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HIGH DIMENSIONAL MATRIX ESTIMATION WITH
UNKNOWN VARIANCE OF THE NOISE

OLGA KLOPP

Abstract. We propose a new pivotal method for estimating high-

dimensional matrices. Assume that we observe a small set of en-

tries or linear combinations of entries of an unknown matrix A0

corrupted by noise. We propose a new method for estimating A0

which does not rely on the knowledge or an estimation of the stan-

dard deviation of the noise σ. Our estimator achieves, up to a

logarithmic factor, optimal rates of convergence under the Frobe-

nius risk and, thus, has the same prediction performance as previ-

ously proposed estimators which rely on the knowledge of σ. Our

method is based on the solution of a convex optimization problem

which makes it computationally attractive.

1. Introduction

The problem of the recovery of a data matrix from incomplete and
corrupted information appears in a variety of applications such as rec-
ommendation systems, system identification, global positioning, re-
mote sensing (for more details see [2]). For instance, in the Netflix
recommendation system, we observe a few movie ratings from a large
data matrix in which rows are users and columns are movies. Each user
only watches a few movies compared to the total database of movies
available on Netflix. The goal is to predict the missing ratings in order
to be able to recommend the movies to a person that he/she has not
yet seen.

In the noiseless setting, if the unknown matrix has low rank and is
”incoherent”, then it can be reconstructed exactly with high probability
from a small set of entries. This result was first proved by Candès and
Recht [3] using nuclear norm minimization. A tighter analysis of the
same convex relaxation was carried out in [4]. For a simpler approach
see [16] and [8]. An alternative line of work was developed by Keshavan
et al in [10]. More recent results of Gross [8] and Recht [16] provide
sharper conditions. For example, Recht [16] showed that, if we observe
n entries of a matrix A0 ∈ R

m1×m2 with locations uniformly sampled
at random, then under “incoherence conditions” the exact recovery is
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2 OLGA KLOPP

possible with high probability if n > Cr(m1 + m2) log
2m2 with some

constant C > 0 and r = rank(A0) .
In a more realistic setting the observed entries are corrupted by noise.

This question has been recently addressed by several authors (see, e.g.,
[2, 9, 17, 14, 15, 12, 13, 6, 11]). These methods rely on the knowledge or
a pre-estimation of the standard deviation σ of the noise. Estimation
of σ is non-trivial in the large-scaled problems. The estimator that we
propose in this paper eliminates the need to know or to pre-estimate σ.
It is inspired by the square-root lasso estimator proposed for the linear
regression model by Chernozhukov et al in [5]. We show that, up to a
logarithmic factor, our estimator achieves optimal rates of convergence
under the Frobenius risk. Thus, it has the same prediction performance
as previously proposed estimators which rely on the knowledge of σ.

This paper is organized as follows. In Section 2 we set notations,
introduce our model - the trace regression model and our estimator.
In Section 3 (Theorem 2), we prove a general oracle inequality for the
prediction error for the trace regression model. The proof of Theorem
2 is based on the ideas of the proof of Theorem 1 in [13]. However, as
the statistical structure of our estimator is different from the estimator
proposed in [13], the proof requires several modifications and additional
information on the behavior of the estimator. This information is given
in Lemmas 1 and 3. In particular, Lemma 1 provides a bound on the
rank of our estimator in the general setting of the trace regression
model.

In the Section 4, we apply Theorem 2 to the case of matrix comple-
tion under uniform sampling at random (USR). We propose a choice
of the regularization parameter λ for our estimator which is indepen-
dent of σ. The main result, Theorem 6, shows that in the case of USR
matrix completion and under some mild conditions that link the rank
and the “spikiness” of A0, up to a constant, the prediction risk of our
estimator is comparable to the sharpest bounds obtained until now.
For more details see Section 4.

In Section 5, we apply our idea to the problem of matrix regression
which is yet another special case of trace regression. Previously, the
problem of matrix regression with unknown noise variance was consid-
ered in [1, 7]. These two papers study the rank-penalized estimators.
Bunea et al [1], who first introduced the idea of such estimators, pro-
pose un unbiased estimator of σ which requires an assumption on the
dimensions of the problem. This assumption excludes an interesting
case when the sample size is smaller than the number of covariates.
The method proposed in [7] can be applied to this last case under a
condition on the rank of the unknown matrix A0. Our method, unlike
the method of [1], can be applied to the case when the sample size is
smaller than the number of covariates and our condition is weaker than
the conditions obtained in [7]. For more details see Section 5.
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2. Preliminaries

2.1. Model. Let A0 ∈ R
m1×m2 be an unknown matrix, and consider

the observations (Xi, Yi) satisfying the trace regression model

(2.1) Yi = tr(XT
i A0) + σξi, i = 1, . . . , n.

Here, σ > 0 is the unknown standard deviation. The noise variables ξi
are independent, identically distributed and having law Φ such that

(2.2) EΦ(ξi) = 0, EΦ(ξ
2
i ) = 1,

Xi are random matrices with dimension m1 × m2 and tr(A) denotes
the trace of the matrix A.

We consider the problem of estimating of A0. Our main motivation
is the high-dimensional setting, which corresponds to m1m2 ≫ n, with
low rank matrices A0.

The trace regression model is a quite general model which contains
as particular cases a number of interesting problems. Let us give two
examples which we will consider with more details in this paper.

• Matrix Completion Assume that the design matrices Xi are
i.i.d uniformly distributed on the set

(2.3) X =
{
ej(m1)e

T
k (m2), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2

}
,

where el(m) are the canonical basis vectors in R
m. Then, the

problem of estimating A0 coincides with the problem of matrix
completion under uniform sampling at random (USR).

• Matrix regression The matrix regression model is given by

(2.4) Ui = Vi A0 + Ei i = 1, . . . , l,

where Ui are 1×m2 vectors of response variables, Vi are 1×m1

vectors of predictors, A0 is an unknown m1 × m2 matrix of
regression coefficients and Ei are random 1 × m2 vectors of
noise with independent entries and mean zero.

We can equivalently write this model as a trace regression
model. Let Ui = (Uik)k=1,...,m2

, Ei = (Eik)k=1,...,m2
and ZT

ik =
ek(m2) Vi, where ek(m2) are the m2×1 vectors of the canonical
basis of Rm2 . Then, we can write (2.4) as

Uik = tr(ZT
ikA0) + Eik i = 1, . . . , l and k = 1, . . . , m2.

2.2. Notation. For any matrices A,B ∈ R
m1×m2 , we define the scalar

product

〈A,B〉 = tr(ATB).

For 0 < q ≤ ∞ the Schatten-q (quasi-)norm of the matrix A is defined
by

‖A‖q =
(

min(m1,m2)

Σ
j=1

σj(A)
q

)1/q

for 0 < q < ∞ and ‖A‖∞ = σ1(A),
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where (σj(A))j are the singular values of A ordered decreasingly.
We summarize the notations which we use throughout this paper

•

(2.5) X =
µ2

n

n∑

i=1

YiXi and M = µ−2 (X− A0) ;

•

(2.6) ∆ =
‖M‖∞
‖M‖2

and ∆∞ = ‖M‖∞;

• ∂G is the subdifferential of G;
• S⊥ is the orthogonal complement of S;
• PS is the projector on the linear vector subspace S;
• F (A) = ‖A−X‖2 + λ‖A‖1.
• ‖A‖sup = max

i,j
| aij | where A = (aij).

2.3. Estimator. In [13], the authors propose the following estimator
for the trace regression model

(2.7) ÂML = argmin
A∈Rm1×m2

{

‖ A ‖2L2(Π) −
〈 2

n

n∑

i=1

YiXi, A
〉

+ λ‖A‖1
}

.

Here, λ > 0 is a regularization parameter, ‖ A ‖2L2(Π)=
1

n

n∑

i=1

E (〈A,Xi〉2)

and Π =
1

n

n∑

i=1

Πi where Πi are the distributions of Xi.

