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Generalized Hoeffding-Sobol Decomposition for Dependent

Variables -Application to Sensitivity Analysis

Gaëlle Chastaing† Fabrice Gamboa‡ Clémentine Prieur†

Abstract

In this paper, we consider a regression model built on dependent variables. This regres-
sion modelizes an input output relationship. Under boundedness assumptions on the joint
distribution function of the input variables, we show that a generalized Hoeffding-Sobol de-
composition is available. This leads to new indices measuring the sensitivity of the output
with respect to the input variables. We also study and discuss the estimation of these new
indices.

List of abbrevations

• SA = Sensitivity Analysis

• HOFD = Hierarchically Orthogonal Functional Decomposition

• IPDV = Independent Pairs of Dependent Variables

• DVP = Da Veiga Procedure

1 Introduction

Sensitivity analysis (SA) aims to identify the variables that most contribute to the variability
into a non linear regression model. Global SA is a stochatic approach whose objective is to
determine a global criterion based on density of the joint probability distribution function of the
output and the inputs of a deterministic model. The most usual quantification is the variance-
based method, widely studied in SA literature. Hoeffding decomposition [1] (see also Owen [2])
states that the variance of the output can be uniquely decomposed into summands of increas-
ing dimensions under orthogonality constraints. Following this approach, Sobol [3] introduces
variability measures, the so called Sobol sensitivity indices, to estimate the contribution of each
input on a system.

Different methods have been exploited to estimate Sobol indices. The Monte Carlo algorithm
was proposed by Sobol [4], and has been later improved by the Quasi Monte Carlo technique,
performed by Owen [5]. FAST methods are also widely used to estimate Sobol indices. Intro-
duced earlier by Cukier & al. [6] [7], they are well known to reduce the computational cost of
multidimensional integrals thanks to Fourier transformations. Later, Tarantola & al. [8] adapted
the Random Balance Designs (RBD) to FAST method for SA (see also recent advances on the
subject by Tissot & al. [9]).
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However, these indices are constructed on the hypothesis that input variables are independent,
which seems unrealistic for many real life phenomena. If correlations are not zero, the analytical
Hoeffding decomposition is not true anymore. So that, the Sobol indices are irrelevant. If we use
them, conclusions on variables sensitivity can be completely wrong even on very simple models
(see, for example, Da Veiga’s illustration [10]). In terms of estimation, useful methods also rely
on the inputs independence. Hence, when they are used on dependent variables, they lead to an
important source of errors. It is then necessary to take dependency into account in analytical
indices and in estimation methods.

Recent researches have been led to deal with this issue : Jacques & al [11] proposed a model with
groups of correlated incomes independent of one another, and expanded classical Sobol indices
on these groups. Mara [12] studied the particular case of additive dependence. In order to use
Polynomial Chaos as meta models, he orthogonalized inputs by the Gram-Schmidt process to
come back to independent variables. Approximating the output by a linear model, Xu & Gert-
ner [13] have proposed to decompose the partial variance due to an input into a correlated and
uncorrelated parts. The estimation of these new quantities was made by linear regression. More
generally, Li & Rabitz [14] exploited this approach with Generalized Additive Models (GAM).
GAM components were approximated by suitable basis functions. Thus, global variance were
decomposed and estimated accordingly. An extension of the FAST method has been proposed
by Xu & Gertner [15]: The extension is based on the reordering of the independent sample in
the traditional FAST. Sensitivity indices are then derived by FAST. The construction of a new
generalized moment free sensitivity index was initiated by Borgonovo & al. [16] [17]. Based
on geometrical consideration, these indices measure the shift area between the outcome density
and this same density conditionally to a parameter.

Thus, none of these works gave an exact and unambiguous definition of the functional ANOVA
for correlated inputs as the one provided by Hoeffding-Sobol decomposition when inputs are
independent. Consequently, sensitivity measures based on functional ANOVA could neither be
deduced in the dependent frame.

In a pionnering work, Hooker [18], inspired by Stone [19], shed new lights on hierarchically
orthogonal function decomposition. Nevertheless, the right assumption to get this kind of de-
composition is not completely clear in [18], as there is a gap to show the uniqueness of the
decomposition. In the present paper, under suitable conditions on the joint distribution func-
tion of the input variables, we give a hierarchically orthogonal functional decomposition (HOFD)
of the model. The summands of this decomposition are functions depending only on a subset of
input variables and are hierarchically decorrelated. This means that two of these components are
orthogonal whenever all the variables involved in one of the summands also appear in the other.
This decomposition leads to the construction of generalized sensitivity indices well tailored to
perform global SA when the input variables are dependent. In the case of independent inputs,
this decomposition is nothing more than the Hoeffding one. Furthermore, our generalized sensi-
tivity indices are in this case the classical Sobol ones. In the general case, the computation of the
summands of the HOFD involves a minimization problem under constraints (see Proposition 1).
This optimization procedure will be studied for statistical purposes in the future. Here, we will
focus on the special case where the inputs are independent pairs of dependent variables (IPDV).
As a matter of fact, in the simplest case of a single pair of dependent variables, the HOFD may
be performed by solving a functional linear system of equations involving suitable projection
operators (see Procedure 1). In the more general IPDV case, the HOFD is then obtained in
two steps (see Procedure 2). The first step is a classical Hoeffding-Sobol decomposition of the
output on the input pairs, as developped in Jacques [11]. The second step is the HOFDs of
all the pairs. In practical situations, the non parametric regression function of the model is
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generally not exactly known. In this case, one can only have at hand some realizations of the
model and have to estimate, with this information, the HOFD. Here, we study this statistical
problem in the IPDV case. We build estimators of the generalized sensitivity indices and study
numerically their properties. We also compare these generalized indices to the classical Sobol
ones (independent case). One of the main conclusion is that the generalized indices have a total
normalized sum. This is not true for classical Sobol indices in the frame of dependent variables.

The paper is organized as follows.
In Section 2, we give and discuss general results on the HOFD. The main result is Theorem 1.
We show here that a HOFD is available under a boundedness assumption on density of the joint
distribution function of the inputs. Further, we introduce the generalized indices.
In Section 3, we give examples of distribution functions that satisfy the boundedness assump-
tion. A sufficient condition is proposed for any model, and more specific conditions are given in
the IPDV case. In Section 4, the HOFD is performed by using adapted projection operators in
the case of IPDV models. In the case of a single pair of dependent variables, the components
of the HOFD are found by solving a functional linear system. Otherwise, a preliminary step
of classical decomposition on independent pairs is necessary to come back to the resolution of
linear systems. Section 5 is devoted to numerical applications. Through three toy functions,
we estimate generalized indices and compare their performances with the analytical values. In
Section 6, we give conclusions and discuss upcoming work. Technical proofs and further details
are postponed to Section 7.

2 Generalized Hoeffding decomposition-Application to SA

To begin with, let introduce some notation. We briefly recall the usual functional ANOVA
decomposition, and Sobol indices. We then state a generalization of this decomposition, allowing
to deal with correlated inputs.

2.1 Notation and first assumptions

We denote by ⊂ the strict inclusion, that is A ⊂ B ⇒ A ∩ B 6= B, whereas we use ⊆ when
equality is possible.

Let (Ω,A, P ) be a probability space and let Y be the output of a deterministic model η. Suppose
that η is a function of a random vector X = (X1, · · · , Xp) ∈ R

p, p ≥ 1 and that PX is the
pushforward measure of P by X,

Y :
(Ω,A, P ) → (Rp,B(Rp), PX) → (R,B(R))

ω 7→ X(ω) 7→ η(X(ω))

Let ν be a measure on (Rp,B(Rp)). Assume that PX << ν and let pX be the density of PX

with respect to ν, that is pX =
dPX

dν
.

