N

N

High dimensional matrix estimation with unknown
variance of the noise
Olga Klopp, Stéphane Gaiffas

» To cite this version:

Olga Klopp, Stéphane Gaiffas. High dimensional matrix estimation with unknown variance of the
noise. 2012. hal-00649437v3

HAL Id: hal-00649437
https://hal.science/hal-00649437v3

Preprint submitted on 8 Feb 2012 (v3), last revised 30 Jan 2015 (v4)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00649437v3
https://hal.archives-ouvertes.fr

HIGH DIMENSIONAL MATRIX ESTIMATION WITH
UNKNOWN VARIANCE OF THE NOISE

OLGA KLOPP

ABSTRACT. Assume that we observe a small set of entries or lin-
ear combinations of entries of an unknown matrix Ay corrupted
by noise. We propose a new method for estimating Ay which does
not rely on the knowledge or an estimation of the standard devi-
ation of the noise o. Our estimator achieves, up to a logarithmic
factor, optimal rates of convergence under the Frobenius risk and,
thus, has the same prediction performance as previously proposed
estimators which rely on the knowledge of o.

1. INTRODUCTION

The problem of the recovery of a data matrix from incomplete and
corrupted information appears in a variety of applications such as rec-
ommendation systems, system identification, global positioning, re-
mote sensing (for more details see [3]). For instance, in the Netflix
recommendation system, we observe a few movie ratings from a large
data matrix in which rows are users and columns are movies. Each user
only watches a few movies compared to the total database of movies
available on Netflix. The goal is to predict the missing ratings in order
to be able to recommend the movies to a person that he/she has not
yet seen.

In the noiseless setting, if the unknown matrix has low rank and is
"incoherent” | then it can be reconstructed exactly with high probability
from a small set of entries. This result was first proved by Candes and
Recht [4] using nuclear norm minimization. A tighter analysis of the
same convex relaxation was carried out in [5]. For a simpler approach
see [16] and [8]. An alternative line of work was developed by Keshavan
et al in [10]. More recent results of Gross [8] and Recht [16] provide
sharper conditions. For example, Recht [16] showed that, if we observe
n entries of a matrix Ay € R™*™2 with locations uniformly sampled
at random, then under “incoherence conditions” the exact recovery is
possible with high probability if n > Cr(m; 4+ ms)log® my with some
constant C' > 0 and r = rank(Ay) .
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In a more realistic setting the observed entries are corrupted by noise.
This question has been recently addressed by several authors (see, e.g.,
3,9, 17, 14, 15, 12, 13, 6, 11]). These methods rely on the knowledge
or a pre-estimation of the standard deviation ¢ of the noise. Estima-
tion of ¢ is non-trivial in the large-scaled problems. The estimator
that we propose in the present paper eliminates the need to know or to
pre-estimate o. It is inspired (but leads to a different analysis) by the
square-root lasso estimator proposed for the linear regression model by
Belloni et al in [1]. We show that, up to a logarithmic factor, our esti-
mator achieves optimal rates of convergence under the Frobenius risk.
Thus, it has the same prediction performance as previously proposed
estimators which rely on the knowledge of o.

This paper is organized as follows. In Section 2 we set notations,
introduce our model - the trace regression model and our estimator.
In Section 3 (Theorem 2), we prove a general oracle inequality for the
prediction error for the trace regression model.

In the Section 4, we apply Theorem 2 to the case of matrix comple-
tion under uniform sampling at random (USR). We propose a choice
of the regularization parameter \ for our estimator which is indepen-
dent of 0. The main result, Theorem 6, shows that in the case of USR
matrix completion and under some mild conditions that link the rank
and the “spikiness” of Ag, up to a constant, the prediction risk of our
estimator is comparable to the sharpest bounds obtained until now.
For more details see Section 4.

In Section 5, we apply our idea to the problem of matrix regression
which is yet another special case of trace regression. Previously, the
problem of matrix regression with unknown noise variance was consid-
ered in [2, 7]. These two papers study the rank-penalized estimators.
Bunea et al [2], who first introduced the idea of such estimators, pro-
pose un unbiased estimator of ¢ which requires an assumption on the
dimensions of the problem. This assumption excludes an interesting
case, the case when the sample size is smaller than the number of co-
variates. The method proposed in [7] can be applied to this last case
under a condition on the rank of the unknown matrix Ay. Our method,
unlike the method of [2], can be applied to the case when the sample
size is smaller than the number of covariates and our condition is weaker
than the conditions obtained in [7]. For more details see Section 5.

2. PRELIMINARIES

2.1. Model. Let Ay € R™*™2 he an unknown matrix, and consider
the observations (Xj,Y;) satisfying the trace regression model

(2.1) Y; = tr( X Ay) +0&,i=1,...,n.
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Here, 0 > 0 is the unknown standard deviation. The noise variables &;
are independent, identically distributed and having law ® such that

(22) Es (&) =0, Eo(&]) =1,
X; are random matrices with dimension m; x my and tr(A) denotes
the trace of the matrix A.

We consider the problem of estimating of Ay. Our main motivation
is the high-dimensional setting, which corresponds to myms > n, with
low rank matrices Aj.

The trace regression model is a quite general model which contains
as particular cases a number of interesting problems. Let us give two
examples which we will consider with more details in this paper.

e Matrix Completion Assume that the design matrices X; are
i.i.d uniformly distributed on the set

(2.3) X = {ej(ml)ez(mg), 1<j<m,1<k< mg},

where ¢;(m) are the canonical basis vectors in R™. Then, the
problem of estimating Ag coincides with the problem of matrix
completion under uniform sampling at random (USR).

e Matrix regression The matrix regression model is given by

(2.4) U=V,Ag+FE i=1,....1,

where U; are 1 X my vectors of response variables, V; are 1 x m,
vectors of predictors, Ay is an unknown m; X ms matrix of
regression coefficients and FE; are random 1 x mgy vectors of
noise with independent entries and mean zero.