If the following assumption of restricted isometry in expectation is
satisfied

for some µ > 0 ‖ A ‖2L2(Π)= µ−2 ‖ A ‖22,
then (2.7) has a particularly simple form:

(2.8) ÂML = argmin
A∈Rm1×m2

{
‖ A−X ‖22 +λµ2‖A‖1

}

where

(2.9) X =
µ2

n

n∑

i=1

YiXi.

In the first part of the present paper we study the following estimator

(2.10) Âλ,µ = argmin
A∈Rm1×m2

{‖A−X‖2 + λ‖A‖1} .

In order to simplify our notations we will write Â = Âλ,µ. Note that
the first part of our estimator coincides with the square root of the
data-depending term in (2.8). This is similar to the principle used to
define the square-root lasso for the usual vector regression model, see
[5]. Theorem 2 gives an oracle bound on the prediction error of Â.
This bound is obtained for an arbitrary µ and does not rely on the
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knowledge of the distributions of Xi. We apply Theorem 2 to matrix
completion, taking µ2 = m1m2.

In the second part of the present paper, dedicated to matrix regres-
sion problem, we consider a new estimator inspired by the same idea,
namely

(2.11) Â = argmin
A∈Rm1×m2

{‖U − V A‖2 + λ‖V A‖1} .

Note that in (2.11) we penalized by the nuclear norm of V A, rather
the by the nuclear norm of A as in (2.7).

3. General oracle inequalities

The following lemma gives a bound on the rank of our estimator.

Lemma 1.

rank(Â) ≤ 1/λ2.

Proof. That Â is the minimum of (2.10) implies that 0 ∈ ∂F (Â). We
will use the fact that the subdifferential of the convex function A →
‖A‖1 is the following set of matrices (cf. [20])

(3.1) ∂‖A‖1 =
{

rank(A)

Σ
j=1

uj(A)v
T
j (A) + PS⊥

1
(A)WPS⊥

2
(A) : ‖W‖∞ ≤ 1

}

uj(A) and vj(A) are respectively the left and right orthonormal singular
vectors of A, S1(A) is the linear span of {uj(A)}, S2(A) is the linear

span of {vj(A)}. For Â 6= X, this implies that there exists a matrix W
such that ‖W‖∞ ≤ 1 and

(3.2)
Â−X

‖Â−X‖2
= −λ

rank(Â)

Σ
j=1

uj(Â)v
T
j (Â)− λPS⊥

1
(Â)WPS⊥

2
(Â).

Calculating the ‖‖22 norm of both sides of (3.2) we get that 1 ≥
λ2rank(Â). When Â = X, instead of differential of ‖Â − X‖2 we use

its subdifferential. In (3.2) the term
Â−X

‖Â−X‖2
is replaced by a matrix

W̃ such that ‖W̃‖2 ≤ 1 and we get again 1 ≥ λ2rank(Â). �

Theorem 2. Suppose that
ρ

√

2rank(A0)
≥ λ ≥ 3∆ for some ρ < 1,

then

‖Â− A0‖22 ≤ inf√
2rank(A)≤ρ/λ

{

(1− ρ)−1 ‖A−A0‖22 +
(
2λµ2

1− ρ

)2

‖M‖22 rankA
}

Proof. We need the following auxiliary result which is proven in the
Appendix
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Lemma 3. Suppose that
ρ

√

rank(A0)
≥ λ ≥ 3∆ for some ρ < 1, then

(3.3) ‖Â−X‖2 ≥
(

3−
√

1 + ρ2

3 +
√

1 + ρ2

)

‖A0 −X‖2

If Â = X, then (3.3) implies that A0 = X and we get ‖Â−A0‖2 = 0.

If Â 6= X, a necessary condition of extremum in (2.10) implies that

there exists a V̂ ∈ ∂‖Â‖1 such that for any A ∈ R
m1×m2

2〈Â−X, Â− A〉
2‖Â−X‖2

+ λ〈V̂ , Â− A〉 ≤ 0

which yields

(3.4) 2〈Â−A0, Â−A〉−2〈X−A0, Â−A〉+2λ‖Â−X‖2〈V̂ , Â−A〉 ≤ 0.

By (3.1) we have the following representation for an arbitrary V ∈
∂‖A‖1

(3.5) V =
r

Σ
j=1

ujv
T
j + PS⊥

1
(A)WPS⊥

2
(A),

for simplicity we write uj and vj instead of uj(A) and vj(A).
By monotonicity of subdifferentials of convex functions we have that

〈V̂ − V, Â−A〉 ≥ 0. Then (3.4) and 2〈Â−A0, Â−A〉 = ‖Â−A0‖22 +
‖Â− A‖22 − ‖A−A0‖22 imply

‖Â− A0‖22 + ‖Â−A‖22 + 2λ‖Â−X‖2
〈

PS⊥
1
(A)WPS⊥

2
(A), Â− A

〉

≤ ‖A− A0‖22 + 2〈X−A0, Â− A〉 − 2λ‖Â−X‖2
〈

r

Σ
j=1

ujv
T
j , Â− A

〉

.

(3.6)

From the trace duality we get that there exists W with ‖W‖∞ ≤ 1
such that

〈

PS⊥
1
(A)WPS⊥

2
(A), Â−A

〉

=
〈

W,PS⊥
1
(A)

(

Â−A
)

PS⊥
2
(A)

〉

=
∥
∥
∥PS⊥

1
(A)

(

Â− A
)

PS⊥
2
(A)

∥
∥
∥
1
.

(3.7)

For a m1 ×m2 matrix B let PA(B) = B − PS⊥
1
(A)BPS⊥

2
(A). Since

PA(B) = PS⊥
1
(A)BPS2(A) + PS1(A)B

and rank(PSi(A)B) ≤ rank(A) we have that rank(PA(B)) ≤ 2rank(A).
Using the trace duality and triangle inequalities we get

〈X− A0, Â−A〉 ≤ ‖X− A0‖∞‖Â− A‖1
≤ ‖X− A0‖∞

∥
∥
∥PA

(

Â− A
)∥
∥
∥
1

+ ‖X−A0‖∞
∥
∥
∥PS⊥

1
(A)

(

Â− A
)

PS⊥
2
(A)

∥
∥
∥
1
.

(3.8)
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Note that

∥
∥
∥
∥

r

Σ
j=1

ujv
T
j

∥
∥
∥
∥
∞

= 1. Then, the trace duality implies

(3.9)
〈

r

Σ
j=1

ujv
T
j , Â− A

〉

=

〈
r

Σ
j=1

ujv
T
j ,PA

(

Â− A
)〉

≤
∥
∥
∥PA

(

Â−A
)∥
∥
∥
1
.

Putting (3.7), (3.8), (3.9) into (3.6) we compute

‖Â−A0‖22 + ‖Â− A‖22 + 2λ‖Â−X‖2
∥
∥
∥PS⊥

1
(A) Â PS⊥

2
(A)

∥
∥
∥
1

≤ ‖A− A0‖22 + 2‖X− A0‖∞
∥
∥
∥PA

(

Â− A
)∥
∥
∥
1

+ 2‖X− A0‖∞
∥
∥
∥PS⊥

1
(A) Â PS⊥

2
(A)

∥
∥
∥
1

+ 2λ‖Â−X‖2
∥
∥
∥PA

(

Â− A
)∥
∥
∥
1
.

(3.10)

Using (3.3), from (3.10), we derive

‖Â− A0‖22 + ‖Â−A‖22 + 2λ
3−

√

1 + ρ2

3 +
√

1 + ρ2
‖A0 −X‖2

∥
∥
∥PS⊥

1
(A) Â PS⊥

2
(A)

∥
∥
∥
1

≤ ‖A−A0‖22 + 2‖X−A0‖∞
∥
∥
∥PA

(

Â− A
)∥
∥
∥
1

+ 2‖X− A0‖∞
∥
∥
∥PS⊥

1
(A) Â PS⊥

2
(A)

∥
∥
∥
1

+ 2λ‖Â−X‖2
∥
∥
∥PA

(

Â− A
)∥
∥
∥
1
.