Also, assume that η ∈ L2
R
(Rp,B(Rp), PX). The associated innner product of this Hilbert space

is:

〈h1, h2〉 =
∫

h1(x)h2(x)pXdν(x) = E(h1(X)h2(X))

Here E(·) denotes the expectation. The corresponding norm will be classically denoted by ‖ · ‖.
Further, V (·) = E[(· − E(·))2] denotes the variance, and Cov(·, ∗) = E[(· − E(·))(∗ − E(∗))] the
covariance.
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Let Pp := {1, · · · , p} and S be the collection of all subsets of Pp.
Define S− := S \ Pp as the collection of all subsets of Pp except Pp itself.

Further, let Xu := (Xl)l∈u, u ∈ S \ {∅}. We introduce the subspaces of L2
R
(Rp,B(Rp), PX)

(Hu)u∈S , (H
0
u)u∈S and H0 . Hu is the set of all measurable and square integrable functions

depending only on Xu. H∅ is the set of constants and is identical to (H0
∅ )u∈S . H0

u, u ∈ S \ ∅,
and H0 are defined as follows:

H0
u =

{
hu(Xu) ∈ Hu, 〈hu, hv〉 = 0, ∀ v ⊂ u, ∀ hv ∈ H0

v

}

H0 =

{
h(X) =

∑

u∈S

hu(Xu), hu ∈ H0
u

}

At this stage, we do not make assumptions on the support of X. For u ∈ S \ ∅, the support of
Xu is denoted by Xu.

2.2 Sobol sensitivity indices

In this section, we recall the classical Hoeffding-Sobol decomposition, and the Sobol sensitivity
indices if the inputs are independent, that is when PX = PX1 ⊗ · · · ⊗ PXp .
The usual presentation is done when X ∼ U([0, 1]p) [3], but the Hoeffding decomposition re-
mains true in general case [20].

Let x = (x1, · · · , xp) ∈ R
p and assume that η ∈ L

2(Rp, PX). The decomposition consists in
writting η(x) = η(x1, · · · , xp) as the sum of increasing dimension functions:

η(x) = η0 +

p∑

i=1

ηi(xi) +
∑

1≤i<j≤p

ηi,j(xi, xj) + · · ·+ η1,··· ,p(x)

=
∑

u⊆{1···p}

ηu(xu) (1)

The expansion (1) exists and is unique under one of the hypothesis:





i)
∫
ηu(xu)dPXi

= 0 ∀ i ∈ u, ∀ u ⊆ {1 · · · p}
or

ii)
∫
ηu(xu)ηv(xv)dPX = 0 ∀ u, v ⊆ {1 · · · p}, u 6= v

Equation (1) tells us that the model function Y = η(X) can be expanded in a functional
ANOVA. The independence of the inputs and the orthogonality properties ensure the global
variance decomposition of the output as V (Y ) =

∑
u∈S V (ηu(Xu)).

Moreover, by integration, each term ηu has an explicit expression, given by:

η0 = E(X), ηi = E(Y/Xi)− E(Y ), i = 1, · · · , p, ηu = E(Y/Xu)−
∑

v⊂u

ηv, |u| ≥ 2 (2)

Hence, the contribution of a group of variables Xu in the model can be quantified in the fluctu-
ations of Y . The Sobol indices expressions are defined by:

Su =
V (ηu)

V (Y )
=

V [E(Y/Xu)]−
∑

v⊂u V [E(Y/Xv)]

V (Y )
, u ⊆ Pp (3)
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Furthermore, ∑

u∈S

Su = 1

However, the main assumption is that the input parameters are independent. This is unrealis-
tic in many cases. The use of expressions previously set up is not excluded in case of inputs’
dependence, but they could lead to an unobvious and sometimes a wrong interpretation. Also,
technics exploited to estimate them may mislead final results because most of them are built on
the hypothesis of independence.
For these reasons, the objective of the upcoming work is to show that the construction of sensi-
tivity indices under dependence condition can be done into a mathematical frame.

In the next section, we propose a generalization of the Hoeffding decomposition under suit-
able conditions on the joint distribution function of the inputs. This decomposition consists of
summands of increasing dimension, like in Hoeffding one. But this time, the components are
hierarchically orthogonal instead of being mutually orthogonal. The hierarchical orthogonality
will be mathematically defined further. Thus, the global variance of the output could be decom-
posed as a sum of covariance terms depending on the summands of the HOFD. It leads to the
construction of generalized sensitivity indices summed to 1 to perform well tailored SA in case
of dependence.

2.3 Generalized decomposition for dependent inputs

We no more assume that PX is a product measure. Nevertheless, we assume:

PX << ν
where

ν(dx) = ν1(dx1)⊗ · · · ⊗ νp(dxp)
(C.1)

Our main assumption is :

∃ 0 < M ≤ 1, ∀ u ⊆ Pp, pX ≥ M · pXupXuc
ν-a.e. (C.2)

where uc denotes the complement set of u in Pp. pXu and pXuc
are respectively the marginal

densities of Xu and Xuc .

The section is organized as follows: a preliminary lemma gives the main result to show that H0

is a complete space. Then, this ensures the existence and the uniqueness of the projection of
η onto H0. The generalized decomposition of η is finally obtained by adding a residual term
orthogonal to every summand, as suggested in [18]. The first part of the reasoning is mostly
inspired by Stone’s work [19], except that our assumptions are more general. Indeed, we have
a relaxed condition on the inputs distribution function. Moreover, the support X of X is general.

To begin with, let us state some definitions. In the usual ANOVA context, a model is said to
be hierarchical if for every term involving some inputs, all lower-order terms involving a subset
of these inputs also appear in the model. Correspondingly, a hierarchical collection T of subsets
of Pp is defined as follows:
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Definition 1. A collection T ⊂ S is hierarchical if for u ∈ T and v a subset of u, one has
v ∈ T .

The next Lemma is a generalization of the Lemma 3.1 of [19]. As already mentioned, it will be
the key to show the hierarchical decomposition.

Lemma 1. Let T ⊂ S be hierarchical. Suppose that (C.1) and (C.2) hold. Set δ = 1−
√
1−M ∈

]0, 1]. Then, for any hu ∈ H0
u, u ∈ T , we have:

E[(
∑

u∈T

hu(X))2] ≥ δ#(T )−1
∑

u∈T

E[h2u(X)] (4)

The proof of Lemma 1 is postponed to the Appendix. Our main theorem follows:

Theorem 1. Let η be any function in L2
R
(Rp,B(Rp), PX). Then, under (C.1) and (C.2), there

exist functions η0, η1, · · · , ηPp ∈ H∅ ×H0
1 × · · ·H0

Pp
such that the following equality holds :

η(X1, · · · , Xp) =
∑

i

ηi(Xi) +
∑

i,j

ηij(Xi, Xj) + · · ·+ ηPp(X1, · · · , Xp)

=
∑

u∈S

ηu(Xu) (5)

Moreover, this decomposition is unique.

The proof is given in the Appendix.
Notice that, in case where the input variables X1, · · · , Xp are independent, δ = 1 and Inequality
(4) of Lemma 1 is an equality. Indeed, in this case, this equality is directly obtained by orthog-
onality of the summands.

The variational counterpart of Theorem 1 is a minimization problem under conditional con-
straints.

Proposition 1. Suppose that (C.1) and (C.2) hold. Let (P) be the minimization problem under
constraints:

(P)





min
(η̃u)u∈S

E[(Y −
∑

u∈S

η̃u(Xu))
2]

E(η̃u(Xu)/Xu\i) = 0, ∀ i ∈ u, ∀ u ∈ S \ ∅
Then (P) admits a unique solution η∗ = (ηu)u∈S.

Proof of Proposition 1 is postponed to the Appendix. Notice that a similar result for the
Lebesgue measure is given in [18]. Its purpose was to provide diagnostics for high-dimensional
functions. Here, we will no more exploit this idea. This will be done in a forthcoming work.
Instead, we are going to construct stochastic sensitivity indices based on the new decomposition
(5) and focus on a specific estimation method for IPDV models.

