IV

+
2

n2

∑
i<j

εiεj 〈Xi, Xj〉︸ ︷︷ ︸
V

.

(E.2)

Using the lower bounds for I−V we get from (E.2)

1

n2

〈
n∑
i=1

YiXi,

n∑
i=1

YiXi

〉
≥
‖A0‖22
nm1m2

which proves the part (ii) of Lemma 2.
(iii) is a consequence of (ii). For 4n ≤ m1m2 (ii) implies

1

4n2

〈
n∑
i=1

YiXi,
n∑
i=1

YiXi

〉
≥
‖A0‖22

(m1m2)2 .

Now we complete the proof of part (iii) of Lemma 2 using that

‖M‖2 ≥

∥∥∥∥∥ 1

n

n∑
i=1

YiXi

∥∥∥∥∥
2

−
‖A0‖2
m1m2

.

F Proof of Lemma 6

Recall that for i 6= j, Xi and Xj are independent. We compute the expectation

E

∑
i<j

〈Xi, Xj〉

 =
∑
i<j

〈EXi,EXj〉 =
n(n− 1)

2m1m2

and the variance

E

∑
i<j

〈Xi, Xj〉

2−
E

∑
i<j

〈Xi, Xj〉

2

= E

∑
i<j
i′<j′

〈Xi, Xj〉
〈
Xi′ , Xj′

〉−∑
i<j
i′<j′

E (〈Xi, Xj〉)E
(〈
Xi′ , Xj′

〉)
.
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When i, j, i′, j′ are all distinct, E
(
〈Xi, Xj〉

〈
Xi′ , Xj′

〉)
is cancelled by the corresponding

term in
∑
i<j
i′<j′

E (〈Xi, Xj〉)E
(〈
Xi′ , Xj′

〉)
.

It remains to consider the following five cases: (1) i = i′ and j = j′; (2) i = i′ and
j 6= j′; (3) i 6= i′ and j = j′; (4) i = j′ and j 6= i′; (5) i′ = j and j′ 6= i.

Case (1): note that 〈Xi, Xj〉 takes only two values 0 or 1, which implies that

E
(
〈Xi, Xj〉2

)
= E (〈Xi, Xj〉) =

1

m1m2
.

Cases (2)-(5): in these four cases, we need to calculate E (〈Xi, Xk〉 〈Xk, Xj〉) for i 6= j
and k /∈ {i, j}. Note that PXk

= 〈 · , Xk〉Xk is the orthogonal projector on the vector
space spanned by Xk. We compute

EPXk
=

1

m1m2
Id

where Id is the identity application on Rm1×m2 . Then, we get

E (〈〈Xi, Xk〉Xk, Xj〉) = E (〈PXk
(Xi) , Xj〉)

= 〈E (PXk
) (EXi) ,EXj〉

=
1

m1m2
〈EXi,EXj〉

=
1

(m1m2)2 .

These terms are cancelled by the corresponding terms in
∑
i<j
i′<j′

E (〈Xi, Xj〉)E
(〈
Xi′ , Xj′

〉)
as

E (〈Xi, Xk〉)E (〈Xk, Xj〉) =
1

(m1m2)2
.

Finally we get that

E

∑
i<j

〈Xi, Xj〉

2−
E

∑
i<j

〈Xi, Xj〉

2

≤ n(n− 1)

2m1m2
.

The Bienaymé-Tchebychev inequality implies that

P

∑
i<j

〈Xi, Xj〉 ≥ n

 ≤ n(n− 1)

2m1m2

(
n− n(n− 1)

2m1m2

)2 ≤
2

m1m2

when m1m2 ≥ n. This completes the proof of Lemma 6.

G Proof of Theorem 3

The following lemma is the counterpart of Lemma 4 in the present setting. It is proven
in the Appendix H.

Lemma 7.
rank(V Â) ≤ 1/λ2.
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We need the following auxiliary result, which corresponds to Lemma 5, and which
is proven in the Appendix I.