We can equivalently write this model as a trace regression
model. Let Uz = (Uik>k:1,...,m27 Ez = (Eik>k:1,...,m2 and Zg]; =
er(ms) Vi, where eg(my) are the ms X 1 vectors of the canonical
basis of R™2. Then, we can write (2.4) as

Uzk:tr(Z£Ao)+Ezk ’Lzl,,l and ]C:l,...,mg.

2.2. Notation. For any matrices A, B € R"™*™2 we define the scalar
product

(A, B) = tr(A"B).
For 0 < ¢ < oo the Schatten-q (quasi-)norm of the matrix A is defined
by

min(mi,ms2) 1/q
= ("E ) or0 << o0 and Al = (4,
]:

where (0;(A)); are the singular values of A ordered decreasingly.
We summarize the notations which we use throughout this paper

2 n
(2.5) X = %Zyixi and M = 2 (X — Ag);
i=1
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M|
2.6 A = and Ay = [|[M||s;
(2:6) ViR ™|
e 0G is the subdifferential of G;
e St is the orthogonal complement of S;
e Ps is the projector on the linear vector subspace S
o F(A) = [A—X]|2+ AlA].

o [|[A]l = max | a;; | where A = (a;;).

sup

2.3. Estimator. In [13], the authors propose the following estimator
for the trace regression model

. ' 2 —
(2.7) fﬁu::mymn{HAHQQVKEEan“A>+Mmm}.
i=1

1.
Here, A > 0 is a regularization parameter, || A |7, = —>"E ({4, X;)?)
Ni=1

1.n
and II = —> TI; where II; are the distributions of Xj.
=1
If the following assumption of restricted isometry in expectation is
satisfied

forsome 5> 0 || A Byu=? | A
then (2.7) has a particularly simple form:
(2.8) Ayp = arg min { | A—X |3 —i—)\,uzﬂAHl}

AERMIXWLQ
where
1

2.9 X=—)» YJX,.
o S

In the first part of the present paper we study the following estimator

(2.10) Ay, = argmin {[|A — X2 + A All}

Aele Xmo

N

In order to simplify our notations we will write A= /Al,\,u. Note that
the first part of our estimator coincides with the square root of the
data-depending term in (2.8). This is similar to the principle used to
define the square-root lasso for the usual vector regression model, see
[1]. Theorem 2 gives an oracle bound on the prediction error of A.
This bound is obtained for an arbitrary p and does not rely on the
knowledge of the distributions of X;. We apply Theorem 2 to matrix
completion, taking p? = myms.

In the second part of the present paper, dedicated to matrix regres-
sion problem, we consider a new estimator inspired by the same idea,



MATRIX ESTIMATION WITH UNKNOWN VARIANCE 5

namely

(2.11) A= argmin {||[U =V Alls+ \|VA|:}.

ACR™1Xm2
Note that in (2.11) we penalized by the nuclear norm of V' A, rather
the by the nuclear norm of A as in (2.7).

3. GENERAL ORACLE INEQUALITIES

In this section, in Theorem 2, we provide a general oracle inequality
for the prediction error of our estimator. The proof of Theorem 2 is
based on the ideas of the proof of Theorem 1 in [13]. However, as the
statistical structure of our estimator is different from that of the es-
timator proposed in [13], the proof requires several modifications and
additional information on the behavior of the estimator. This informa-
tion is given in Lemmas 1 and 3. In particular, Lemma 1 provides a
bound on the rank of our estimator in the general setting of the trace
regression model.

Lemma 1.
rank(A) < 1/)%

Proof. That A is the minimum of (2.10) implies that 0 € OF(A). We
will use the fact that the subdifferential of the convex function A —
| A1 is the following set of matrices (cf. [20])

rank(A)
(3.1) 9[lAllx :{ j§1 u;(A)vj (A) + PoryWPsray + [W]e < 1}

u;(A) and v;(A) are respectively the left and right orthonormal singular
vectors of A, S1(A) is the linear span of {u;(A)}, S3(A) is the linear
span of {v;(A)}. For A # X, this implies that there exists a matrix W
such that [|[W]|» < 1 and

A - X rank(A) A
Calculating the ||||3 norm of both sides of (3.2) we get that 1 >
A2rank(A). When A = X, instead of the differential of 1A — X,

we use its subdifferential. In (3.2) the term %H is replaced by a
2
matrix W such that ||[IW]|, < 1 and we get again 1 > Xrank(A). O

p

Theorem 2. Suppose that ———————
2rank(Ay)

> A > 3A for some p < 1,

then

A= s it -t A= A (

2rank(A)<p/X\

222\
- ) IV rankA }
—p
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Proof. We need the following auxiliary result which is proven in the
Appendix

_r
rank(Ap)

R _ 2
(3.3) JA=X]s > [22VEE2 ) 4, = X
3+ /1+ p?

If A =X, then (3.3) implies that Ay = X and we get, || A — Ag||5 = 0.
If A # X, a necessary condition of extremum in (2.10) implies that
there exists V' € || A||; such that for any A € R™1*™2

Lemma 3. Suppose that > X > 3A for some p < 1, then

2A—X, A— A)

- MV, A—A) <0
2[|A = X[|2

which yields
(3.4) 2(A— Ay, A—A)—2(X — Ay, A— A)+2)||A—X||o(V,A—A) < 0.

By (3.1) we have the following representation for an arbitrary V €
O Allx

(3.5) V= jglujvf + Ps1 (W Py,

for simplicity we write u; and v; instead of u;(A) and v;(A).