2.4 Generalized sensitivity indices

As stated in Theorem 1, under (C.1) and (C.2), the output Y of the model can be uniquely
decomposed as a sum of hierarchically orthogonal terms. Thus, the global variance has a sim-
plified decomposition into a sum of covariance terms. So, we can define generalized sensitivity
indices.
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Definition 2. The sensitivity index Su of order |u| measuring the contribution of Xu into the
model is given by :

Su =

V (ηu(Xu)) +
∑

v 6=∅
u∩v 6=u,v

Cov(ηu(Xu), ηv(Xv))

V (Y )
(6)

More specifically, the first order sensitivity index Si is given by :

Si =

V (ηi(Xi)) +
∑

v 6=∅
i 6∈v

Cov(ηi(Xi), ηv(Xv))

V (Y )
(7)

An immediate consequence is given in Proposition 2 (see proof in the Appendix) :

Proposition 2. Under (C.1) and (C.2), the sensitivity indices Su previously defined are summed
to 1, i.e.

∑

u∈S\{∅}

Su = 1 (8)

Thus, every sensitivity index is valued in [0, 1]. Furthermore, the covariance terms included in
these new indices allow to take into account the inputs dependence. Thus, we are now able
to measure the influence of a variable on the model, especially when a part of its variability is
embedded into the one of other dependent terms. We can distinguish the full contribution of a
variable and its contribution into anoher correlated income.

Note that for independent inputs, the summands ηu are mutually orthogonal, so Cov(ηu, ηv) = 0,
u 6= v, and we recover the well known Sobol indices. Hence, these new sensitivity indices can be
seen as a generalization of Sobol indices.

However, the HOFD and subsequent indices are only obtained under constraints (C.1) and (C.2).
In the following, we give illustrations of distribution functions satisfying these main assumptions.

3 Examples of distribution function

This section is devoted to examples of distribution function satisfying (C.1) and (C.2). The first
hypothesis only implies that the reference measure is a product of measures, whereas the second
is trickier to obtain.

In the first part, we give a sufficient condition to get (C.2) for any number p of input variables.
The second part deals with the case p = 2, for which we give equivalences of (C.2) in terms of
copulas.

3.1 Boundedness of the inputs density function

The difficulty of Condition (C.2) is that the inequality has to be true for any splitting of the
set (X1, · · · , Xp) into two disjoint blocks. We give a sufficient condition for (C.2) to hold in
Proposition 3 (the proof is postponed to the Appendix):

Proposition 3. Assume that there exist M1,M2 > 0 with

7



M1 ≤ pX ≤ M2 (C.3)

Then, Condition (C.2) holds.

Let give now an example where (C.3) is satisfied.

Example 1: Let ν be the multidimensional gaussian distribution Np(m,Σ) with

m =



m1
...

mp


 , Σ =



σ2
1 · · · 0

. . .

0 · · · σ2
p




Assume that PX is a Gaussian mixture α ·Np(m,Σ) + (1− α) ·Np(µ,Ω), α ∈]0, 1[ with

µ =



µ1
...
µp


 , Ω =




ϕ2
1 ρ12 · · · ρ1p

· · ·
ρ1p · · · · · · ϕ2

p




Then, (C.3) holds iff the matrix (Ω−1 − Σ−1) is positive definite.

In the next section, we will see that (C.2) has a copula version when p = 2. We will give some
examples of distribution satisfying one of these conditions.

3.2 Examples of distribution of two inputs

Here, we consider the simpler case of inputs X = (X1, X2). Also, until Section 4, we will assume
that ν is absolutely continuous with respect to Lebesgue measure. The structure of dependence
of X1 and X2 can be modelized by copulas. Copulas [21] give a relationship between a joint
distribution and its marginals. Sklar’s theorem [22] ensures that for any distribution function
F (x1, x2) with marginal distributions F1(x1) and F2(x2), F has the copula representation,

F (x1, x2) = C(F1(x1), F2(x2))

where the measurable function C is unique whenever F1 and F2 are absolutely continuous.

The next corollary gives in the absolutely continuous case the relationship between a joint density
and its marginal:

Corollary 1. In terms of copulas, the joint density of X is given by:

pX(x1, x2) = c(F1(x1), F2(x2))pX1(x1)pX2(x2) (9)

Furthermore,

c(u, v) =
∂2C

∂u∂v
(u, v), (u, v) ∈ [0, 1]2 (10)

Now, Condition (C.2) may be rephrased in terms of copulas:

Proposition 4. For a two-dimensional model, the three following conditions are equivalent:

1. pX ≥ M · pX1pX2 ν-a.e. for some 0 < M < 1 (C.4)
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2. c(u, v) ≥ M, ∀ (u, v) ∈ [0, 1]2 (C.5)

3. C(u, v) = Muv + (1−M)C̃(u, v), ∀ (u, v) ∈ [0, 1]2 for some 2-D copula C̃ (C.6)

The proof of Proposition 4 is postponed to the Appendix.
Hence, the generalized Hoeffding decomposition holds for a wide class of examples. The first
example is the Morgenstern copulas [23]:

Example 2: The expression of the Morgenstern copulas is given by:

Cθ(u, v) = uv[1 + θ(1− u)(1− v)], θ ∈ [−1, 1]

For θ ∈]− 1, 1[, (C.6) holds, and

Cθ(u, v) = (1− |θ|)uv + |θ|uv[1 + θ

|θ|(1− u)(1− v)]

Let now consider the class of Archimedian copulas,

C(u, v) = ϕ−1[ϕ(u) + ϕ(v)], u, v ∈ [0, 1] (11)

where the generator ϕ is a non negative two times differentiable function defined on [0, 1] with
ϕ(1) = 0, ϕ′(u) < 0 and ϕ′′(u) > 0, ∀ u ∈ [0, 1].
A sufficient condition for (C.5) is given in Proposition 5:

Proposition 5. If there exist M1, M2 > 0 such that:

−ϕ′(u) ≥ M1 ∀ u ∈ [0, 1] (12)

d

du
(
1

2

1

ϕ′(u)2
) ≥ M2, ∀ u ∈ [0, 1] (13)

Then, Condition (C.5) holds.

The proof is straightforward. Now, we will see three illustrative Archimedian copulas satisfying
(C.5).

Example 3: The Frank copula is characterized by the generator:

ϕ1(x) = log

(
e−θx − 1

e−θ − 1

)
, θ ∈ R \ {0}

Condition (C.5) holds, and c(u, v) ≥ −θ(e−θ − 1)e−2θ if θ > 0, c(u, v) ≥ −θ(e−θ − 1) elsewhere.

The next two examples also satisfy (C.5) by the intermediate Proposition 5.

Example 4: Let α < 0, θ > 0 and β with β < −αe−θ. Set

ϕ2(x) = −α

θ
e−θx + βx+ (

α

θ
e−θ − β), x ∈ [0, 1] (14)
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Example 5: Let C < 0 and set

ϕ3(x) = x lnx+ (C − 1)x+ (1− C), x ∈ [0, 1] (15)

Leaving the class of copulas, we now directly work with the joint density function. Proposition
6 gives a general form of distribution for our framework:

Proposition 6. If pX has the form

pX(x1, x2) = α · fX1(x1)fX2(x2) + (1− α) · gX(x1, x2), α ∈]0, 1[ (16)

where fX1, fX2 are univariate density functions, and gX is any density function (with respect to
ν) with marginals fX1 and fX2, then pX satisfies (C.5).

The proof is straightforward.

Example 6: As an illustration of Proposition 6, take ν = νL, fX = fX1fX2 a normal density
with a diagonal covariance matrix Σ, and gX a normal density of covariance matrix Ω, with
Ωii = Σii, i = 1, 2. Notice that because a copula of Gaussian mixture distribution is a mixture
of Gaussian copulas (see [24]), this example can be directly recovered by the copula approach.

Example 7: Let generalize Example 6. If PX is a Gaussian mixture

α ·N2(m,Σ) + (1− α) ·N2(µ,Ω), α ∈]0, 1[

with

m =

(
m1

m2

)
, µ =

(
µ1

µ2

)
, Σ =

(
σ2
1 0
0 σ2

2

)
, Ω =

(
ω2
1 ρω1ω2

ρω1ω2 ω2
2

)
, ρ ∈]− 1, 1[

then (C.4) holds iff ω2
1 ≤ σ2

1 and ω2
2 ≤ σ2

2.