From the definition of λ we get

‖Â− A0‖22 + ‖Â−A‖22 + 6
3−

√

1 + ρ2

3 +
√

1 + ρ2
‖A0 −X‖∞‖PS⊥

1
(A) Â PS⊥

2
(A)‖1

≤ ‖A−A0‖22 + 2‖X−A0‖∞‖PA

(

Â− A
)

‖1
+ 2‖X− A0‖∞‖PS⊥

1
(A) Â PS⊥

2
(A)‖1

+ 2λ‖Â−X‖2‖PA

(

Â− A
)

‖1.

(3.11)

Note that 6
3−

√

1 + ρ2

3 +
√

1 + ρ2
≥ 2 for any ρ < 1. Thus, (3.11) yields

‖Â− A0‖22 + ‖Â− A‖22 ≤ ‖A− A0‖22 + 2‖X−A0‖∞‖PA

(

Â− A
)

‖1

+ 2λ‖Â−X‖2‖PA

(

Â− A
)

‖1.

(3.12)
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Now, using the triangle inequality and the fact that
∥
∥
∥PA

(

Â− A
)∥
∥
∥
1
≤
√

2rank(A)‖Â−A‖2
from (3.12) we get

‖Â− A0‖22 + ‖Â− A‖22 ≤ ‖A−A0‖22 + 2
(

‖X− A0‖∞

+ λ‖X−A0‖2
)√

2rank(A)‖Â− A‖2
+ 2λ‖Â− A0‖2

√

2rank(A)‖Â− A‖2.

(3.13)

From the definition of λ we get that ‖X−A0‖∞ ≤ λ‖X−A0‖2/3. For
A such that λ

√

2rank(A) ≤ ρ, (3.13) implies

‖Â− A0‖22 + ‖Â−A‖22 ≤ ‖A−A0‖22
+

8

3
λ‖X− A0‖2

√

2rank(A)‖Â−A‖2
+ 2ρ‖Â− A0‖2‖Â−A‖2.

Using 2ab ≤ a2 + b2 twice we finally compute

(1− ρ)‖Â− A0‖22 + ‖Â−A‖22 ≤ ‖A−A0‖22 + ρ‖Â−A‖22
+

8

3
λ‖X− A0‖2

√

2rank(A)‖Â−A‖2
and

(1− ρ)‖Â− A0‖22 ≤ ‖A−A0‖22 +
4

1− ρ
λ2‖X− A0‖22rank(A)

which implies the statement of Theorem 2. �

4. Matrix Completion

In this section we apply the general oracle inequality of Theorems
2 for the model of USR matrix completion. Assume that the design
matrices Xi are i.i.d uniformly distributed on the set X defined in (2.3).
This implies that

1

n

n∑

i=1

E
(
〈A,Xi〉2

)
= (m1m2)

−1‖A‖22,

for all matrices A ∈ R
m1×m2 and we take µ2 = m1m2.

We will consider the case of sub-Gaussian noise and matrices with
uniformly bounded entries. We suppose that the noise variables ξi are
such that

(4.1) E(ξi) = 0, E(ξ2i ) = 1

and there exists a constant K such that

(4.2) E [exp(tξi)] ≤ exp
(
t2/2K

)
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for all t > 0. Normal N(0, 1) random variables are sub-Gaussian with
K = 1 and (4.2) implies that ξi has Gaussian type tails:

P {|ξi| > t} ≤ 2 exp
{
−t2/2K

}
.

Note that condition Eξ2i = 1 implies that K ≤ 1.
Let a denote a constant such that

(4.3) ‖A0‖sup ≤ a.

In order to specify the value of the regularization parameter λ, we
need to estimate ∆ (defined in (2.6)) with high probability. In what
follows we will denote by c a numerical constant whose value can vary
from one expression to the other and is independent from n,m1, m2.
Setm = m1+m2, m1∧m2 = min(m1, m2) andm1∨m2 = max(m1, m2).
The following bound is a consequence of Lemmas 2 and 3 in [13],

Lemma 4. For n > 8(m1∧m2) log
2m, with probability at least 1−3/m,

one has

(4.4) ∆∞ ≤ (c∗σ + 2a)

√

2 log(m)

(m1 ∧m2)n

where c∗ is a numerical constant which depends only on K.

If ξi are N(0, 1), then we can take c∗ = 6.5.

Proof. The bound (4.4) is stated in Lemmas 2 and 3 in [13]. A closer
inspection of the proof of Proposition 2 in [12] gives an estimation on
c∗ in the case of Gaussian noise. For more details see the appendix. �

The following Lemma, proven in the appendix, provides bounds on
‖M‖2.

Lemma 5. Suppose that 4n ≤ m1m2. Then, for M defined in (2.5),
with probability at least 1− 2/m1m2 − (6 + 3e) exp{−c̃n}, one has

(i)

2

(

‖A0‖22
nm1m2

+
σ2

n

)

≥ ‖M‖22 ≥
σ2

2n
;

(ii)
∥
∥
∥
∥
∥

1

n

n∑

i=1

YiXi

∥
∥
∥
∥
∥

2

2

≥ ‖A0‖22
nm1m2

≥ 4 ‖A0‖22
(m1m2)2

;

(iii)

‖M‖2 ≥
1

2

∥
∥
∥
∥
∥

1

n

n∑

i=1

YiXi

∥
∥
∥
∥
∥
2

where c̃ is a numerical constant which depends only on K, a and σ.
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Recall that the condition on λ in Theorem 2 is that λ ≥ 3∆. Using
Lemma 4 and the lower bounds on ‖M‖2 given by Lemma 5 we can
choose

(4.5) λ = 2c∗

√

logm

m1 ∧m2
+ 4a

√

2n logm

m1 ∧m2

1
∥
∥
∥
∥

n∑

i=1

YiXi

∥
∥
∥
∥
2

.

With this choice of λ, the assumption of Theorem 2 that
ρ

√

rank(A0)
≥

λ takes the form

(4.6)
ρ

√

rank(A0)
≥ 2c∗

√

logm

m1 ∧m2
+ 4a

√

2n logm

m1 ∧m2

1
∥
∥
∥
∥

n∑

i=1

YiXi

∥
∥
∥
∥
2

.

Using (ii) of Lemma 5 we get that (4.6) is satisfied with a hight prob-
ability if

(4.7)
ρ

√

rank(A0)
≥ 2 c∗

√

logm

m1 ∧m2

+
4 a

√
m1m2

‖A0‖2

√

2 logm

m1 ∧m2

.

In this assumption 4 logm/ (m1 ∧m2) is small for m1 and m2 large and
condition (4.7) is equivalent to the following one

(4.8) ρ ≥ 4

√

2 logm

(m1 ∧m2)

√

rank(A0)αsp

where αsp =

√
m1m2 ‖A0‖sup

‖A0‖2
is the spikiness ratio of A0. The notion of

“spikiness” was introduced by Negahban and Wainwright in [15]. We
have that 1 ≤ αsp ≤ √

m1m2 and it is large for “spiky” matrices, i.e.
matrices where some “large” coefficients emerge as spikes among very
“small” coefficients. For instance, αsp = 1 if all the entries of A0 are
equal to some constant and αsp =

√
m1m2 if A0 has only one non-zero

entry.
Condition (4.8) is a kind of trade-off between “spikiness” and rank. If

αsp is bounded by a constant, then, up to a logarithmic factor, rank(A0)
can be of the order m1∧m2, which is its maximal possible value. If our
matrix is ”spiky”, then we need low rank. To give some intuition let
us consider the case of square matrices. Typically, matrices with both
high spikiness ratio and high rank look almost diagonal. Thus, under
uniform sampling and if n ≪ m1m2, with high probability we do not
observe diagonal (i.e. non-zero) elements.

Theorem 6. Let the set of conditions (4.1) - (4.3) be satisfied and λ

be as in (4.5). Assume that 8(m1 ∧m2) log
2m < n ≤ m1m2

4
and that
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(4.7) holds for some ρ < 1. Then with probability at least 1 − 3/m −
2/m1m2 − (6 + 3e) exp{−c̃n}

(4.9)
1

m1m2
‖Â− A0‖22 ≤ C∗

(m1 ∨m2)

n
rank(A0) logm

where C∗ =
16 (2c∗σ

2 + (18 + 2c∗)a
2)

(1− ρ)2
.