By the monotonicity of subdifferentials of convex functions we have
that (V —V,A— A) > 0. Then (3.4) and 2(A — A;,A— A) = ||A —
Aoll3 + 1A = Al — [|A — Ao||3 imply

(3.6)
|4~ Agll3 + 114 = A3 + 2\ A ~ Xl { Py )W Py, A — A)

<A = Al +2(X — Ag A~ A) — 2]l - X||2<é1ujv;f,fi - A>.

From the trace duality we get that there exists W with ||[W]l, < 1
such that

<PSf<A>WPS;<A>> A- A> = <W Psi-(a) (A - A) PS;(A>>
= |Psta (A= 4) Posa-

For a my x my matrix B let P4(B) = B — Py (4)BPgs1 (4. Since

(3.7)

PA(B) = PSIL(A)BPSQ(A) —+ PSI(A)B
and rank(Ps,(4)B) < rank(A) we have that rank(P 4(B)) < 2rank(A).
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Using the trace duality and triangle inequality we get
(X — Ag, A— A) < [|X — Agllooll A — Al
(3.8) < 1X =~ Aol [P (4 - 4)

+ IX = Aoloo HPSIL(A) (121 - A) Ps;(A)Hl-

T

> ujvT
j=1 77

(3.9) .

<§]ujva,fl—A> = < Zrlujva,PA (A—A)> < HPA (A—A)
j=1 j=1

Putting (3.7), (3.8), (3.9) into (3.6) we compute

(3.10)

1A = Aoll3 + 1A — AJl3 + 23| A — X,

Note that

= 1. Then, the trace duality implies

) .

Psiay A Psya

1

< 1A = Ao} +2/X — Agllse [P (4 - 4)

+2[1X = Al HPsf(A) A Pyt (ay

1

1

P (4-4)],

+ 2\ A — X,

Using (3.3), from (3.10), we derive

~ N 3_ 1+2
JA = Agl2+ A — A2+ 2222 4, - X5

3++/1+p°
< 114 = Agll3 + 21X — Aolloo |Pa (A= 4) |

+ 201X = Aoll || Py 4 Psp

Pgiay A Psya

1

1

Pa(3-4)],

+ 2MA — X,

From the definition of A we get
(3.11)

. . 3—+/14p? -
1A = Aoll2 + |4 = Al3 + 6-——"—= 40 — X[l Ps (4) A Ps;(aln
3++1+p

< 114 = Agllg + 21X — Aolloe|[ P (4 — A) Il
+ 2[|X = Agl|oo|| Psy (4 A Psralh
+ 20 A = X[olPa (A= A) 1
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3—4/1 2
Note that 6—+p > 2 for any p < 1. Thus, (3.11) yields
3+ 1+ p?

(3.12)
14— Agll3 + 114 — AJ < |4~ Aoll3 + 20X — Aol [P (4 4) |,
+ 20| A = X[l (4 4) s
Now, using the triangle inequality and the fact that
|Pa(d-2)|| < Vorank(a)|4 - Al
from (3.12) we get
(3.13)
14 = Agl3+ 1A = AJI3 < 14 = Aol +2(1IX — Aollec
+ XX = Aoll;) v/2rank(A)|| A — Al

+ 2\ A — Ap[2y/2rank(A)||A — Al
From the definition of A we get that || X — Ag|lec < A[|[X — Apl|2/3. For

A such that A\y/2rank(A) < p, (3.13) implies
1A = Aoll3 + 1A = All3 < 14 = Aoll3
+ ZAIX = Aol Zrank(A] |4 - Al
1 2pl|A — Aglll|A — Al

Using 2ab < a? + b? twice we finally compute
(1= P A= Aoll3 + |4 — AllF < [A = Aoll5+ pll A — A3
8 .
+ §A||X — Apl|2+/2rank(A)||A — A|2
and
A 2 2 4 19 2
(1 =p)l[A = Aoll; < [|A = Aol + pr X = Apllorank(A)
which implies the statement of Theorem 2. 0

4. MATRIX COMPLETION

In this section we apply the general oracle inequality of Theorem
2 for the model of USR matrix completion. Assume that the design
matrices X; are i.i.d uniformly distributed on the set X defined in (2.3).
This implies that

%ZE ({4, X3)?) = (muma) | All2,
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for all matrices A € R™>™2 and we take pu? = mms.

We will consider the case of sub-Gaussian noise and matrices with
uniformly bounded entries. We suppose that the noise variables &; are
such that

(4.1) E(&)=0,E(&) =1
and there exists a constant K such that
(4.2) E [exp(t&)] < exp (t*/2K)

for all t > 0. Normal N(0,1) random variables are sub-Gaussian with
K =1 and (4.2) implies that & has Gaussian type tails:

P{|&] >t} <2exp {—t?/2K} .

Note that condition E€? = 1 implies that K < 1.
Let a denote a constant such that

(4.3) | Aol < a.

sup —

In order to specify the value of the regularization parameter A, we
need to estimate A (defined in (2.6)) with high probability. In what
follows we will denote by ¢ a numerical constant whose value can vary
from one expression to the other and is independent from n,mq, ms.
Set m = my+ma, mi;Ams = min(my, ms) and my Vmy = max(my, ms).
The following bound is a consequence of Lemmas 2 and 3 in [13],

Lemma 4. Forn > 8(mjAmy)log® m, with probability at least 1—3/m,
one has
2log(m)

(4.4) A < (co0 + 2a) G A

where ¢, s a numerical constant which depends only on K.
If & are N(0,1), then we can take ¢, = 6.5.