Thus, for many distributions, the generalized decomposition holds, and generalized sensitivity
indices may thus be defined.

For the remaining part of the paper, we will assume that the set of inputs is an IPDV. If p is
odd, we will assume that an input variable is independent to all the others.
The next section is devoted to the estimation of HOFD components. The simplest case of a
single pair of dependent variables is first discussed. Then, the more general IPDV case is studied.
In this last part, first and second order indices are defined to measure the contribution of each
pair of dependent variables and each of its components in the model. Indices of order greater
than one involving variables from different pairs will not not be studied here.

4 Estimation

Using the property of hierarchical orthogonality (H0
u ⊥ H0

v , ∀ v ⊂ u), we will see that the sum-
mands of the decomposition are solution of a functional linear system. For u ∈ S, the projection
operator onto H0

u is denoted by PH0
u
.

In this section, we present the HOFD terms computation, based on the resolution of a functional
linear system. The result relies on projection operators previously set up. Further, we expose
the linear system estimation for practice.
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4.1 Models of p = 2 input variables

This part is devoted to the simple case of bidimensional models. Let

Y = η(X1, X2)

Assuming that Conditions (C.1) and (C.2) both hold, we proceed as follows:

Procedure 1

1. HOFD of the output:

Y = η0 + η1(X1) + η2(X2) + η12(X1, X2) (17)

2. Projection of Y = η(X) on H0
u, ∀ u ⊆ {1, 2}. As H0

u ⊥ H0
v , ∀ v ⊂ u, we obtain:




Id 0 0 0
0 Id PH0

1
0

0 PH0
2

Id 0

0 0 0 Id







η0
η1
η2
η12


 =




PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)


 (18)

3. Computation of the right-hand side vector of (18):




PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)


 =




E(η)
E(η/X1)− E(η)
E(η/X2)− E(η)

η − E(η/X1)− E(η/X2) + E(η)


 (19)

In this frame, we have:

Proposition 7. Let η be any function of L2
R
(Rp,B(Rp), PX). Then, under (C.1) and

(C.2), the linear system

(S)




Id 0 0 0
0 Id PH0

1
0

0 PH0
2

Id 0

0 0 0 Id







h0
h1
h2
h12


 =




PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)


 (20)

admits in h = (h0, · · · , h12) ∈ H∅ × · · · ×H0
12 the unique solution h∗ = (η0, η1, η2, η12).

4. Reduction of the system (18). As the constant term corresponds to the expected value of
η, and the residual one can be deduced from the others, the dimension of the system (20)
can even be reduced to:

(
Id PH0

1

PH0
2

Id

)

︸ ︷︷ ︸
A2

(
η1
η2

)

︸ ︷︷ ︸
∆

=

(
E(η/X1)− E(η)
E(η/X2)− E(η)

)

︸ ︷︷ ︸
B

(21)
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5. Practical resolution: The numerical resolution of (21) is achieved by an iterative Gauss
Seidel algorithm [25] which consists first in decomposing A2 as a sum of lower triangular
(L2) and strictly upper triangular (U2) matrices.

Further, the technique uses an iterative scheme to compute ∆. At step k + 1, we have:

∆(k+1) :=

(
∆

(k+1)
1

∆
(k+1)
2

)
= L−1

2 (B − U2 ·∆(k)) (22)

Using expression of A2, we get:

∆(k+1) =

(
E(Y −∆

(k)
2 /X1)− E(Y −∆

(k)
2 )

E(Y −∆
(k+1)
1 /X2)− E(Y −∆

(k+1)
1 )

)
(23)

6. Convergence of the algorithm: now, we hope that the Gauss Seidel algorithm converges
to the true solution. Looking back at (18) , we see that we only have to consider PH0

1

(respectively PH0
2
) restricted to H0

2 (respectively to H0
1 ).

Under this restriction, let us define the associated norm operator as :

‖PH0
i
‖2 := sup

E(U2)=1
U∈H0

j

E[PH0
i
(U)2], i, j = 1, 2, j 6= i

As explained in [26], Gauss Seidel algorithm converges to the true solution ∆ if A2 is
striclty diagonally dominant, which is implied by :

‖PH0
i
‖ < ‖Id‖, i = 1, 2 (24)

i.e.

sup
E(U2)=1
U∈H0

j

E[PH0
i
(U)2] < 1, i = 1, 2, j 6= i (25)

Equality (19) reveals that PH0
i
(U) = E(U/Xi)−E(U). Hence, by the Jensen inequality [27]

for conditional expectations, ‖PH0
i
‖, i = 1, 2 admits an upper bound:

Take U ∈ H0
1 :

‖PH0
2
‖ = sup

E(U2)=1
U∈H0

1

E[(E(U/X2)− E(U))2] = sup
E(U2)=1
U∈H0

1

E[E(U/X2)
2] as U ∈ H0

1

≤ sup
E(U2)=1
U∈H0

1

E[E(U2/X2)] = 1 by Jensen

The same holds for U ∈ H0
2 , and we also have ‖PH0

2
‖ ≤ 1.

Moreover, the Jensen’s inequality is strict if U is not Xi-measurable. As U is a function
of Xj (that is j = 2 if i = 1 and conversely), the condition of convergence holds if X1 is
not a measurable function of X2. Hence, Gauss Seidel algorithm converges if X1 is not a
function of X2.
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7. Estimation procedure: Suppose that we get a sample of n observations (Yk,Xk)k=1,··· ,n.

• Estimation of the components of the HOFD: the iterative scheme (23) requires to
estimate conditional expectations. As extended in Da Veiga & al [28], we propose
to estimate them by local polynomial regression at each point of observation. Then,
we use the leave-one-out technique to set the learning sample and the test sample.
Moreover, as the local polynomial method can be summed up to a generalized least
squares (see Fan & Gijbels [29]), the Sherman-Morrison formula [30] is applied to
reduce the computational time.
A more detailed procedure is given in the Appendix. The iterative algorithm is easy
to implement. We stop when ‖∆(k+1) −∆(k)‖ ≤ ε, for a small positive ε.

Once (η1, η2) have been estimated, we estimate η0 by the empirical mean of the output.
Then, an estimation of η12 is obtained by substraction.

• We use empirical variance and covariance estimation to estimate sensitivity indices
S1, S2 and S12.

4.2 Generalized IPDV models

Assume that the number of inputs is even, so p = 2k, k ≥ 2. We note each group of dependent

variables as X(i) := (X
(i)
1 , X

(i)
2 ), i = 1, · · · , k. By rearrangement, we may assume that:

X = (X1, X2︸ ︷︷ ︸
X(1)

, · · · , X2k−1, X2k︸ ︷︷ ︸
X(k)

)

SA for IPDV models has already been treated in [11]. Indeed, they proposed to estimate
usual sensitivity indices on groups of variables via Monte Carlo estimation. Thus, they have
interpreted the influence of every group of variables on the global variance. Here, we will go
further by trying to measure the influence of each variable on the output, but also the effets of
the independent pairs.
To begin with, as a slight generalization of [3] and used in [11], let apply the Sobol decomposition
on groups of dependent variables,

η(X) = η0 + η1(X
(1)) + · · ·+ ηk(X

(k)) +

k∑

|u|=2

ηu(X
(u))

where for u = {u1, · · · , ut} and t = |u|, we set X(u) = (X(u1), · · · , X(ut)). Furthermore,
〈ηu, ηv〉 = 0, ∀ u 6= v.