Lemma 8. Suppose that
ρ√

rank(V A0)
≥ λ ≥ 3∆′ for some ρ < 1, then

∥∥∥V Â− U∥∥∥
2
≥

(
3−

√
1 + ρ2

3 +
√

1 + ρ2

)
‖E‖2.

Now the proof of Theorem 3 is very similar to the proof of the Theorem 1. We
only sketch it. If V Â 6= U , a necessary condition of extremum in (3) implies that there
exists a Ŵ ∈ ∂‖V Â‖1 such that for any A ∈ Rm1×m2

2
〈
V Â− U, V

(
Â−A

)〉
2
∥∥∥V Â− U∥∥∥

2

+ λ
〈
Ŵ , V

(
Â−A

)〉
≤ 0. (G.1)

and we get∥∥∥V (Â−A0

)∥∥∥2

2
+
∥∥∥V (Â−A)∥∥∥2

2
+ 2λ

∥∥∥V Â− U∥∥∥
2

〈
PS⊥1 (V A)WPS⊥2 (V A), V

(
Â−A

)〉
≤
∥∥V (A−A0)

∥∥2

2
+ 2

〈
E, V

(
Â−A

)〉
− 2λ

∥∥∥V Â− U∥∥∥
2

〈
rank(V A)∑
j=1

uj(V A)vj(V A)T , V
(
Â−A

)〉
.

(G.2)

Let PrV A(B) = B − PS⊥1 (V A)BPS⊥2 (V A). Then, the trace duality and the triangle
inequality imply〈

E, V
(
Â−A

)〉
=
〈
PVE, V

(
Â−A

)〉
≤ ‖PVE‖∞

∥∥∥V (Â−A)∥∥∥
1

≤ ‖PVE‖∞
∥∥∥PrV A

[
V
(
Â−A

)]∥∥∥
1

+ ‖PVE‖∞
∥∥∥PS⊥1 (V A)V

(
Â−A

)
PS⊥2 (V A)

∥∥∥
1
.

(G.3)

Using 6
3−

√
1 + ρ2

3 +
√

1 + ρ2
≥ 2 for any ρ < 1 (G.2) implies

∥∥∥V (Â−A0

)∥∥∥2

2
+
∥∥∥V (Â−A)∥∥∥2

2
≤
∥∥V (A−A0)

∥∥2

2

+ 2 ‖PVE‖∞
∥∥∥PrV A

[
V
(
Â−A

)]∥∥∥
1

+ 2λ
∥∥∥V Â− U∥∥∥

2

∥∥∥PrV A

[
V
(
Â−A

)]∥∥∥
1
.

(G.4)

Now we use
∥∥∥PrV A

[
V
(
Â−A

)]∥∥∥
1
≤
√

2rank(V A)
∥∥∥V (Â−A)∥∥∥

2
, ‖PVE‖∞ ≤ λ‖E‖2/3

and λ
√

2 rank(V A) ≤ ρ to conclude

(1− ρ)
∥∥∥V (Â−A0

)∥∥∥2

2
≤
∥∥V (A−A0)

∥∥2

2
+

4λ2

1− ρ
‖E‖22 rank(V A)

which implies the statement of Theorem 3.
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H Proof of Lemma 7

That Â is the minimum of (3) implies that 0 ∈ ∂G(Â) where

G = ‖U − V A‖2 + λ‖V A‖1.

Note that the subdifferential of the convex function A→ ‖V A‖1 is the following set of
matrices

∂‖V A‖1 = V T


rank(V A)∑
j=1

uj(V A)vTj (V A) + PS⊥1 (V A)WPS⊥2 (V A) : ‖W‖∞ ≤ 1


where S1(V A) is the linear span of {uj(V A)} and S2(V A) is the linear span of {vj(V A)}.