Proof. The bound (4.4) is stated in Lemmas 2 and 3 in [13]. A closer
inspection of the proof of Proposition 2 in [12] gives an estimation on
¢, in the case of Gaussian noise. For more details see the appendix. [

The following Lemma, proven in the appendix, provides bounds on

V][,

Lemma 5. Suppose that 4n < mymsy. Then, for M defined in (2.5),
there exists absolute constants (c1, c2) such that, with probability at least
1 —2/mymg — c1 exp{—can}, one has

(i)
A 2 o2 o2
2 (L 0”2 -+ —) > th”g > _Qn;

nmiyms n
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n

2
1
=) YiX; 2

i=1

4ol o 41Aoll; |

> — )
nmims (mymy)?

V[, > 5

ZYX

Recall that the condition on A in Theorem 2 is that A > 3A. Using
Lemma 4 and the lower bounds on ||M]], given by Lemma 5 we can
choose

(4.5) | logm /2nlogm
mq /\m2 mi1 A\ Mo

With this choice of A, the assumption of Theorem 2 that

# >
rank(Ay)
A takes the form

/ logm /2nlogm
\/rank AO my A m2 my A\ Mg

Using (ii) of Lemma 5 we get that (4.6) is satisfied Wlth a hlght prob—
ability if
1 4ay/m 21
(4.7) P>, oem 28 eem
/rank(Ayp) my A mg ”AOHQ my Amg’

Note that as m; and my are large, the first term in the rhs of (4.7) is
small. Thus (4.7) is essentially equivalent to

21
(4.8) p>4 ﬂ\/rank(/lo) Qs

(m1 A mg)

mlﬁz HHAO||5up is the spikiness ratio of Ag. The notion of
0

“spikiness” was introd121c:ed by Negahban and Wainwright in [15]. We
have that 1 < ay, < /mym; and it is large for “spiky” matrices, i.e.
matrices where some “large” coefficients emerge as spikes among very
“small” coeflicients. For instance, oy, = 1 if all the entries of A, are
equal to some constant and ay, = \/mimy if Ay has only one non-zero
entry.

Condition (4.8) is a kind of trade-off between “spikiness” and rank. If
sy is bounded by a constant, then, up to a logarithmic factor, rank(Ay)
can be of the order m; Amsy, which is its maximal possible value. If our
matrix is "spiky”, then we need low rank. To give some intuition let

(4.6)

where o), =
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us consider the case of square matrices. Typically, matrices with both
high spikiness ratio and high rank look almost diagonal. Thus, under
uniform sampling and if n < mymes, with high probability we do not
observe diagonal (i.e. non-zero) elements.

Theorem 6. Let the set of conditions (4.1) - (4.3) be satisfied and
m1me

A be as in (4.5). Assume that 8(my A my)log®m < n < and

that (4.7) holds for some p < 1. Then, there exists absolute constants
(¢1,¢2) such that, with probability at least 1 —4/m — ¢y exp{—can}

1 o
(4.9) LA Az <o MY mE) Ay Tog m
mime n

16 (2c,.0% + (18 + 2¢,)a?)
(1=p) '

Proof. This is a consequence of Theorem 2 for A = A,. From (4.5) we
get

(4.10)

m1m2 4logm 2nlogm
1A = 4|5 < G\ | ——— + 204
A m2 my A mo
HMH2rank(A0).

Using triangle inequality and (ii) of Lemma 5 we compute

I I
“NVX, - X,
oD YiX; LD YiX;
i=1 2 i=1 2
Using (i) of Lemma 5 and (4.11), from (4.10) we get
161 2 Aol o®\  18a?
1A A2 < 6 log(m)(mams) (20* ( [ 4oll3 n %) | 18a )rank(AO).

(1 —p)2(my Ama) nmyms n

where C, =

(4.11) [[M][, <

1 3
+—— Al <5
1M2

We then use || A5 < a*mymy to obtain

HA — Ay|3 - 161og(m)(my V my)

(2c.0” + (18 + 2¢,)a”) rank(Ay).

mims (1—p)n
This completes the proof of Theorem 6. U
. . 1A= Ao |l2
Theorem 6 guarantees that the normalized Frobenius error ————
mimeo

of the estimator A is small whenever n > C/(m; V my) log(m)rank(Ag)
with a constant C' large enough. This quantifies the sample size n nec-
essary for successful matrix completion from noisy data with unknown
variance of the noise. This sampling size is the same as in the case of
known variance of the noise.
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In order to compare our bounds to those obtained in past works on
noisy matrix completion, we will start with the paper of Keshavan et
al [9]. Under a sampling scheme different from ours (sampling without
replacement) and sub-Gaussian errors, the estimator proposed in [9]
satisfies, with high probability, the following bound

Mrank(/lo) log n.

(112)  ——|A- AR Sk Va
mymy

The symbol < means that the inequality holds up to multiplicative
numerical constants, k& = 0pax(Ao)/0min(Ap) is the condition number
and a = (my V ms)/(my A msy) is the aspect ratio. Comparing (4.12)
and (4.9), we see that our bound is better: it does not involve the
multiplicative coefficient k*y/a which can be big.

Wainwright et al in [15] propose an estimator which, in the case of
USR matrix completion and sub-exponential noise, satisfies

(4.13) ﬁnA — Agl}3 § ey rank(Ag) log m.
Here «ay, is the spikiness ratio of Ay. For ay, bounded by a constant,
(4.13) gives the same bound as Theorem 6. The construction of A in
[15] requires a prior information on the spikiness ratio of Ay and on o.
This is not the case for our estimator, which is completely data-driven.

The estimator proposed by Koltchinskii et al in [13] achieves the
same bound as ours. In addition to prior information on || Agl|,,,, their
method also requires prior information on . In the case of Gaussian
errors, this rate of convergence is optimal (cf. Theorem 6 of [13]) for
the class of matrices A(r, a) defined as follows: for given r and a, for
any Ay € A(r,a) the rank of Ay is supposed not to be larger than r
and all the entries of Ay are supposed to be bounded in absolute value

by a.