Thus, we obtain independent components of IPDV. Under the assumptions discussed in the
previous section, we can apply the HOFD of each of these components, that is,

ηi(X
(i)) = ηi(X

(i)
1 , X

(i)
2 ) = ϕi0 + ϕi,1(X

(i)
1 ) + ϕi,2(X

(i)
2 ) + ϕi,12(X

(i))

with 〈ϕi,u, ϕi,v〉 = 0, ∀ v ⊂ u ⊆ {1, 2}. In this way, let define some new generalized indices for
IPDV models:

Definition 3. For i = 1, · · · , k, the first order sensitivity index measuring the contribution of

X
(i)
1 (respectively X

(i)
2 ) on the output of the model is:

Si,1 =
V (ϕi,1) + Cov(ϕi,1, ϕi,2)

V (Y )
,

(
resp. Si,2 =

V (ϕi,2) + Cov(ϕi,1, ϕi,2)

V (Y )

)
(26)

The second order sensitivity index for the pair X(i), i = 1, · · · , k, is defined as:

13



Si,12 =
V (ϕi,12)

V (Y )
(27)

The estimation procedure for these new indices is quite similar to Procedure 1:

Procedure 2

1. Estimation of (ηi)i=1,··· ,k: as reminded in Part 2.2 with Equations (2), ηi = E(Y/X(i)) −
E(Y ). Step 7 of Procedure 1 gives method to estimate the conditional expectations. So
that, we will have estimations of ηi, i = 1, · · · , k.

2. For i = 1, · · · , k, we apply step 2 to step 7 of Procedure 1, considering ηi as the output.

If p is odd, the procedure is the same except that the influence of the independent variable is
measured by a Sobol index, as it is independent from all the others.

The next part is devoted to numerical examples.

5 Numerical examples

In this section, we study three examples with dependent input variables. We consider IPDV
models and a Gaussian mixture distribution on the input variables. We choose covariance ma-
trices of the mixture satisfying conditions of Example 1.
We give estimations of our new indices, and compare them to the analytical ones, computed
from expressions (6). We also compute dispersions of the estimated new indices.
In [28], Da Veiga & al. proposed to estimate the classical Sobol indices Su = (V [E(Y/Xu)] −∑

v⊂u V [E(Y/Xv)])/V (Y ), u ⊆ Pp, by nonparametric tools. Indeed, the local polynomial regres-
sion were used to estimate conditional moments E(Y/Xu), u ⊆ Pp. This method, used further,
will be called Da Veiga procedure (DVP). Results given by DVP are compared with the ones
given by our method. The goal is to show that the usual sensitivity indices are not appropriate
in the dependence frame, even if a relevant estimation method is used.

5.1 Two-dimensional IPDV model

Let consider the model

Y = X1 +X2 +X1X2

Here, ν and PX are of the form given by Example 1, with m = µ = 0.

Thus, the analytical decomposition of Y is

η0 = E(X1X2), η1 = X1, η2 = X2 η12 = X1X2 − E(X1X2)

For the application, we implement Procedure 1 in Matlab software. We proceed to L = 50
simulations and n = 1000 observations. Parameters were fixed at σ1 = σ2 = 1, ϕ2

1 = ϕ2
2 = 0.5,

ρ12 = 0.4 and α = 0.2.

In Table 1, we give the estimation of our indices and their standard deviation (indicated by ±·)
on L simulations. In comparison, we give the analytical value of each index.
The analytical classical Sobol indices are difficult to obtain, but we give estimators of the classical
Sobol indices with DVP.
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S1 S2 S12
∑

u Su

New
indices

Estimation 0.42± 0.041 0.41± 0.043 0.17± 0.026 1± 9.10−16

Analytical 0.39 0.39 0.22 1

DVP
indices Estimation 0.64± 0.045 0.65± 0.044 0.41± 0.038 1.7± 0.09

Table 1: Estimation of the new and DVP indices with ρ12 = 0.4

We notice that estimations with our method give quite good results in comparison with their
analytical values. The estimation error of the interaction term is due to the fact that the
component η̂12 is obtained by difference between the output and the other estimated components.
The DVP indices are are difficult to interpret as the sum is higher than 1.
In our method, it would be relevant to separate the variance part to the covariance one in the
first order indices. Indeed, in this way, we would be able to get the part of variability explained
by Xi alone in Si, and its contribution hidden in the dependence with Xj . We note Sv

i the
variance contribution alone, and Sc

i the covariance contribution, that is

Si =
V (Xi)

V (Y )︸ ︷︷ ︸
Sv
i

+
Cov(Xi, Xj)

V (Y )︸ ︷︷ ︸
Sc
i

, i = 1, 2, j 6= i

The new indices estimations given in Table 1 are decomposed in Table 2. As previously, the
number at the right of ± indicates the standard deviation on L simulations.

Sv
i Sc

i Si

X1 0.28± 0.04 0.14± 0.01 0.42± 0.041

X2 0.27± 0.043 0.14± 0.01 0.41± 0.043

Analytical 0.25 0.14 0.39

Table 2: Estimation of Sv
i and Sc

i with ρ12 = 0.4

For each index, the covariate itself explains 28% (in estimation, 25% in reality) of the part of
the total variability. However, the contribution embedded in the correlation is not negligible as
it represents 14% of the total variance. Considering the shape of the model, and coefficients of
parameters distribution, it is quite natural to get the same contribution of X1 and X2 into the
global variance. Also, as their dependence is quite important with a covariance term equals to
0.4, we are not surprised by the relatively high value of Sc

1 (resp. Sc
2).

From now, we take ρ12 = 0, i.e. we assume that the inputs are independent. Let compare our
new estimated indices with their analytical values in Table 3. We again decompose new indices
into a variance (Sv

i ) and a covariance (Sc
i ) contribution.
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New indices Theoretical

Sv
i Sc

i Si Si

X1 0.39± 0.039 −0.01± 0.01 0.38± 0.036 0.375

X2 0.38± 0.045 −0.01± 0.024 0.37± 0.037 0.375

X1X2 0.26± 0.038 −0.01± 0.01 0.25± 0.027 0.25

Table 3: Comparison between analytical and estimated indices with ρ12 = 0

Thus, the new indices are well tailored if we have a small idea on inputs dependence in a system.
Indeed, Table 3 shows that our new indices take dependence into account if it exists, and the
covariance contribution is estimated by 0 if not. New indices recover the classical Sobol indices
in case of independence.

5.2 Linear Four-dimensional model

The test model is

Y = 5X1 + 4X2 + 3X3 + 2X4

Actually, Condition (C.2) only needs to be satisfied on groups of correlated variables.
Let consider the two blocks X(1) = (X1, X3) and X(2) = (X2, X4) of correlated variables.
The previous form of density can be taken for X(1) and X(2). PX(i) is then the Gaussian mixture
αi ·N2(0, I2) + (1− αi) ·N2(0,Ωi), i = 1, 2. The analytical sensitivity indices are given by (26)
& (27).

For L = 50 simulations and n = 1000 observations, we took ϕ
2(1)
1 = ϕ

2(1)
2 = 0.5, ϕ

2(2)
1 = 0.7,

ϕ
2(2)
2 = 0.3, ρ

(1)
12 = 0.4, ρ

(2)
12 = 0.37 and α1 = α2 = 0.2.

Figure 1 displays the dispersion of indices of first order for all variables and second order for
grouped variables. We compare them to their analytical values. In the same figure, we also
represented the estimators of classical Sobol indices with DVP.
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Figure 1: Boxplots representation of new indices-Comparison with analytical and DVP indices

We see that X1 has the biggest contribution, whereas the influence of X4 is very low. It reflects
well the model if we look at the coefficients of Xi, i = 1, · · · , 4. Also, interaction terms are well
estimated, as they are closed to 0. For each case, the dispersion on 50 simulations is very low.
As for the DVP estimation, it is once again very high compared with the true indices values.

5.3 The Ishigami function

This function is well known in SA ([31]). It is defined by:

Y = sin(X1) + a sin2(X2) + bX3
3 sin(X1)

We assume that X3 is the independent variable, and that X1 and X2 are correlated. PX is again
the Gaussian mixture α ·N3(0, I3) + (1− α) ·N3(0,Ω).
With L = 50 simulations of n = 1000 observations, we fixed parameters of distribution at
ϕ2
1 = 0.15, ϕ2

2 = 0.85, ϕ2
3 = 0.75, ρ12 = 0.3 and α = 0.2.