Proof. This is a consequence of Theorem 2 for A = A0. From (4.5) we
get

‖Â− A0‖22 ≤
8(m1m2)

2

(1− ρ)2






c∗

√

4 logm

m1 ∧m2
+ 2a

√

2n logm

m1 ∧m2

1
∥
∥
∥
∥

n∑

i=1

YiXi

∥
∥
∥
∥
2







2

× ‖M‖22 rank(A0).

(4.10)

Using triangle inequality and (ii) of Lemma 5 we compute

(4.11) ‖M‖2 ≤
∥
∥
∥
∥
∥

1

n

n∑

i=1

YiXi

∥
∥
∥
∥
∥
2

+
1

m1m2
‖A0‖2 ≤

3

2

∥
∥
∥
∥
∥

1

n

n∑

i=1

YiXi

∥
∥
∥
∥
∥
2

.

Using (i) of Lemma 5 and (4.11), from (4.10) we get

‖Â− A0‖22 ≤
16 log(m)(m1m2)

2

(1− ρ)2(m1 ∧m2)

(

2 c∗

(

‖A0‖22
nm1m2

+
σ2

n

)

+
18a2

n

)

rank(A0).

We then use ‖A0‖22 ≤ a2m1m2 to obtain

‖Â− A0‖22
m1m2

≤16 log(m)(m1 ∨m2)

(1− ρ)2n

(
2c∗σ

2 + (18 + 2c∗)a
2
)
rank(A0).

This completes the proof of Theorem 6. �

Theorem 6 guarantees that the normalized Frobenius error
‖ Â−A0 ‖2√

m1m2

of the estimator Â is small whenever n > C(m1 ∨m2) log(m)rank(A0)
with a constant C large enough. This quantifies the sample size n nec-
essary for successful matrix completion from noisy data with unknown
variance of the noise. This sampling size is the same as in the case of
known variance of the noise.

In order to compare our bounds to those obtained in past works on
noisy matrix completion, we will start with the paper of Keshavan et
al [9]. Under a sampling scheme different from ours (sampling without
replacement) and sub-Gaussian errors, the estimator proposed in [9]
satisfies, with high probability, the following bound

(4.12)
1

m1m2
‖Â−A0‖22 . k4

√
α
(m1 ∨m2)

n
rank(A0) logn.
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The symbol . means that the inequality holds up to multiplicative
numerical constants, k = σmax(A0)/σmin(A0) is the condition number
and α = (m1 ∨m2)/(m1 ∧m2) is the aspect ratio. Comparing (4.12)
and (4.9), we see that our bound is better: it does not involve the
multiplicative coefficient k4

√
α which can be big.

Wainwright et al in [15] propose an estimator which, in the case of
USR matrix completion and sub-exponential noise, satisfies

(4.13)
1

m1m2

‖Â− A0‖22 . αsp
m

n
rank(A0) logm.

Here αsp is the spikiness ratio of A0. For αsp bounded by a constant,

(4.13) gives the same bound as Theorem 6. The construction of Â in
[15] requires a prior information on the spikiness ratio of A0 and on σ.
This is not the case for our estimator, which is completely data-driven.

The estimator proposed by Koltchinskii et al in [13] achieves the
same bound as ours. In addition to prior information on ‖A0‖sup, their
method also requires prior information on σ. In the case of Gaussian
errors, this rate of convergence is optimal (cf. Theorem 6 of [13]) for
the class of matrices A(r, a) defined as follows: for given r and a, for
any A0 ∈ A(r, a) the rank of A0 is supposed not to be larger than r
and all the entries of A0 are supposed to be bounded in absolute value
by a.

5. Matrix Regression

In this section we apply our method to matrix regression. Recall
that the matrix regression model is given by

(5.1) Ui = Vi A0 + Ei i = 1, . . . , l,

where Ui are 1×m2 vectors of response variables; Vi are 1×m1 vectors of
predictors; A0 is an unknown m1×m2 matrix of regression coefficients;
Ei are random 1×m2 noise vectors with independent entries Eij. We
suppose that Eij has mean zero and unknown standard deviation σ.

Set V =
(
V T
1 , . . . , V T

l

)T
, U =

(
UT
1 , . . . , U

T
l

)T
and E =

(
ET

1 , . . . , E
T
l

)T
.

We define the following estimator of A0:

Â = argmin
A∈Rm1×m2

{‖U − V A‖2 + λ‖V A‖1} ,

where λ > 0 is a regularization parameter.
Let PV denote the orthogonal projector on the linear span of the

columns of matrix V and let P⊥
V = 1− PV . Note that

V TP⊥
V = 0

and ATV = 0 (which means that the columns of A are orthogonal to
the columns of V ) implies PVA = 0.

The following lemma is the counterpart of Lemma 1 in the present
setting.
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Lemma 7.

rank(V Â) ≤ 1/λ2.

Proof. That Â is the minimum of (2.11) implies that 0 ∈ ∂G(Â) where

G = ‖U − V A‖2 + λ‖V A‖1.
Note that the subdifferential of the convex function A → ‖V A‖1 is the
following set of matrices

∂‖V A‖1 = V T

{
rank(V A)

Σ
j=1

uj(V A)vTj (V A) + PS⊥
1
(V A)WPS⊥

2
(V A) : ‖W‖∞ ≤ 1

}

where S1(V A) is the linear span of {uj(V A)} and S2(V A) is the linear
span of {vj(V A)}.

If Â is such that V Â 6= U , we obtain that there exists a matrix W
such that ‖W‖∞ ≤ 1 and

V T V Â− U

‖V Â− U‖2
= −λV T

{
rank(V A)

Σ
j=1

uj(V A)vTj (V A) + PS⊥
1
(V A)WPS⊥

2
(V A)

}

which implies
(5.2)

V TPV
V Â− U

‖V Â− U‖2
= −λV TPV

{
rank(V A)

Σ
j=1

uj(V A)vTj (V A) + PS⊥
1
(V A)WPS⊥

2
(V A)

}

.

Recall that V TPV B = 0 implies that P2
VB = PV B = 0 and we get

from (5.2)
(5.3)

PV
V Â− U

‖V Â− U‖2
= −λ

{
rank(V A)

Σ
j=1

PV uj(V A)vTj (V A) + PV

[

PS⊥
1
(V A)WPS⊥

2
(V A)

]}

.

By the definition of the singular vectors we have that V A (vj(V A)) =
σj(V A)uj(V A) and we compute

PV V A (vj(V A)) = σj(V A)PV uj(V A)

using PV V A (vj(V A)) = V A (vj(V A)) = σj(V A)uj(V A) and σj 6= 0
we get

(5.4) PV uj(V A) = uj(V A)

and we obtain from (5.3)
(5.5)

PV
V Â− U

‖V Â− U‖2
= −λ

{
rank(V A)

Σ
j=1

uj(V A)vTj (V A) + PV

[

PS⊥
1
(V A)WPS⊥

2
(V A)

]}

.

Note that for any w such that 〈w, uj(V A)〉 = 0 (5.4) implies that

(5.6) 〈PVw, uj(V A)〉 = 〈w, uj(V A)〉 = 0.
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By the definition, PS⊥
1
(V A) projects on the subspace orthogonal to the

linear span of {uj(V A)}. Thus, (5.6) implies that PV PS⊥
1
(V A) also

projects on the subspace orthogonal to the linear span of {uj(V A)}.
Calculating the ‖‖22 norm of both sides of (5.5) we get that 1 ≥

λ2rank(V Â). When V Â = U , instead of the differential of ‖U − V A‖2
we use its subdiffential. �

Minor modifications in the proof of Theorem 2 yield the following

result. We set ∆′ =
‖PV (E)‖∞

‖E‖2
.