5. MATRIX REGRESSION

In this section we apply our method to matrix regression. Recall
that the matrix regression model is given by

(5.1) U=ViAy+E i=1,...,1,

where U; are 1 xmsy vectors of response variables; V; are 1 xmy vectors of
predictors; Ag is an unknown my X msy matrix of regression coefficients;
E; are random 1 X mg noise vectors with independent entries F;;. We
suppose that Fj; has mean zero and unknown standard deviation o.
Set V.= (V{T,... v Uu=(F,... .u"" and E = (ET,...,EF)".
We define the following estimator of Ag:
A= argmin {||[U =V Ay + A|VA|:},

AeR™1%xm2

where A > 0 is a regularization parameter.
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Let Py denote the orthogonal projector on the linear span of the
columns of matrix V and let Pj> = 1 — Py. Note that

VIPy =0

and ATV = (0 (which means that the columns of A are orthogonal to
the columns of V') implies Py A = 0.

The following lemma is the counterpart of Lemma 1 in the present
setting.

Lemma 7.
rank(VA) < 1/)\%
Proof. That A is the minimum of (2.11) implies that 0 € 9G(A) where
G= U=V A+ VA

Note that the subdifferential of the convex function A — ||V A||; is the
following set of matrices

rank(V A)
VA, =VT { j§1 u;(VAw! (VA) + PoryayWPsrvay + [[Wlleo < 1}

where S;(V A) is the linear span of {u;(V A)} and S(V A) is the linear
span of {v;(VA)}.

If A is such that VA =# U, we obtain that there exists a matrix W
such that [|[W]|» < 1 and

T VA U . rank(V A) T
vV m =-\V jgl Uj(VA)’Uj (VA) + PS%(VA)WPSQL(VA)
- 2
which implies
(5.2)
VA - U rank(V A)
Tvﬁa_gﬁz—ﬂﬂﬂ{ EIW@%WﬂW®+QWMM”%wm}
— 9 =

Recall that VTPyB = 0 implies that PZB = PyB = 0 and we get
from (5.2)
(5.3)

VA - U rank(V A)

Vi o
VA=Ul,

By the definition of the singular vectors we have that VA (v;(VA)) =
0;(VA)u;(VA) and we compute

PyvVA(v;(VA)) =0;(VA)Pyu;(VA)

using Py VA (v;(VA)) = VA(vj(VA)) = 0;(VA)u;(VA) and o; # 0
we get

(5.4) Pyuj(VA) =uj(VA)
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and we obtain from (5.3)

(5.5)

VA - U rank(V A) .
Note that for any w such that (w,u;(VA)) =0 (5.4) implies that
(5.6) (Pyw,u;(VA) = (w,uj(VA)) =0.

By the definition, Psll(v 4y brojects on the subspace orthogonal to the
linear span of {u;(VA)}. Thus, (5.6) implies that Py Pgiy 4 also
projects on the subspace orthogonal to the linear span of {u;(VA)}.
Calculating the ||||3 norm of both sides of (5.5) we get that 1 >
A2rank(VA). When VA = U, instead of the differential of |7 — V A,

we use its subdiffential. O

Minor modifications in the proof of Theorem 2 yield the following

result. We set A’ = M
1£]],
Theorem 8. Suppose that p > X > 3A for some p < 1,
2rank(V Ay)
then
) 2 A— A2 22 \?
HV <A — A0> < inf IV« o)l + ( A ) |E|| rank(V A)
2 v/ 2rank(VA)<p/X 1- P 1 -

Proof. The proof follows the lines of the proof of Theorem 2 and it is
given in the appendix. 0

To get the oracle inequality in a closed form it remains to specify the
value of regularization parameter A such that A > 3A’. This requires
some assumptions on the distribution of the noise (£;;); ;. We will
consider the case of Gaussian errors. Suppose that £;; = o§;; where
&;; are normal N (0, 1) random variables. In order to estimate ||Py E||
we will use the following result proven in [2].

Lemma 9 ([2], Lemma 3). Let r = rank(V') and assume that E;; are
independent N(0,0?) random variables. Then

E(|PvE|.) < o(y/ma++/r)
and
P{|PyvE|, > E(|PvE|.) + ot} <exp{—t*/2}.

We use Bernstein’s inequality to get a bound on ||E]],. Let a < 1.
With probability at least 1 — 2 exp {—ca?lmsy}, one has

(5.7) (14 a)oy/lmy > ||E|ly, > (1 — a)o/Ims.
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Let # > 0 and take t = 8 (\/my + /7) in Lemma 9. Then, using (5.7)
we can take

(1+8) (V2 +v/7)

5.8 A= .
(5:8) (1 —a)v/Ims
1
Put v = ﬂ > 1. Thus, condition P > )\ gives
-« 2rank(V Ay)
p2lmes
(5.9) rank(V Ap) <

2’)/2 (N/Tle -+ \/7_“)2
and we get the following result.

Theorem 10. Assume that &;; are independent N(0,1). Pick X as in
(5.8). Assume (5.9) be satisfied for some p < 1, a < 1 and > 0.
Then, with probability at least 1 — 2 exp {—c(mq + r)} we have that

[ (4-)

The symbol < means that inequality holds up to a multiplicative nu-
merical constant and ¢ denotes a numerical constant that depends on

a and 3.