In Figure 2, the dispersion of the new measures is represented for fixed b = 0.1 and different
values of a. In addition, the analytical new indices and estimated classical Sobol indices with
DVP are displayed.
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Figure 2: Boxplots of new indices for different values of a for Ishigami function

Every boxplot shows that there is a small dispersion. For all estimations, DVP indices are larger
that the new ones. The figure clearly shows that, for all values of a, the sum of these four indices
is greater than 1. It again shows their non adaptation to a situation of dependence.
If we have a look on the values taken by our new sensitivity indices, we see that, for small values
of a, the variable X1 contributes the most to the model’s variability. This role decreases as a
increases, and X2 then gets the biggest contribution. For any value of a, the input X3 plays a
very negligible role, which seems realistic as b is a small fixed value. As for the interaction index
S12, it is getting bigger with the increasing importance of a, but the contribution remains low.
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6 Conclusions and Perspectives

The Hoeffding decomposition and associated Sobol indices have been widely studied in SA over
past years. Recently, a literature appears to treat the case of dependent input variables, in
which authors propose different ways to deal with dependence. The goal of this paper is to con-
ciliate the problem of inputs dependence with the Hoeffding decomposition. Indeed, we study
a functional ANOVA decomposition in a generalized inputs distribution frame. Thus, we show
that a model can be uniquely decomposed as a sum of hierarchically orthogonal functions of
increasing dimension. Also, this approach generalizes the Hoeffding’s one, as we recover it in
case of independence.
Similarly to the classical Sobol decomposition, this leads to the construction of new sensitivity
indices. They consist of a variance and a covariance contribution able to take into account the
possible correlation among variables. In addition, the influence of a group of input variables on
the outcome is valued between 0 and 1. In case of independence, these indices are the classical
Sobol indices. However, the indices construction is only possible under specific assumptions on
the joint distribution function of the inputs. We expose few cases that satisfy these assumptions
for any p-dimensional models. More specifically, for two-dimensional models, the required as-
sumption is equivalent to assumptions on copulas. In this context, we give examples satisfying
one of these assumptions .
Focused on the IPDV models, summands of the decomposition are estimated thanks to pro-
jection operations. This leads to the numerical resolution of functional linear systems. The
strength of this method is that it does not require to make assumptions on the form of the
model or on the structure of dependence. We neither use meta-modelling and avoid in this way
many sources of errors.
Through three applications on test models, we observe the importance of considering the inputs
correlation, and show how our method could catch it. The comparison with estimators of clas-
sical indices with DVP shows that the Sobol indices are not appropriate in case of correlations,
even when using nonparametric method. Also, when inputs independence holds, the new indices
remain well suited to measure sensitivity into a model.
Nevertheless, only considering IPDV models for estimation is restrictive. The perspective is to
explore other estimation methods suitable for more general models. Also, we intend to lead a
systematic study on copulas satisfying or not our assumptions.
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7 Appendix

A Generalized Hoeffding decomposition-Application to SA

A.1 Generalized decomposition for dependent inputs

The upcoming proof follows the guideline of the proof of Lemma 3.1 in Stone [19].

Proof of Lemma 1

By induction on the cardinal of T , let show that

H(n) : ∀ T/#(T ) = n, E[(
∑

u∈T hu(X))2] ≥ δ#(T )−1
∑

u∈T E[h2
u(X)]

• H(1) is obviously true, as T is reduced to a singleton

• Let n ∈ N
∗. Suppose that H(n′) is true for all 1 ≤ n′ ≤ n. Let T such that #(T ) = n + 1. We

want to prove H(n+ 1).

Choose a maximal set r of T , i.e. r is not a proper subset of any set u in T . We show first that

E[(
∑

u∈T

hu(X))2] ≥ M · E(h2
r(X)) (28)

– If #(r) = p, by definition of H0
r , we get E[(

∑
u∈T hu(X))2] ≥ E(h2

r(X)) ≥ ME(h2
r(X)) as

M ≤ 1.

– If 1 ≤ #(r) ≤ p− 1, set X = (X1, X2), where X1 = (Xl)l/∈r and X2 = (Xl)l∈r. By Condition
(C.2), it follows that

pX ≥ M · pX1
pX2

As a consequence,

E[(
∑

u∈T hu(X))2] =
∫
X1

∫
X2

[hr(x2) +
∑

u 6=r hu(x1, x2)]
2pXν(dx1, dx2)

≥ M
∫
X1

∫
X2

[hr(x2) +
∑

u 6=r hu(x1, x2)]
2pX1

pX2
ν1(dx1)ν2(dx2)

≥ M
∫
X1

E[(hr(X2) +
∑

u 6=r hu(x1, X2))
2]pX1

ν1(dx1)

By maximality of r and by definition of H0
r ,

∗ If u ⊂ r, hu only depends on X2 and by orthogonality,

E(hu(X2)hr(X2)) = 0

∗ If u 6⊂ r, hu depends on X1 fixed at x1, and Xu
2 = (Xl)l∈r∩u, so hu ∈ H0

r∩u, with
r ∩ u ⊂ r, it comes then

E(hu(x1, X2)hr(X2)) = 0

Thus,

E[(
∑

u∈T

hu(X))2] ≥ M

∫

X1

E(h2
r(X2))pX1

ν1(dx1)

= M · E(h2
r(X))

So (28) holds for any size of any maximal sets of T .

By using (28) with h̃r = hr and h̃u = −βhu, ∀ u 6= r, we get

E[(hr(X)− β
∑

u 6=r

hu(X))2] ≥ ME(h2
r(X)) (29)
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Taking β =
E[hr(X)

∑
u 6=r hu(X)]

E[(
∑

u 6=r hu(X))2]
, it follows that:

E[(hr(X)− β
∑

u 6=r hu(X))2] ≥ ME(h2
r(X))

that is E[h2
r(X)]−

[E(hr(X)
∑

u 6=r hu(X))]2

E[(
∑

u 6=r hu(X))2]
≥ ME(h2

r(X))

Hence,

[E(hr(X)
∑

u 6=r

hu(X))]2 ≤ (1−M) · E(h2
r(X)) · E[(

∑

u 6=r

hu(X))2] (30)

This implies

E[(
∑

u

hu(X))2] ≥ (1−
√
1−M)


E(h2

r(X)) + E[(
∑

u 6=r

hu(X))2]


 (31)

Set x = hr(X) and y =
∑

u 6=r hs(X).(31) is rephrased as

‖x+ y‖2 ≥ (1−
√
1−M){‖x‖2 + ‖y‖2} (32)

Further, (30) is 〈x, y〉 ≥ −
√
1−M‖x‖ · ‖y‖. Thus,

‖x‖2 + ‖y‖2 ≥ 2〈x, y〉
≥ − 2√

1−M
〈x, y〉 by (32)

So ‖x+ y‖2 ≥ (1−
√
1−M){‖x‖2 + ‖y‖2}.

As H(n) is supposed to be true and (31) holds, it follows that:

E[(
∑

u hu(X))2] ≥ δ
[
E(h2

r(X)) + δn−1
∑

u 6=r E(h
2
u(X))

]

≥ δn
∑

u E(h
2
u(X)) as δ ∈ ]0, 1]

= δ#(T )−1
∑

u E(h
2
u(X))

Hence, H(n+ 1) holds.

We can deduce that H(n) is true for any collection T of Pp.

Proof of Theorem 1

Let define the vector space K0 = {∑u∈S− hu(Xu), hu ∈ H0
u, ∀ u ∈ S−}.

In the first step, we will prove that K0 is a complete space to prove the existence and uniqueness of the
projection of η in K0, thanks to the projection theorem [32].
Secondly, we will show that η is exactly equal to the decomposition into H0, and finally, we will see that
each term of the summand is unique.

• We show that H0
u is closed into Hu (as Hu is a Hilbert space).