Theorem 8. Suppose that
ρ

√

2rank(V A0)
≥ λ ≥ 3∆′ for some ρ < 1,

then
∥
∥
∥V
(

Â− A0

)∥
∥
∥

2

2
≤ inf√

2rank(V A)≤ρ/λ

{

‖V (A− A0)‖22
1− ρ

+

(
2λ

1− ρ

)2

‖E‖22 rank(V A)

}

Proof. The proof follows the lines of the proof of Theorem 2. We
need the following auxiliary result, which corresponds to Lemma 3,
and which is proven in Appendix.

Lemma 9. Suppose that
ρ

√

rank(V A0)
≥ λ ≥ 3∆′ for some ρ < 1,

then
∥
∥
∥V Â− U

∥
∥
∥
2
≥
(

3−
√

1 + ρ2

3 +
√

1 + ρ2

)

‖E‖2.

We resume the proof of Theorem 8. If V Â = U , then Lemma 9

implies that V A0 = U and we get
∥
∥
∥V
(

Â− A0

)∥
∥
∥
2
= 0.

If V Â 6= U , a necessary condition of extremum in (2.11) implies that

there exists a Ŵ ∈ ∂‖V Â‖1 such that for any A ∈ R
m1×m2

2
〈

V Â− U, V
(

Â− A
)〉

2
∥
∥
∥V Â− U

∥
∥
∥
2

+ λ
〈

Ŵ , V
(

Â− A
)〉

≤ 0

that is

2
〈

V
(

Â− A0

)

, V
(

Â− A
)〉

− 2
〈

U − V A0, V
(

Â− A
)〉

+ 2λ
∥
∥
∥V Â− U

∥
∥
∥
2

〈

Ŵ , V
(

Â−A
)〉

≤ 0.

(5.7)

For aWA ∈
{

rank(V A)

Σ
j=1

uj(V A)vTj (V A) + PS⊥
1
(V A)WPS⊥

2
(V A) : ‖W‖∞ ≤ 1

}

,

by the monotonicity of subdifferentials of convex functions we have that
〈

Ŵ −WA, V
(

Â− A
)〉

≥ 0.
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Then, (5.7) and

2
〈

V
(

Â− A0

)

, V
(

Â− A
)〉

=
∥
∥
∥V
(

Â−A0

)∥
∥
∥

2

2
+
∥
∥
∥V
(

Â− A
)∥
∥
∥

2

2
−
∥
∥
∥V (A− A0)

∥
∥
∥

2

2

imply

∥
∥
∥V
(

Â− A0

)∥
∥
∥

2

2
+
∥
∥
∥V
(

Â− A
)∥
∥
∥

2

2

+ 2λ
∥
∥
∥V Â− U

∥
∥
∥
2

〈

PS⊥
1
(V A)WPS⊥

2
(V A), V

(

Â− A
)〉

≤
∥
∥V (A− A0)

∥
∥
2

2
+ 2

〈

E, V
(

Â− A
)〉

− 2λ
∥
∥
∥V Â− U

∥
∥
∥
2

〈
rank(V A)

Σ
j=1

uj(V A)vj(V A)T , V
(

Â−A
)〉

.

(5.8)

By trace duality we can pick W with ‖W‖∞ ≤ 1 such that

〈

PS⊥
1
(V A)WPS⊥

2
(V A), V

(

Â−A
)〉

=
〈

W,PS⊥
1
(V A)V

(

Â− A
)

PS⊥
2
(V A)

〉

=
∥
∥
∥PS⊥

1
(V A)V

(

Â−A
)

PS⊥
2
(V A)

∥
∥
∥
1
.

(5.9)

Let PV A(B) = B − PS⊥
1
(V A)BPS⊥

2
(V A). Then, using the trace duality

and the triangle inequality we get

〈

E, V
(

Â− A
)〉

=
〈

PVE, V
(

Â− A
)〉

≤ ‖PVE‖∞
∥
∥
∥V
(

Â−A
)∥
∥
∥
1

≤ ‖PVE‖∞
∥
∥
∥PV A

[

V
(

Â−A
)]∥
∥
∥
1

+ ‖PV E‖∞
∥
∥
∥PS⊥

1
(V A)V

(

Â− A
)

PS⊥
2
(V A)

∥
∥
∥
1
.

(5.10)

Note that

∥
∥
∥
∥

rank(V A)

Σ
j=1

uj(V A)vTj (V A)

∥
∥
∥
∥
∞

= 1. Hence the trace duality

implies

〈
rank(V A)

Σ
j=1

uj(V A)vTj (V A), V
(

Â− A
)〉

=

〈
rank(V A)

Σ
j=1

uj(V A)vj(V A)T ,PV A

[

V
(

Â− A
)]〉

≤
∥
∥
∥PV A

[

V
(

Â− A
)]∥
∥
∥
1
.

(5.11)
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Plugging (5.9), (5.10) and (5.11) into (5.8) we obtain

∥
∥
∥V
(

Â−A0

)∥
∥
∥

2

2
+
∥
∥
∥V
(

Â−A
)∥
∥
∥

2

2
+ 2λ

∥
∥
∥V Â− U

∥
∥
∥
2

∥
∥
∥PS⊥

1
(V A)V

(

Â−A
)

PS⊥
2
(V A)

∥
∥
∥
1

≤
∥
∥V (A−A0)

∥
∥2

2
+ 2 ‖PVE‖∞

∥
∥
∥PS⊥

1
(V A)V

(

Â−A
)

PS⊥
2
(V A)

∥
∥
∥
1

+ 2 ‖PVE‖∞
∥
∥
∥PV A

[

V
(

Â− A
)]∥
∥
∥
1
+ 2λ

∥
∥
∥V Â− U

∥
∥
∥
2

∥
∥
∥PV A

[

V
(

Â− A
)]∥
∥
∥
1
.

(5.12)

Using Lemma 9, from (5.12) we compute

∥
∥
∥V
(

Â− A0

)∥
∥
∥

2

2
+
∥
∥
∥V
(

Â− A
)∥
∥
∥

2

2

+ 2λ

(

3−
√

1 + ρ2

3 +
√

1 + ρ2

)

‖E‖2
∥
∥
∥PS⊥

1
(V A)V

(

Â− A
)

PS⊥
2
(V A)

∥
∥
∥
1

≤
∥
∥V (A− A0)

∥
∥2

2
+ 2 ‖PVE‖∞

∥
∥
∥PS⊥

1
(V A)V

(

Â− A
)

PS⊥
2
(V A)

∥
∥
∥
1

+ 2 ‖PVE‖∞
∥
∥
∥PV A

[

V
(

Â−A
)]∥
∥
∥
1

+ 2λ
∥
∥
∥V Â− U

∥
∥
∥
2

∥
∥
∥PV A

[

V
(

Â− A
)]∥
∥
∥
1
.

From the definition of λ we get

∥
∥
∥V
(

Â− A0

)∥
∥
∥

2

2
+
∥
∥
∥V
(

Â− A
)∥
∥
∥

2

2

+ 6

(

3−
√

1 + ρ2

3 +
√

1 + ρ2

)

‖PVE‖∞
∥
∥
∥PS⊥

1
(V A)V

(

Â− A
)

PS⊥
2
(V A)

∥
∥
∥
1

≤
∥
∥V (A− A0)

∥
∥
2

2
+ 2 ‖PVE‖∞

∥
∥
∥PS⊥

1
(V A)V

(

Â− A
)

PS⊥
2
(V A)

∥
∥
∥
1

+ 2 ‖PVE‖∞
∥
∥
∥PV A

[

V
(

Â−A
)]∥
∥
∥
1

+ 2λ
∥
∥
∥V Â− U

∥
∥
∥
2

∥
∥
∥PV A

[

V
(

Â− A
)]∥
∥
∥
1
.

(5.13)

Note that 6
3−

√

1 + ρ2

3 +
√

1 + ρ2
≥ 2 for any ρ < 1. Thus, (5.13) implies

∥
∥
∥V
(

Â− A0

)∥
∥
∥

2

2
+
∥
∥
∥V
(

Â− A
)∥
∥
∥

2

2
≤
∥
∥V (A−A0)

∥
∥2

2

+ 2 ‖PVE‖∞
∥
∥
∥PV A

[

V
(

Â− A
)]∥
∥
∥
1

+ 2λ
∥
∥
∥V Â− U

∥
∥
∥
2

∥
∥
∥PV A

[

V
(

Â−A
)]∥
∥
∥
1
.