2
< 0% (my + ) rank(V Ay).
2

Proof. This is a consequence of Theorem 8. O

Let us now compare condition (5.9) with the conditions obtained in
2, 7]. The method proposed in [2] requires ma (I —r) to be large, which
holds whenever [ > r or [ —r > 1 and my is large. This condition
excludes an interesting case [ = r < my. On the other hand (5.9) is
satisfied for [ = r <« my if

rank(Ag) S

where we used rank(V Ag) < r A rank(Ay).
The method of [7] requires the following condition to be satisfied

Img — 1
(5.10) rank(Ag) < Cillms = 1) 5
Cs (\/mQ + \/7_“)
with some constants C7 < 1 and Cy > 1. As rank(V Ay) < rank(4,),

condition (5.9) is weaker then (5.10). Note also, that, to the opposite
of [7], our results are valid for all Ay provided that

< p2lmy
- 2’)/2 («/Tﬂz -+ \/7_“)2

For large ms > [, this condition roughly mean that [ > cr for some
constant c.
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APPENDIX A. PROOF OF LEMMA 3
If Ay = X, then we have trivially ||A — X[, > 0.
If Ay # X, by the convexity of the function A — [|A — X]||2, we have
(A1)

. A — X A— A
JA = Xl — [ Ay = X > o= XA~ Ao)

[ Ao — X]|2

Ao — X0 s 3
>_— " FlIA-A
el HAO _X”2 H 0”1

[ Ao — X[ ; i
>~ /rank(A) 4+ rank(Ay) || A — Aylls.
> o k() + rank(Ag) A - Al

P

Using Lemma 1, the bound > X and the triangle inequality,

rank(Ay)
from (A.1) we get

(A.2)
[A = X[z = [[Ao = X[|2 =

1+ 02| A0 — X]|oo /) 2
- VLA Xhe (4 - Xy 4 140 - X]l)

A A — Xz
| Ao — X][oo :
Note that ——————— < 1/3 which finally leads to
A, —x, <Y v
1 + 2 . 1 + 2
(1 + —ﬁj’) [A=-X] (1 - —Vgp> [

This completes the proof of Lemma 3.

APPENDIX B. PROOF OF LEMMA 4

Our goal is to get a numerical estimation on ¢, in the case of Gaussian
noise. Let Z; = §; (X; — EX;) and

1 1 .
gizlE (zzh)| gizlE (7 7)

The constant ¢, comes up in the proof of Lemma 2 in [13] in the
estimation of

1/2
1

ml/\mg'

07 = max

oo o0

1 1 R B
Ay =|=) &Xif| <||=) & (X —EX, + =) il
1 ngf } n;u ) e ngf

A standard application of Markov’s inequality gives that, with proba-
bility at least 1 — 1/m

(B.1)
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1
—5 & (X; —EX;)|| using [12, Propo-
Ni=1 oo

sition 2]. To get a numerical estimation on ¢, we follow the lines of the
proof of [12, Proposition 2|. In order to simplify notations, we write
| oo = || || and we consider the case of Hermitian matrices of size m/.
Its extension to rectangular matrices is straightforward via self-adjoint
dilation, cf., for example, 2.6 in [18].

Let Y,, = > Z;. In the proof of [12, Proposition 2], after following the

i=1

standard derivation of the classical Bernstein inequality and using the
Golden-Thompson inequality, the author derives the following bound

In [13], the authors estimate

(B.2) P (V]| > t) < 2me|[ES4 "
and

Mzl — 1 — N Zy|
B.3 Ee M| < 1+ A\%||EZ2 {e ! }H
( ) || || — 1 )\2||Z1||2

Using that ||Z:|| < 2[¢|, from (B.3), we compute
(B.4)

2N& 1 — )
Ee)\Zl S 1 + )\2 € 1 2)\|€Z|
H

E[(X, - EX,)’| E (53 [ g

(216D | Al&l)?
TR +)

<1+ M0o3E (
Assume that A < 1, then (B.4) implies
HE@’\ZI H <14 MN202Eed < 142020262 < exp{2)202%¢?}.
Using this bound, from (B.2) we get
P (||Y,] > t) < 2m/exp{—\t + 2)\?0%e?}.

[t remains now to minimize the last bound with respect to A € (0,1)
to obtain that

t2
P (|Vall = ) < 207 exp {——}

4e2ain
where we supposed that n is large enough.
t2
/
m} =1/(2m’), we get t = 2¢
Using (B.1) we compute the following bound on ¢,

2log(2m’)n

Putting 2m/ exp {—
ma VAN Mo

e, <2e+1<6.5.

This completes the proof of Lemma 4.
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APPENDIX C. PROOF OF LEMMA 5

Let ¢, = 0&;. To prove (i) we compute

(C.1)
1403 ( 2n ) BN 1o
M, M) = 2ol (g2 Ao, X2+ =$é
M) == s ) 72 (o X0+ 5
NS ~~ o W
I II
NN p— 2i<A X;) +42 (Ao, X;) (X, X))
- € D) € ) 2 j
mims ) n? 4= 0 n2i<j 0 "
fIrI IV
2 1
+ o3 2 e (X, Xj>1+ 2.2 (Ao, Xa) (Ao, X5) (X, X3).
v VI

We estimate each term in (C.1) separately with a good probability.
The estimations we give on this probability involve an absolute constant
c>0.

12 Aol
I: We have that E( > <A0,XZ-)2> = M Aofla. and [(Ag, X;)| <

n?/= nmyms

Using Hoeffding’s inequality , we get that, with probability at

least
1 —2exp {—204n/(8a)2}
2
HAOH2 o _Z (A 2 o [ Aolly _a
nm1m2 0 X ~ nmims  8n’

1 n
II: € are sub-exponential random variables and E <—2 Ze?) =
n=i=1

7
o2
—. Using Bernstein inequality for sub-exponentials random
n

variables (cf. [19, Proposition 16] ) we get that, with probability
at least

1—2exp {—cnmin [O’zK/82,O'\/E/8] }

[\

o

Q

2 1 2 0.2
2_ :
n

+

o
S
¥

n

2 n
IIT: We have that E <—22 (Ao, X;) ei) = 0, using Hoeffding’s type
n=i=1
inequality for sub-Gaussian random variables (cf. [19, Proposi-
tion 10]) we get that, with probability at least 1—e exp {—co?Kn/a?}

2

o2 2 — o
Sn_n2;< 0, Xi) € 2 8n
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4
IV: We compute E (—Z‘E'ei (Ao, X;) (XZ-,XJ-)) = 0. We use the
n+i<y
following lemma which is proven in the Appendix.