Let (hn,u)n be a convergent sequence of H0
u with hn,u → hu. As (hn,u)n ∈ H0

u ⊂ Hu complete,
hu ∈ Hu. Let v ⊂ u, and hv ∈ H0

v :
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〈hu − hn,u, hv〉 = 〈hu, hv〉 −〈hn,u, hv〉
↓ q

0 0 as H0
u ⊥ H0

v

Thus, 〈hu, hv〉 = 0, so that hu ∈ H0
u. H0

u is then a complete space.

Let (hn)n be a Cauchy sequence in K0 and we show that each component is of Cauchy and that
hn → h ∈ K0.

As hn ∈ K0, hn =
∑

u∈S− hn,u, hn,u ∈ H0
u. It follows that :

‖hn − hm‖2 = ‖∑u(hn,u − hm,u)‖2
≥ δ#(S−)−1

∑
u∈S− ‖hn,u − hm,u‖2 by Inequality (4)

As (hn)n is a Cauchy sequence, by the above inequality, (hn,u)n is also Cauchy. As hn,u → hu ∈ H0
u,

we deduce that hn −→
n→∞

∑
u∈S− hu = h ∈ K0.

Thus, K0 is complete. By the projection theorem, we can deduce there exists a unique element into
K0 such that :

‖η −
∑

u∈S−

ηu‖2 ≤ ‖η − h‖2 ∀ h ∈ K0

• Decomposition of η: following Hooker [18], we introduce the residual term as

ηPp
(X1, · · · , Xp) = η(X1, · · · , Xp)−

∑

u∈S−

ηu(Xu)

By projection, 〈η −∑v∈S− ηv, hu〉 = 0 ∀ u ∈ S−, ∀ hu ∈ H0
u. Hence, η(X) =

∑
u∈S ηu(Xu),

ηu ∈ H0
u, ∀ u ∈ S, and this decomposition is well defined.

• Terms of the summand are unique: assume that η =
∑

u∈S ηu =
∑

u∈S η̃u, η̃u ∈ H0
u.

By Lemma 1, it follows that

∑
u∈S(ηu − η̃u) = 0

‖∑u∈S(ηu − η̃u)‖2 ≥ δ#(S)−1
∑

u∈S ‖ηu − η̃u‖2
}

⇒ ‖ηu − η̃u‖2 = 0 ∀ u ∈ S

Proof of Proposition 1

Let first prove the following equivalence :

∫
ηu(xu)ηv(xv)pX(x)dν(x) = 0 ∀v ⊂ u, ∀ ηv

m∫
ηu(xu)pX(x)dνi(xi) dνuc(xuc) = 0 ∀u ∈ S, ∀i ∈ u

Let v ⊂ u and i ∈ u \ v, then
∫
ηv(xv)ηu(xu)pX(x)dν(x) =

∫
ηv(xv)ηu(xu)pX(x)dνi(xi) dνuc(xuc) dνu\i(xu\i)

=

∫
ηv(xv)

(∫
ηu(xu)pX(x)dνi(xi) dνuc(xuc)

)
dνu\i(xu\i)

= 0 by assumption

Conversely, assume that ∃ u, ∃i ∈ u such that
∫
ηu(xu)pX(x)dνi(xi) dνuc(xuc) 6= 0, then,

ηv =

∫
ηu(xu)pX(x)dνi(xi) dνuc(xuc) with v = u \ i

and
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∫
ηu(xu)ηv(xv)pX(x)dν(x) =

∫
ηu(xu)

(∫
ηu(xu)pX(x)dνi dνuc

)
pX(x)dνi dνuc dνu\i

=

∫(∫
ηu(xu)pX(x)dνi(xi) dνuc(xuc)

)2

dνu\i(xu\i)

> 0

There is a contradiction, so that
∫
ηu(xu)pX(x)dνi(xi) dνuc(xuc) = 0 ∀i ∈ u, ∀u.

The second expression can be rewritten as :

∫
ηu(xu)pX(x)dνi(xi) dνuc(xuc) = E(ηu/Xu\i) ∀i ∈ u, ∀u ∈ S

Then, by Theorem 1, the minimization problem (P) admits a unique solution.

A.2 Generalized sensitivity indices

Proof of Proposition 2

Under (C.1) and (C.2), Theorem 1 states the existence and the uniqueness decomposition of η:

η(X) =
∑

u∈S

ηu(Xu),

with H0
u ⊥ H0

v , ∀ v ⊂ u. Therefore,

E(η(X)) = E(
∑

u∈S

ηu(Xu)) = η0

and

V (Y ) = V (η(X)) = E(η2(X))− η20
=

∑

u 6=∅

E(η2u(Xu)) +
∑

u 6=v

E(ηu(Xu)ηv(Xv))

=
∑

u 6=∅

V (ηu(Xu)) +
∑

u 6=∅
u 6=Pp

∑

v 6=∅
u*v,v*u

E(ηu(Xu), ηv(Xv))

=
∑

u 6=∅


V (ηu(Xu)) +

∑

v
u∩v 6=u,v

Cov(ηu(Xu), ηv(Xv))




Thus, (6) holds, and equalities (7) and (8) follow obviously.

B Examples of distribution function

B.1 Boundedness of the inputs density function

Proof of Proposition 3
Let u ⊂ Pp, and 0 < M1 ≤ pX ≤ M2. As pXu

and pXc
u
are marginals, they are upper bounded by M2.

As a consequence, pXu
pXuc ≤ M2

2

M1
M1 ≤ M2

2

M1
pX , so that pX ≥ M1M

−2
2 pXu

pXuc , with 0 < M1M
−2
2 < 1.

Proof of Example 1
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• ν is a product of measure as
dν

dνL
=
∏p

i=1 νi(xi), with νi ∼ N(mi, σ
2
i ). So

ν =

p⊗

i=1

νi

• pX is given by

pX(x) =
dPX

dν
(x) =

dPX

dνL
× dνL

dν
(x)

= α+ (1− α)

∣∣∣∣
Σ

Ω

∣∣∣∣
1/2

exp−1

2
t(x−m)(Ω−1 − Σ−1)(x−m) (33)

First, we have pX(x) ≥ α > 0.
Further, the sufficient and necessary condition to have pX ≤ M2 < ∞ is to get (Ω−1 − Σ−1) posi-
tive definite. Indeed, if (Ω−1 − Σ−1) admits a negative eigenvalue, pX can not be bounded. Thus,
0 < α ≤ pX ≤ M2 iff (Ω−1 − Σ−1) is positive definite.

B.2 Examples of distribution of two inputs

Proof of Proposition 4

Condition (C.5) is immediate with Equation 9. Let prove that (C.5) is equivalent to (C.6).

If (C.6) holds, then c(u, v) ≥ M . Conversely, we assume that 0 < M < 1, and

C̃(u, v) =
C(u, v)−Muv

1−M

It is enough to show it is a copula : Obviously, C̃(0, u) = C(u, 0) = 0 and C̃(1, u) = C̃(u, 1) = u ∀ u ∈
[0, 1]. By second order derivation, it comes that c̃(u, v) =

c(u, v)−M

1−M
, so c̃(u, v) ≥ 0 by hypothesis (C.5).

C Estimation

C.1 Model of p = 2 input variables

Proof of Proposition 7

• We first show first that (S) admits an unique solution.

Under (C.1) and (C.2), by Theorem 1, the decomposition of η(X) is unique and

η(X1, X2) = η0 + η1(X1) + η2(X2) + η12(X1, X2)

with





η0 ∈ H∅

ηi ∈ H0
i ⊥ H∅, i = 1, 2

η12 ∈ H0
12 ⊥ H0

i , i = 1, 2, H0
12 ⊥ H∅
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Thus,




Id 0 0 0
0 Id PH0

1

0

0 PH0

2

Id 0

0 0 0 Id







η0
η1
η2
η12


 =




PH∅
(η)

PH0

1

(η)

PH0

2

(η)

PH0

12

(η)


 (34)

So (η0, η1, η2, η12) is solution of (S).