(5.14)
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Using
∥
∥
∥V Â− U

∥
∥
∥
2
≤
∥
∥
∥V Â− V A0

∥
∥
∥
2
+
∥
∥
∥V A0 − U

∥
∥
∥
2
, and the fact that

∥
∥
∥PV A

[

V
(

Â−A
)]∥
∥
∥
1
≤
√

2rank(V A)
∥
∥
∥V
(

Â− A
)∥
∥
∥
2

from (5.14) we compute

∥
∥
∥V
(

Â− A0

)∥
∥
∥

2

2
+
∥
∥
∥V
(

Â− A
)∥
∥
∥

2

2
≤
∥
∥V (A−A0)

∥
∥
2

2

+ 2λ
√

2 rank(V A)
∥
∥
∥V
(

Â−A0

)∥
∥
∥
2

∥
∥
∥V
(

Â− A
)∥
∥
∥
2

+ 2λ‖E‖2
√

2 rank(V A)
∥
∥
∥V
(

Â− A
)∥
∥
∥
2

+ 2 ‖PVE‖∞
√

2 rank(V A)
∥
∥
∥V
(

Â−A
)∥
∥
∥
2
.

(5.15)

From the definition of λ we get that ‖PVE‖∞ ≤ λ‖E‖2/3 and λ
√

2 rank(V A) ≤
ρ. This implies that
∥
∥
∥V
(

Â− A0

)∥
∥
∥

2

2
+
∥
∥
∥V
(

Â− A
)∥
∥
∥

2

2
≤
∥
∥V (A−A0)

∥
∥2

2

+ 8/3λ‖E‖2
√

2rank(V A)
∥
∥
∥V
(

Â− A
)∥
∥
∥
2

+ 2ρ
∥
∥
∥V
(

Â−A0

)∥
∥
∥
2

∥
∥
∥V
(

Â− A
)∥
∥
∥
2
.

Using 2ab ≤ a2 + b2 twice we finally compute

(1− ρ)
∥
∥
∥V
(

Â−A0

)∥
∥
∥

2

2
+
∥
∥
∥V
(

Â− A
)∥
∥
∥

2

2
≤
∥
∥V (A− A0)

∥
∥2

2
+ ρ

∥
∥
∥V
(

Â−A
)∥
∥
∥

2

2

+ 8/3λ‖E‖2
√

2rank(V A)
∥
∥
∥V
(

Â− A
)∥
∥
∥
2

and

(1− ρ)
∥
∥
∥V
(

Â− A0

)∥
∥
∥

2

2
≤
∥
∥V (A− A0)

∥
∥2

2
+

4λ2

1− ρ
‖E‖22 rank(V A)

which implies the statement of Theorem 8. �

To get the oracle inequality in a closed form it remains to specify the
value of regularization parameter λ such that λ ≥ 3∆′. This requires
some assumptions on the distribution of the noise (Eij)i,j. We will
consider the case of Gaussian errors. Suppose that Eij = σξij where
ξij are normal N(0, 1) random variables. In order to estimate ‖PVE‖∞
we will use the following result proven in [1].

Lemma 10 ([1], Lemma 3). Let r = rank(V ) and assume that Eij are

independent N(0, σ2) random variables. Then

E(‖PV E‖∞) ≤ σ(
√
m2 +

√
r)

and

P {‖PV E‖∞ ≥ E(‖PVE‖∞) + σt} ≤ exp
{
−t2/2

}
.
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We use Bernstein’s inequality to get a bound on ‖E‖2. Let α < 1.
With probability at least 1− 2 exp {−cα2lm2}, one has

(5.16) (1 + α)σ
√

lm2 ≥ ‖E‖2 ≥ (1− α)σ
√

lm2.

Let β > 0 and take t = β
(√

m2 +
√
r
)
in Lemma 10. Then, using

(5.16) we can take

(5.17) λ =
(1 + β)

(√
m2 +

√
r
)

(1− α)
√
lm2

.

Put γ =
1 + β

1− α
> 1. Thus, condition

ρ
√

2rank(V A0)
≥ λ gives

(5.18) rank(V A0) ≤
ρ2lm2

2γ2
(√

m2 +
√
r
)2

and we get the following result.

Theorem 11. Assume that ξij are independent N(0, 1). Pick λ as in

(5.17). Assume (5.18) be satisfied for some ρ < 1, α < 1 and β > 0.
Then, with probability at least 1− 2 exp {−c(m2 + r)} we have that

∥
∥
∥V
(

Â−A0

)∥
∥
∥

2

2
. σ2(m2 + r) rank(V A0).

The symbol . means that inequality holds up to a multiplicative nu-

merical constant and c denotes a numerical constant that depends on

α and β.

Proof. This is a consequence of Theorem 8. �

Let us now compare condition (5.18) with the conditions obtained in
[1, 7]. The method proposed in [1] requires m2(l−r) to be large, which
holds whenever l ≫ r or l − r ≥ 1 and m2 is large. This condition
excludes an interesting case l = r ≪ m2. On the other hand (5.18) is
satisfied for l = r ≪ m2 if

rank(A0) . l

where we used rank(V A0) ≤ r ∧ rank(A0).
The method of [7] requires the following condition to be satisfied

(5.19) rank(A0) ≤
C1(lm2 − 1)

C2

(√
m2 +

√
r
)2

with some constants C1 < 1 and C2 > 1. As rank(V A0) ≤ rank(A0),
condition (5.18) is weaker then (5.19). Note also, that, to the opposite
of [7], our results are valid for all A0 provided that

r ≤ ρ2lm2

2γ2
(√

m2 +
√
r
)2 .

For large m2 ≫ l, this condition roughly mean that l > cr for some
constant c.
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6. Appendix

Proof of Lemma 3. If A0 = X, then we have trivially ‖Â−X‖2 ≥
0.
If A0 6= X, by the convexity of the function A → ‖A−X‖2, we have

‖Â−X‖2 − ‖A0 −X‖2 ≥
〈A0 −X, Â−A0〉

‖A0 −X‖2

≥ −‖A0 −X‖∞
‖A0 −X‖2

‖Â− A0‖1

≥ −‖A0 −X‖∞
‖A0 −X‖2

√

rank(Â) + rank(A0)‖Â− A0‖2.

(6.1)

Using Lemma 1, the bound
ρ

√

rank(A0)
≥ λ and the triangle inequality,

from (6.1) we get

‖Â−X‖2 − ‖A0 −X‖2 ≥

−
√

1 + ρ2

λ

‖A0 −X‖∞
‖A0 −X‖2

(

‖Â−X‖2 + ‖A0 −X‖2
)

.

(6.2)

Note that
‖A0 −X‖∞
λ‖A0 −X‖2

≤ 1/3 which finally leads to

(

1 +

√

1 + ρ2

3

)

‖Â−X‖2 ≥
(

1−
√

1 + ρ2

3

)

‖A0 −X‖2.

This completes the proof of Lemma 3. �
Proof of Lemma 4. Our goal is to get a numerical estimation on

c∗ in the case of Gaussian noise.
Let Zi = ξi (Xi − EXi) and

σZ = max







∥
∥
∥
∥
∥

1

n

n∑

i=1

E
(
ZiZ

T
i

)

∥
∥
∥
∥
∥

1/2

∞

,

∥
∥
∥
∥
∥

1

n

n∑

i=1

E

(

Z
T

i Zi

)
∥
∥
∥
∥
∥

1/2

∞






=

1

m1 ∧m2
.

The constant c∗ comes up in the proof of Lemma 2 in [13] in the
estimation of

∆1 =

∥
∥
∥
∥
∥

1

n

n∑

i=1

ξiXi

∥
∥
∥
∥
∥
∞

≤
∥
∥
∥
∥
∥

1

n

n∑

i=1

ξi (Xi − EXi)

∥
∥
∥
∥
∥
∞

+
1√

m1m2

∣
∣
∣
∣
∣

1

n

n∑

i=1

ξi

∣
∣
∣
∣
∣
.