Lemma 11. Suppose that n < myms. With probability at least
1 —

mime
.Z, <Xi7 Xj> =n
1<J
Lemma 11 and Hoeffding’s type inequality imply that, with
probability at least 1 — 2/mymy — eexp {—co’*nK/a?}
2 4 2
’ 5 e, (Ao, Xj) (X, Xj) > —

8n = n2 i<j 8n
2
V: We have that E (—2 Y€ (X, Xj)) = 0. Using Bernstein type
n<i<y
inequalities for sub-exponential random variables and Lemma
11 we get that, with probability at least 1—2 exp {—cn min [UQK/SQ, a\/?/S] }

02 2 o?

Y€ (X, X .
8n - Z<J6 € < > " 8n

VI. We compute that

E(l 5 (Ao, X2 (Ao, X;) (X, X>)

712@;&]
1 Lo (14l
= Y (E((Ag, X)) X;),E ((4p, Xi) X;)) = = ¥ ——2
n21¢j< (( 05 J) J)’ << 05 > )> n2i¢j(m1m2>2
Al
i 2'
(mims)

Using Lemma 11 and Hoeffding’s inequality, we get that, with
probability at least 1 — 2/mymy — 2exp {—20'n/(8a)?}

1 Aol? 2

L5 (40, X5 (g, X,) (X, Xy < Aol o

n2iZj (m1ms)?

n
To obtain the lower bound, note that, for i # j, (X;, X;) # 0 iff
X, = X,. This implies that 722 (Ao, Xi) <A0, ) (X5, X;) > 0. We use
i

that 2n < mims to get

n

14013 2n \ 1
— l1—— E Ag, X;)” > 0.
i mims ) n? (4o, X)" 2.0

(m1m2)2 1

Putting the lower bounds in IT — V together we compute from (C.1)

0.2

M2 > .
| H2_2n



20 OLGA KLOPP

To obtain the upper bound, we use the upper bounds in I — VI.
From (C.1) we get

2 || Aoll5 Aolly 140? Ay o?
i < 214l Aol | 140 Sz(n ol o°

(m1mQ)2 N1 Ms 8n nmyms

where we used that 2n < myms. This completes the proof of part (i)
in Lemma 5.

To prove (ii) we use that (X;, X;) = 1 and (X;, X;) #0iff X; = X;.
We compute

~ <ZYX,,ZYX> ZY2+—ZYY (X, X;)

n

1
= 5> ({40, Xi)” + € + 2 (4, Xy )
i=1

+32 (Ao, X)) (X;, X;)

n2@<g
+4Z(A )(XX)JrQZ (Xi, X;)
n Z<j€l 07 I3l n2i<j€2€j 1 <X/
This implies that
(C 2)
1 & Il n, 2¢
(3o ) 2 53 a4 53 A3 e
i=1 i=1 i=1
1 | 1
4 A 2
+ n%%ez < 0 > <XZ’ XJ>J+ 77,2 z§]€ i <X“X >,
v v

Using the lower bounds for I — V we get from (C.2)

Aol
— <;YXZ,ZYX> > nmm;

which proves the part (ii) of Lemma 5.
(iii) is a consequence of (ii). For 4n < mymy (ii) implies

VX, ) YiX; Aolly .
o (S S ) I,
Now we complete the proof of part (iii) of Lemma 5 using that

1 n
=N vX,

[ Aol

mims '

M|, >
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APPENDIX D. PROOF OoF LEMMA 11

Recall that for ¢ # j, X; and X; are independent. We compute the
expectation

n(n —1)
1<j 2mime

1<)

and the variance

E ((Ej <Xi,Xj>)2> — (E (EJ (Xi,Xj)>)2 =E Ej (Xi, X5) (Xo, Xjr)

il <!

- 2 E(X, X)) E (X, Xj1))

When i, 5,4, j" are all distinct, E ((X;, X;) (Xir, Xj/)) is canceled by the
corresponding term in X E ((X;, X;)) E ((Xi/, Xj)). Then, it remains
1<J
il <j’
to consider the following five cases: (1) i =4 and j = j'; (2) i =’ and
JA S5 (3)iA T and = (4) i = and j £ (5) ' = j and j' # 1.
case (1) Note that (X;, X,) takes only two values 0 or 1, which implies
that
1

mimes .

E (X X;)") =E (X5, X;)) =

cases (2)-(5) In these four cases, the calculation reduces to calculate E ((X;, Xj) (X, X;))
for i # j and k ¢ {i,7}. Note that Py, = (-, X}) X} is the
orthogonal projector on the vector space spanned by X;. We
compute

1

myms

Id

EPy, =

where Id is the identity application on R™*™2_ Then, we get
B (((Xi, Xi) Xk, X)) = E ((Px, (Xi), X))
= (E (Px,) (EX;) , EX;)

1 1
mims (mlTTlg)
These terms are canceled by the corresponding terms in
1
2B (X0 X E (X0 X0) a3 E (X0 X E (K0 X)) = o

i<y’

Finally we get that
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The Bienaymé-Tchebychev inequality implies that

—1 2
i<j ( n(n — 1)) mymy
2mimy |l N — —=
2m1m2

when myms > n. This completes the proof of Lemma 11.

APPENDIX E. PROOF OF THEOREM 8

We need the following auxiliary result, which corresponds to Lemma
3, and which is proven in the appendix.