Now, assume there exists an another solution of the system, say (η̃0, · · · , η̃Pp
) ∈ H∅ × · · · ×H0

Pp
,

then





η0 − η̃0 = 0
η1 − η̃1 + PH0

1

(η2 − η̃2) = 0

PH0

2

(η1 − η̃1) + η2 − η̃2 = 0

η12 − η̃12 = 0

⇒





η0 = η̃0
PH0

1

(η1 − η̃1 + η2 − η̃2) = 0

PH0

2

(η1 − η̃1 + η2 − η̃2) = 0

η12 = η̃12

⇒





η0 = η̃0
η1 − η̃1 + η2 − η̃2 ∈ H0⊥

1 ∩H0⊥
2

η12 = η̃12

As η1 − η̃1 ∈ H0
1 and η2 − η̃2 ∈ H0

2 , it follows that

{
〈η1 − η̃1, η1 − η̃1 + η2 − η̃2〉 = 0
〈η2 − η̃2, η1 − η̃1 + η2 − η̃2〉 = 0

⇒
{

‖η1 − η̃1‖2 + 〈η1 − η̃1, η2 − η̃2〉 = 0
‖η2 − η̃2‖2 + 〈η1 − η̃1, η2 − η̃2〉 = 0

⇒ ‖η1 − η̃1 + η2 − η̃2‖2 = 0
⇒ η1 − η̃1 + η2 − η̃2 = 0

As 0 can be uniquely decomposed into H0 as a sum of zero, then,

η1 − η̃1 = η2 − η̃2 = 0

• Let now compute 


PH∅
(η)

PH0

1

(η)

PH0

2

(η)

PH0

12

(η)




First of all, it is obvious that the constant term η0 = E(η) and that η12 is obtained by subtracting
η with all other terms of the right of the decomposition.

Now, let us use the projector’s property of embedded spaces. Indeed, as H0
i ⊂ Hi, ∀ i = 1, 2, it

comes

PH0

i
(η) = PH0

i
(PHi

(η)) = PH0

i
[E(η/Xi)︸ ︷︷ ︸

ϕ(Xi)

]

ϕ is a function of Xi, so it can be decomposed into the following expression :

ϕ(Xi) = ϕ0 + ϕi(Xi), ϕ0 ∈ H∅, ϕi ∈ H0
i

with ϕ0 = E(ϕ) = E(η).
Hence, one can easily deduce PH0

i
(η), i = 1, 2, as the term ϕi = E(η/Xi)− E(η)

We obtain




PH∅
(η)

PH0

1

(η)

PH0

2

(η)

PH0

12

(η)


 =




E(η)
E(η/X1)− E(η)
E(η/X2)− E(η)

η − E(η/X1)− E(η/X2) + E(η)


 (35)
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Numerical procedure

Gauss-Seidel algorithm requires the estimation of conditional expectation at each iteration. To
do this, we use the local polynomial estimation with a leave-one-out technique. To considerably
reduce time cost in application, the Sherman-Morrison formula is exploited.
We are going to review these methods for estimating E(Y/X = x), when Y and X are supposed
to be real random variable.

The local polynomial estimation [29] consists in approximating m(x) = E(Y/X = x) by a qth-
order polynomial fitted by a weight least squared estimation.
An explicit solution of m̂(x) is given by :

m̂(x) = t(1 0 · · · 0)[tX(x)D(x)X(x))]−1 · tX(x)D(x)Y (36)

with

X(x) =



1 X1 − x · · · (X1 − x)q

...
...

...
1 Xn − x · · · (Xn − x)q


 D(x) =




K

(
X1 − x

h

)
· · · 0

. . .

0 · · · K

(
Xn − x

h

)




Y =



Y1
...
Yn




The leave-one-out technique on local estimation consists in estimating m in every observation
point X1, · · · , Xn, i.e. computing Equation (36) when the kth line of matrices has been removed
for estimating m̂(Xk). It means that we would need to inverse t

X−k(x)D−k(x)X−k(x) n times,
which is very expensive. To avoid these expensive computations, Sherman and Morrison [30]
proposed a formula :

Lemma 2. If A is a square invertible matrix, and u, v are vectors such that 1 + tvA−1u 6= 0,
then

(A+ utv)−1 = A−1 − A−1utvA−1

1 + tvA−1u
(37)

In our problem, set Sn(x) =
t
X(x)D(x)X(x). Sn(x) can be rewritten as :

Sn(x) =

n∑

i=1

Φi(x)
tΦi(x) =

∑

i 6=k

Φi(x)
tΦi(x)

︸ ︷︷ ︸
S−k(x)

+Φk(x)
tΦk(x) (38)

where

Φi(x) =
t(K(

Xi − x

h
)Xi(x)), Xi(x) = (1 · · · (Xi − x)q), ∀ i = 1, · · · , n

Thus, S−k(x), corresponding to t
X(x)D(x)X(x) when the kth line has been removed, is of the

form :

S−k(x) = Sn(x)− Φk(x)
tΦk(x), ∀ k = 1, · · · , n

26



The Sherman-Morrison formula gives :

S−1
−k(x) = S−1

n (x) +
S−1
n (x)Φk(x)

tΦk(x)S
−1
n (x)

1− tΦk(x)S
−1
n (x)Φk(x)

, ∀ k = 1, · · · , n (39)

As m̂(Xk) =
t(1 0 · · · 0)S−1

−k(Xk) · tX−k(Xk)D−k(Xk)Y, ∀ k, it is faster to estimate S−1
n (x) and

Φk(x) at each point of the design.
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chimique, Ph.D.thesis, p.133-134, http://www.gdr-mascotnum.fr/media/thesedaveiga.pdf,
2007.

[11] J. Jacques, C. Lavergne, N; Devictor : Sensitivity analysis in presence of model uncertainty
and correlated inputs, Reliability Engineering and System Safety, 2006.

[12] T. Mara, S. Tarantola : variance-based sensitivity analysis of computer models with depen-
dent inputs, Reliability Engineering and System Safety, 2011.

[13] C. Xu, G. Gertner : Uncertainty and sensitivity analysis for models with correlated param-
eters, Reliability Engineering and System Safety, 2007.

[14] G. Li, H. Rabitz : Global sensitivity analysis with independent and/or correlated inputs,
Journal of Physical Chemistry A, 2010.

[15] C. Xu, G. Gertner : Extending a global sensitivity analysis technique to models with corre-
lated parameters, Computational Statistics and Data Analysis, 2007.

[16] E. Borgonovo : A new uncertainty importance measure, Reliability Engineering and System
Safety, 2006.

[17] E. Borgonovo, W. Castaings, S. Tarantola : Moment Independent Importance Measures:
New Results and Analytical Test Cases, Risk Analysis, 2011.

[18] G. Hooker : Generalized functional ANOVA diagnostics for high-dimensional functions of
dependent variables, Journal of Computational and Graphical Statistics, Vol.16, No.3, 2007.

[19] C.J. Stone : The use of Polynomial Splines and their tensor products in multivariate func-
tion estimation, The Annals of Statistics, Vol.22, No.1, 1994.

28



[20] A.W. Van Der Vaart : Asymptotic Statistics, Cambridge University Press.

[21] R.B. Nelsen : An introduction to copulas, Springer, 2006.

[22] A. Sklar : Random Variables, Joint Distribution Functions, and Copulas, Kybernetika, Vol.
9, 1971.

[23] D. Morgenstern : Einfache Beispiele Zweidimensionaler Verteilungen Mitteilingsblatt für
Mathematische Statistik, 8, 234235, 1956.

[24] Z. Ouyang, H. Liao X. Yang : Modeling dependence based on mixture copulas and its
application in risk management, Appl. Math. J. Chinese Univ., 2009.

[25] R. Kress : Numerical analysis, Springer Ed., 1998.

[26] J. De Pillis : Gauss-Seidel convergence for operators on Hilbert space , SIAM Journal of
Numerical Analysis, 1973.

[27] J.L. Jensen : Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta
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