A standard application of Markov’s inequality gives that, with proba-
bility at least 1− 1/m

(6.3)
1√

m1m2

∣
∣
∣
∣
∣

1

n

n∑

i=1

ξi

∣
∣
∣
∣
∣
≤ 2

√

logm

nm1m2
.
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In [13], the authors estimate

∥
∥
∥
∥

1

n

n∑

i=1

ξi (Xi − EXi)

∥
∥
∥
∥
∞

using [12, Propo-

sition 2]. To get a numerical estimation on c∗ we follow the lines of the
proof of [12, Proposition 2]. In order to simplify notations, we write
‖ ‖∞ = ‖ ‖ and we consider the case of Hermitian matrices of size m′.
Its extension to rectangular matrices is straightforward via self-adjoint
dilation, cf., for example, 2.6 in [18].

Let Yn =
n∑

i=1

Zi. In the proof of [12, Proposition 2], after following the

standard derivation of the classical Bernstein inequality and using the
Golden-Thompson inequality, the author derives the following bound

(6.4) P (‖Yn‖ ≥ t) ≤ 2m′e−λt‖EeλZ1‖n

and

(6.5) ‖EeλZ1‖ ≤ 1 + λ2

∥
∥
∥
∥
EZ2

1

[
eλ‖Z1‖ − 1− λ‖Z1‖

λ2‖Z1‖2
]∥
∥
∥
∥
.

Using that ‖Z1‖ ≤ 2|ξi|, from (6.5), we compute

∥
∥EeλZ1

∥
∥ ≤ 1 + λ2

∥
∥
∥
∥
E
[
(Xi − EXi)

2]
E

(

ξ2i

[
e2λ|ξi| − 1− 2λ|ξi|

4λ2ξ2i

])∥
∥
∥
∥

≤ 1 + λ2σ2
ZE

(
(2|ξi|)2

2!
+

λ(2|ξi|)3
3!

+ · · ·
)

.

(6.6)

Assume that λ < 1, then (6.6) implies

∥
∥EeλZ1

∥
∥ ≤ 1 + λ2σ2

ZEe
2|ξi| ≤ 1 + 2λ2σ2

Ze
2 ≤ exp{2λ2σ2

Ze
2}.

Using this bound, from (6.4) we get

P (‖Yn‖ ≥ t) ≤ 2m′ exp{−λt + 2λ2σ2
Ze

2}.

It remains now to minimize the last bound with respect to λ ∈ (0, 1)
to obtain that

P (‖Yn‖ ≥ t) ≤ 2m′ exp

{

− t2

4e2σ2
Zn

}

where we supposed that n is large enough.

Putting 2m′ exp

{

− t2

4σ2
Ze

2n

}

= 1/(2m′), we get t = 2e

√
2 log(2m′)n

m1 ∧m2
.

Using (6.3) we compute the following bound on c∗

c∗ ≤ 2e+ 1 ≤ 6.5.

This completes the proof of Lemma 4. �
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Proof of Lemma 5. Let ǫi = σξi. To prove (i) we compute

〈M,M〉 = ‖A0‖22
(m1m2)

2 +

(

1− 2n

m1m2

)
1

n2

n∑

i=1

〈A0, Xi〉2

︸ ︷︷ ︸

I

+
1

n2

n∑

i=1

ǫ2i

︸ ︷︷ ︸

II

+

(

1− n

m1m2

)
2

n2

n∑

i=1

〈A0, Xi〉 ǫi
︸ ︷︷ ︸

III

+
4

n2
Σ
i<j

ǫi 〈A0, Xj〉 〈Xi, Xj〉
︸ ︷︷ ︸

IV

+
2

n2
Σ
i<j

ǫiǫj 〈Xi, Xj〉
︸ ︷︷ ︸

V

+
1

n2
Σ
i 6=j

〈A0, Xi〉 〈A0, Xj〉 〈Xj, Xi〉
︸ ︷︷ ︸

VI

.

(6.7)

We estimate each term in (6.7) separately with a good probability.
The estimations we give on this probability involve an absolute constant
c > 0.

I : We have that E

(
1

n2

n∑

i=1

〈A0, Xi〉2
)

=
‖A0‖22
nm1m2

and |〈A0, Xi〉| ≤
a.
Using Hoeffding’s inequality , we get that, with probability at
least
1− 2 exp {−2σ4n/(8a)2}

‖A0‖22
nm1m2

+
σ2

8n
≥ 1

n2

n∑

i=1

〈A0, Xi〉2 ≥
‖A0‖22
nm1m2

− σ2

8n
.

II: ǫ2i are sub-exponential random variables and E

(
1

n2

n∑

i=1

ǫ2i

)

=

σ2

n
. Using Bernstein inequality for sub-exponentials random

variables (cf. [19, Proposition 16] ) we get that, with probability
at least
1− 2 exp

{

−cnmin
[

σ2K/82, σ
√
K/8

]}

σ2

n
+

σ2

8n
≥ 1

n2

n∑

i=1

ǫ2i ≥
σ2

n
− σ2

8n
.

III: We have that E

(
2

n2

n∑

i=1

〈A0, Xi〉 ǫi
)

= 0, using Hoeffding’s type

inequality for sub-Gaussian random variables (cf. [19, Proposi-
tion 10]) we get that, with probability at least 1−e exp {−cσ2Kn/a2}

σ2

8n
≥ 2

n2

n∑

i=1

〈A0, Xi〉 ǫi ≥ −σ2

8n
.
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IV: We compute E

(
4

n2
Σ
i<j

ǫi 〈A0, Xj〉 〈Xi, Xj〉
)

= 0. We use the

following lemma which is proven in the Appendix.

Lemma 12. Suppose that n ≤ m1m2. With probability at least

1− 2

m1m2

Σ
i<j

〈Xi, Xj〉 ≤ n.

Lemma 12 and Hoeffding’s type inequality imply that, with
probability at least 1− 2/m1m2 − e exp {−cσ2nK/a2}

σ2

8n
≥ 4

n2
Σ
i<j

ǫi 〈A0, Xj〉 〈Xi, Xj〉 ≥ −σ2

8n

V: We have that E

(
2

n2
Σ
i<j

ǫiǫj 〈Xi, Xj〉
)

= 0. Using Bernstein type

inequalities for sub-exponential random variables and Lemma

12 we get that, with probability at least 1−2 exp
{

−cnmin
[

σ2K/82, σ
√
K/8

]}

σ2

8n
≥ 2

n2
Σ
i<j

ǫiǫj 〈Xi, Xj〉 ≥ −σ2

8n
.

VI: We compute that

E

(
1

n2
Σ
i 6=j

〈A0, Xi〉 〈A0, Xj〉 〈Xj, Xi〉
)

=
1

n2
Σ
i 6=j

〈E (〈A0, Xj〉Xj) ,E (〈A0, Xi〉Xi)〉 =
1

n2
Σ
i 6=j

‖A0‖22
(m1m2)

2

≤ ‖A0‖22
(m1m2)

2 .

Using Lemma 12 and Hoeffding’s inequality, we get that, with
probability at least 1− 2/m1m2 − 2 exp {−2σ4n/(8a)2}

1

n2
Σ
i 6=j

〈A0, Xi〉 〈A0, Xj〉 〈Xj, Xi〉 ≤
‖A0‖22

(m1m2)2
+

σ2

8n
.

To obtain the lower bound, note that, for i 6= j, 〈Xi, Xj〉 6= 0 iff
Xi = Xj. This implies that Σ

i 6=j
〈A0, Xi〉 〈A0, Xj〉 〈Xj, Xi〉 ≥ 0. We use

that 2n < m1m2 to get

‖A0‖22
(m1m2)

2 +

(

1− 2n

m1m2

)
1

n2

n∑

i=1

〈A0, Xi〉2 ≥ 0.