If Â is such that V Â 6= U , we obtain that, there exists a matrix W such that
‖W‖∞ ≤ 1 and

V T V Â− U
‖V Â− U‖2

= −λV T


rank(V A)∑
j=1

uj(V A)vTj (V A) + PS⊥1 (V A)WPS⊥2 (V A)


which implies

V TPV
V Â− U
‖V Â− U‖2

= −λV TPV


rank(V A)∑
j=1

uj(V A)vTj (V A) + PS⊥1 (V A)WPS⊥2 (V A)

 .

(H.1)
Using PV V A (vj(V A)) = V A (vj(V A)) = σj(V A)uj(V A) and σj 6= 0 we get

PV uj(V A) = uj(V A). (H.2)

Note that for any w such that 〈w, uj(V A)〉 = 0 (H.2) implies that

〈PV w, uj(V A)〉 = 〈w, uj(V A)〉 = 0. (H.3)

By the definition, PS⊥1 (V A) projects on the orthogonal complement of the linear span of

{uj(V A)}. Thus, (H.3) implies that PV PS⊥1 (V A) also projects on the subspace orthog-

onal to the linear span of {uj(V A)}.
Note that V TPVB = 0 imply PVB = 0 and we get from (H.1)

PV
V Â− U
‖V Â− U‖2

= −λ


rank(V A)∑
j=1

uj(V A)vTj (V A) + PV
[
PS⊥1 (V A)WPS⊥2 (V A)

] . (H.4)

Calculating the ‖ ‖22 norm of both sides of (H.4) we get that 1 ≥ λ2rank(V Â).
When V Â = U , instead of the differential of ‖U − V A‖2 we use its subdiffential.
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I Proof of Lemma 8

If V A0 = U , then we have trivially ‖V Â− U‖2 ≥ 0. If V A0 6= U , by the convexity of
function A→ ‖V A− U‖2, we have

∥∥∥V Â− U∥∥∥
2
− ‖V A0 − U‖2 ≥

〈
V A0 − U, V

(
Â−A0

)〉
‖V A0 − U‖2

=

〈
PV (E) , V

(
Â−A0

)〉
‖V A0 − U‖2

≥ −
‖PV (E)‖∞
‖E‖2

∥∥∥V (Â−A0

)∥∥∥
1

≥ −
‖PV (E)‖∞
‖E‖2

√
rank(V A0) + rank(V Â)

∥∥∥V (Â−A0

)∥∥∥
2
.

(I.1)

Using the bound
ρ√

rank(V A)
≥ λ, Lemma 7 and the triangle inequality from (I.1) we

get ∥∥∥V Â− U∥∥∥
2
− ‖V A0 − U‖2 ≥

−
√

1 + ρ2

λ

‖PV (E)‖∞
‖E‖2

(
‖V Â− U‖2 + ‖V A0 − U‖2

)
.

By the definition of λ we have
‖PV (E)‖∞
λ ‖E‖2

≤ 1/3 which finally leads to

(
1 +

√
1 + ρ2/3

)
‖V Â− U‖2 ≥

(
1−

√
1 + ρ2/3

)
‖V A0 − U‖2.

This completes the proof of Lemma 8.
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[23] Nicolas Städler, Peter Bühlmann, and Sara Van De Geer. 1-penalization for
mixture regression models. Test, 19(2):209–256, 2010.

[24] Tingni Sun and Cun-Hui Zhang. Scaled sparse linear regression. Biometrika, page
ass043, 2012.

[25] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations
of Computational Mathematics, 12(4):389–434, 2012.

[26] Roman Vershynin. Introduction to the non-asymptotic analysis of random matri-
ces. arXiv preprint arXiv:1011.3027, 2010.

[27] G Alistair Watson. Characterization of the subdifferential of some matrix norms.
Linear Algebra and its Applications, 170:33–45, 1992.

28


	Introduction
	Layout of the paper
	Notation

	Matrix Completion
	Matrix Regression
	Simulations
	Optimization algorithms
	Numerical illustration

	Proof of Theorem 1
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 6
	Proof of Theorem 3
	Proof of Lemma 7
	Proof of Lemma 8