Y
rank(V Ap)

va-o], > (S22 st

We resume the proof of Theorem 8. If VA = U, then Lemma 12
implies that VAqg = U and we get ‘ \% <121 — A0> ‘ = 0.

2
If VA # U, a necessary condition of extremum in (2.11) implies that

there exists a W € ||V A||; such that for any A € R™ ™2

Lemma 12. Suppose that >\ > 3A for some p < 1,

then

2<VA—U,V(A—A)>

2HVA—U +)\<W,V(A—A>>§O

2

[\
P
<
N
o
|
S
<
S
N

A—A>>—2<U—VAO,V<A—A>>

+2)\HVA—U 2<W,V<A—A>>§O.

rank(V A)

Fora Wi € {8 u(VANT(VA) + PosraW Psgavn = IWl <1}

by the monotonicity of subdifferentials of convex functions we have that
(W—wav(A-a))>0.
Then, (E.1) and

2(v (A=) v (A-a))=|v(d-a)

v (a-4)

2
i a

2
2
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imply
(E.2)

v (4=l v (4- A
+20|[VA-U|| (PspwaWPsya, V (A= 4))
<|via-ag|;+2(EV (A-4))

—2)\HVA—U

rank(V A) "
2 < 2wy (VA (VAT V (A - A>> .

=1
By trace duality we can pick W with ||W ||, < 1 such that

(E.3)

(PsicvayWPsg V (A= A) ) = (W, Pop vV (A= A) Pyn))
= ’ PSf(VA)V (A - A) PSQL(VA)H1 :

Let Pya(B) = B — Psi(yayBPsi(va)- Then, using the trace duality
and the triangle inequality we get

(FZ?,V (A= a)) = (PoBv (A a)) < pol, |V (4- )
< |PvE|l. HPVA [V (A . A)] 1

Py Ell HPS%(VMV <A - A) PS%WA)Hl ‘

1

rank(V A)
Note that Zl uj(VA)v;fF(VA)H = 1. Hence the trace duality
J= [ee]
implies
(E.5)
rank(V A) T R rank(V A) . R
< 3w (VAW (VA),V (A - A)> — < Y uy (VA (VAT Pya [V (A - A)]
Jj=1 Jj=1

|

Py4 [v (A - Aﬂ
Plugging (E.3), (E.4) and (E.5) into (E.2) we obtain

(E.6)

(4=, v (- a) 22 [va - o [ sy (4 - 4) Posn]

. .

< ||V (A= Ap) H; +2(|PvE| HPSIL(VA)V (A - A) PSQL(VA)H1

2 PvE|lL |[Pya [V (A-A)] P4 [V (A—A)]

1+2AHVA—U

00’ 2 1



24 OLGA KLOPP

Using Lemma 12, from (E.6) we compute
(4= )], [V (4-)
2
3—/1+p?
2 ) £,
3++v/1+p
2 ~
< [V (A= 40) 5+ 2Py Bl | PsrvayV (A= A) Py

+2|[PvE|. HPVA [v (A - A)}

+2)\HVA—U

2 2
+
2

Psll(VA)V (A - A) PS2L(VA)

1

1

Pya [V (4-4)]| .

1

2

From the definition of A we get

(E.7)

I (4~

2 2
+
2

v (4-4)

3—/1+p?
+6 IPvE|l
<3+v1+&>

< ||V (A=A |2 +21IPvE.,

2

Psrova)V (A - A) PS;(VA>H1

Psiva)V (A - A) Pstwva H1
+2|PvBll, [Prav (4-4)]|

eonfva-ol Jeua v (i),

1

3—4/1 2
Note that 6 e

3+ 1+ p?

> 2 for any p < 1. Thus, (E.7) implies

(E.8)
[v (4= as) [+ |V (A-4)], < v ea-an);

el

eova-o] feuafr (1)

+2|PrE], |

. .

Using

)VA—U

< HVA—VAO
2

[Pvalv(4-4)

+
2

)VAO U

, and the fact that
2

< VamrA |y (44

2



MATRIX ESTIMATION WITH UNKNOWN VARIANCE 25

from (E.8) we compute
(E.9)
Hv(A_AO) <||V(A-Ay) |’
+2>\\/MHV(A—AO) 2 (A—A) 2
+ 2| Elloy/2rank(VA) [V (A - 4)|
+2|[PvEll,, v2rank(VA) [V (A - 4)| .

From the definition of A we get that ||Py E|| , < M| El[2/3 and A\y/2rank(V A) <
p. This implies that

+||v (4- A)

[v (A=) [+ v (A= )], < v a- 0]
+ 8/3A| Ella/ 2rank(VA) ||V (4 - 4) |

#20][v (A= o) (4 - )

2

Using 2ab < a? + b? twice we finally compute

oy () v (=) = ag ol (3= )

2

+ 8/3| Blle/2rank(VA) ||V (4 - 4)]|

and
(1—p)Hv(A—AO)H [V (A= 40) | + HEHZrank(VA)

which implies the statement of Theorem 8.

APPENDIX F. PROOF OoF LEMMA 12

If VAy = U, then we have trivially |[VA — Ul > 0.If VA, # U,
by the convexity of function A — ||V A — Ul|,, we have

(F.1)
<VA0 UV (A _ A0)>
VA, = Ull,

PO V) B (1),

> _%\/Mnk V Ag) + rank( VA HV (A Ag)” )

|va-u]| —va,-ul,>
2
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__r
rank(V' A)
ity from (F.1) we get

)VA — UH2 — VA, - U|, >
V1402 Py ()] ;
— o= A— Ay — .

FE
By the definition of A we have % < 1/3 which finally leads to
2

(14 VIF2/3) VA= Ulls > (1= T+ 2/3) IV Ay~ Ulla

This completes the proof of Lemma 12.

Using the bound > A, Lemma 7 and the triangle inequal-
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