Putting the lower bounds in II−V together we compute from (6.7)

‖M‖22 ≥
σ2

2n
.
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To obtain the upper bound, we use the upper bounds in I − VI.
From (6.7) we get

‖M‖22 ≤
2 ‖A0‖22
(m1m2)

2 +
‖A0‖22
nm1m2

+
14σ2

8n
≤ 2

(

‖A0‖22
nm1m2

+
σ2

n

)

where we used that 2n ≤ m1m2. This completes the proof of part (i)
in Lemma 5.

To prove (ii) we use that 〈Xi, Xi〉 = 1 and 〈Xi, Xj〉 6= 0 iff Xi = Xj .
We compute

1

n2

〈
n∑

i=1

YiXi,

n∑

i=1

YiXi

〉

=
1

n2

n∑

i=1

Y 2
i +

2

n2
Σ
i<j

YiYj 〈Xi, Xj〉

=
1

n2

n∑

i=1

(
〈A0, Xi〉2 + ǫ2i + 2 〈A0, Xi〉 ǫi

)

+
2

n2
Σ
i<j

〈A0, Xi〉2 〈Xi, Xj〉

+
4

n2
Σ
i<j

ǫi 〈A0, Xj〉 〈Xi, Xj〉+
2

n2
Σ
i<j

ǫiǫj 〈Xi, Xj〉 .

This implies that

1

n2

〈
n∑

i=1

YiXi,

n∑

i=1

YiXi

〉

≥ 1

n2

n∑

i=1

〈A0, Xi〉2

︸ ︷︷ ︸

I

+
1

n2

n∑

i=1

ǫ2i

︸ ︷︷ ︸

II

+
2

n2

n∑

i=1

〈A0, Xi〉 ǫi
︸ ︷︷ ︸

III

+
4

n2
Σ
i<j

ǫi 〈A0, Xj〉 〈Xi, Xj〉
︸ ︷︷ ︸

IV

+
2

n2
Σ
i<j

ǫiǫj 〈Xi, Xj〉
︸ ︷︷ ︸

V

.

(6.8)

Using the lower bounds for I−V we get from (6.8)

1

n2

〈
n∑

i=1

YiXi,

n∑

i=1

YiXi

〉

≥ ‖A0‖22
nm1m2

which proves the part (ii) of Lemma 5.
(iii) is a consequence of (ii). For 4n ≤ m1m2 (ii) implies

1

4n2

〈
n∑

i=1

YiXi,

n∑

i=1

YiXi

〉

≥ ‖A0‖22
(m1m2)

2 .

Now we complete the proof of part (iii) of Lemma 5 using that

‖M‖2 ≥
∥
∥
∥
∥
∥

1

n

n∑

i=1

YiXi

∥
∥
∥
∥
∥
2

− ‖A0‖2
m1m2

.

�
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Proof of Lemma 12. Recall that for i 6= j, Xi and Xj are inde-
pendent. We compute the expectation

E

(

Σ
i<j

〈Xi, Xj〉
)

= Σ
i<j

〈EXi,EXj〉 =
n(n− 1)

2m1m2

and the variance

E

((

Σ
i<j

〈Xi, Xj〉
)2
)

−
(

E

(

Σ
i<j

〈Xi, Xj〉
))2

= E



 Σ
i<j
i′<j′

〈Xi, Xj〉 〈Xi′ , Xj′〉





− Σ
i<j
i′<j′

E (〈Xi, Xj〉)E (〈Xi′, Xj′〉) .

When i, j, i′, j′ are all distinct, E (〈Xi, Xj〉 〈Xi′ , Xj′〉) is canceled by the
corresponding term in Σ

i<j
i′<j′

E (〈Xi, Xj〉)E (〈Xi′, Xj′〉). Then, it remains

to consider the following five cases: (1) i = i′ and j = j′; (2) i = i′ and
j 6= j′; (3) i 6= i′ and j = j′; (4) i = j′ and j 6= i′; (5) i′ = j and j′ 6= i.

case (1) Note that 〈Xi, Xj〉 takes only two values 0 or 1, which implies
that

E
(
〈Xi, Xj〉2

)
= E (〈Xi, Xj〉) =

1

m1m2

.

cases (2)-(5) In these four cases, the calculation reduces to calculate E (〈Xi, Xk〉 〈Xk, Xj〉)
for i 6= j and k /∈ {i, j}. Note that PXk

= 〈 · , Xk〉Xk is the
orthogonal projector on the vector space spanned by Xk. We
compute

EPXk
=

1

m1m2

Id

where Id is the identity application on R
m1×m2 . Then, we get

E (〈〈Xi, Xk〉Xk, Xj〉) = E (〈PXk
(Xi) , Xj〉)

= 〈E (PXk
) (EXi) ,EXj〉

=
1

m1m2
〈EXi,EXj〉 =

1

(m1m2)
2 .

These terms are canceled by the corresponding terms in

Σ
i<j
i′<j′

E (〈Xi, Xj〉)E (〈Xi′, Xj′〉) as E (〈Xi, Xk〉)E (〈Xk, Xj〉) =
1

(m1m2)2
.

Finally we get that

E

((

Σ
i<j

〈Xi, Xj〉
)2
)

−
(

E

(

Σ
i<j

〈Xi, Xj〉
))2

≤ n(n− 1)

2m1m2

.
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The Bienaymé-Tchebychev inequality implies that

P

(

Σ
i<j

〈Xi, Xj〉 ≥ n

)

≤ n(n− 1)

2m1m2

(

n− n(n− 1)

2m1m2

)2 ≤ 2

m1m2

when m1m2 ≥ n. This completes the proof of Lemma 12. �
Proof of Lemma 9. If V A0 = U , then we have trivially ‖V Â −

U‖2 ≥ 0. If V A0 6= U , by the convexity of function A → ‖V A− U‖2,
we have

∥
∥
∥V Â− U

∥
∥
∥
2
− ‖V A0 − U‖2 ≥

〈

V A0 − U, V
(

Â− A0

)〉

‖V A0 − U‖2

=

〈

PV (E) , V
(

Â− A0

)〉

‖V A0 − U‖2
≥ −‖PV (E)‖∞

‖E‖2

∥
∥
∥V
(

Â− A0

)∥
∥
∥
1

≥ −‖PV (E)‖∞
‖E‖2

√

rank(V A0) + rank(V Â)
∥
∥
∥V
(

Â−A0

)∥
∥
∥
2
.

(6.9)

Using the bound
ρ

√

rank(V A)
≥ λ, Lemma 7 and the triangle inequal-

ity from (6.9) we get
∥
∥
∥V Â− U

∥
∥
∥
2
− ‖V A0 − U‖2 ≥

−
√

1 + ρ2

λ

‖PV (E)‖∞
‖E‖2

(

‖V Â− U‖2 + ‖V A0 − U‖2
)

.

By the definition of λ we have
‖PV (E)‖∞
λ ‖E‖2

≤ 1/3 which finally leads to

(

1 +
√

1 + ρ2/3
)

‖V Â− U‖2 ≥
(

1−
√

1 + ρ2/3
)

‖V A0 − U‖2.
This completes the proof of Lemma 9. �

Acknowledgements. It is a pleasure to thank A. Tsybakov for
introducing me this problem and illuminating discussions.

References

[1] Bunea, F., She, Y. and Wegkamp,M. (2011) Optimal selection of
reduced rank estimators of high-dimensional matrices. Annals of

Statistics, 39, 1282–1309.
[2] Candès, E. J. and Plan, Y. (2009). Matrix completion with noise.

Proceedings of IEEE.
[3] Candès, E.J. and Recht, B. (2009) Exact matrix completion via

convex optimization. Fondations of Computational Mathematics,
9(6), 717-772.



26 OLGA KLOPP

[4] Candès, E.J. and Tao, T. (2009) The power of convex relaxation:
Near-optimal matrix completion. IEEE Trans. Inform. Theory,
56(5), 2053-2080.

[5] Chernozhukov, V., Belloni, A. and Wang, L. (2011) Square-root
Lasso: Pivotal Recovery of Sparse Signals via Conic Programming.
Biometrika, to appear.
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