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1. Introduction

Sensitivity analysis (SA) aims to identify the variables that most contribute to
the variability into a non linear regression model. Global SA is a stochatic ap-
proach whose objective is to determine a global criterion based on the density
of the joint probability distribution function of the output and the inputs of the
regression model. The most usual quantification is the variance-based method,
widely studied in SA literature. Hoeffding decomposition [9] (see also Owen
[21]) states that the variance of the output can be uniquely decomposed into
summands of increasing dimensions under orthogonality constraints. Following
this approach, Sobol [26] introduces variability measures, the so called Sobol
sensitivity indices. These indices quantify the contribution of each input on the
system.

Different methods have been exploited to estimate Sobol indices. The Monte
Carlo algorithm was proposed by Sobol [27], and has been later improved by
the Quasi Monte Carlo technique, performed by Owen [22]. FAST methods are
also widely used to estimate Sobol indices. Introduced earlier by Cukier et al. [3]
[4], they are well known to reduce the computational cost of multidimensional
integrals thanks to Fourier transformations. Later, Tarantola et al. [29] adapted
the Random Balance Designs (RBD) to FAST method for SA (see also recent
advances on the subject by Tissot et al. [30]).

However, these indices are constructed on the hypothesis that input variables
are independent, which seems unrealistic for many real life phenomena. In the
literature, only a few methods and estimation procedures have been proposed to
handle models with dependent inputs. Several authors have proposed sampling
techniques to compute marginal contribution of inputs to the outcome variance
(see the introduction in Mara and references therein [17]). As underlined in Mara
et al.[17], if inputs are not independent, the amount of the response variance
due to a given factor may be influenced by its dependence to other inputs.
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Therefore, classical Sobol indices and FAST approaches for dependent variables
are difficult to interpret (see, for example, Da Veiga’s illustration [5] p.133). Xu
and Gertner [32] proposed to decompose the partial variance of an input into
a correlated part and an uncorrelated one. Such an approach allows to exhibit
inputs that have an impact on the output only through their strong correlation
with other incomes. However, they only investigated linear models with linear
dependences.

Later, Li et al. [15] extended this approach to more general models, using the
concept of High Dimensional Model Representation (HDMR [14]). HDMR is
based on a hierarchy of component functions of increasing dimensions (trunca-
tion of Sobol decomposition in the case of independent variables). The compo-
nent functions are then approximated by expansions in terms of some suitable
basis functions (e.g., polynomials, splines, ...). This meta-modeling approach
allows the splitting of the response variance into a correlative contribution and
a structural one of a set of inputs. Mara et al. [17] proposed to decorrelate the
inputs with the Gram-Schmidt procedure, and then to perform the ANOVA-
HDMR of Li et al. [15] on these new inputs. The obtained indices can be inter-
preted as fully, partially correlated and independent contributions of the inputs
to the output. Nevertheless, this method does not provide a unique orthogonal
set of inputs as it depends on the order of the inputs in the original set. Thus,
a large number of sets has to be generated for the interpretation of resulting
indices. As a different approach, Borgonovo et al. [1, 2] initiated the construc-
tion of a new generalized moment free sensitivity index. Based on geometrical
consideration, these indices measure the shift area between the outcome density
and this same density conditionally to a parameter. Thanks to the properties of
these new indices, a methodology is given to obtain them analytically through
test cases.

Notice that none of these works has given an exact and unambiguous defi-
nition of the functional ANOVA for correlated inputs as the one provided by
Hoeffding-Sobol decomposition when inputs are independent. Consequently, the
exact form of the model has neither been exploited to provide a general variance-
based sensitivity measures in the dependent frame.

In a pionnering work, Hooker [10], inspired by Stone [28], shed new lights on
hierarchically orthogonal function decomposition. We revisit and extend here
the work of Hooker. We obtain hierarchical functional decomposition under a
general assumption on the inputs distribution. Furthermore, we also show the
uniqueness of the decomposition leading to the definition of new sensitivity in-
dices. Under suitable conditions on the joint distribution function of the input
variables, we give a hierarchically orthogonal functional decomposition (HOFD)
of the model. The summands of this decomposition are functions depending only
on a subset of input variables and are hierarchically uncorrelated. This means
that two of these components are orthogonal whenever all the variables involved
in one of the summands also appear in the other. This decomposition leads to
the construction of generalized sensitivity indices well tailored to perform global
SA when the input variables are dependent. In the case of independent inputs,
this decomposition is nothing more than the Hoeffding one. Furthermore, our
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generalized sensitivity indices are in this case the classical Sobol ones. In the
general case, the computation of the summands of the HOFD involves a mini-
mization problem under constraints (see Proposition 1). A statistical procedure
to approach the solution of this counstrainted optimization problem will be in-
vestigated in a next paper. Here, we will focus on the particular case where the
inputs are independent pairs of dependent variables (IPDV). Firstly, in the sim-
plest case of a single pair of dependent variables, the HOFD may be performed
by solving a functional linear system of equations involving suitable projection
operators (see Procedure 1). In the more general IPDV case, the HOFD is then
obtained in two steps (see Procedure 2). The first step is a classical Hoeffding-
Sobol decomposition of the output on the input pairs, as developped in Jacques
et al. [11]. The second step is the HOFDs of all the pairs. In practical situ-
ations, the non parametric regression function of the model is generally not
exactly known. In this case, one can only have at hand some realizations of the
model and have to estimate, with this information, the HOFD. Here, we study
this statistical problem in the IPDV case. We build estimators of the general-
ized sensitivity indices and study numerically their properties. One of the main
conclusion is that the generalized indices have a total normalized sum. This is
not true for classical Sobol indices in the frame of dependent variables.
The paper is organized as follows.
In Section 2, we give and discuss general results on the HOFD. The main result
is Theorem 1. We show here that a HOFD is available under a boundedness type
assumption (C.2) on the density of the joint distribution function of the inputs.
Further, we introduce the generalized indices. In Section 3, we give examples
of multivariate distributions to which Theorem 1 applies. We also state a suf-
ficient condition for (C.2) and necessary and sufficient conditions in the IDPV
case. Section 4 is devoted to the estimation procedures of the components of the
HOFD and of the new sensitivity indices. Section 5 presents numerical applica-
tions. Through three toy functions, we estimate generalized indices and compare
their performances with the analytical values. In Section 6, we give conclusions
and discuss future work. Technical proofs and further details are postponed to
the Appendix.

2. Generalized Hoeffding decomposition-Application to SA

To begin with, let introduce some notation. We briefly recall the usual functional
ANOVA decomposition, and Sobol indices. We then state a generalization of this
decomposition, allowing to deal with correlated inputs.

2.1. Notation and first assumptions

We denote by ⊂ the strict inclusion, that is A ⊂ B ⇒ A ∩ B 6= B, whereas we
use ⊆ when equality is possible.
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Let (Ω,A, P ) be a probability space and let Y be the output of a deterministic
model η. Suppose that η is a function of a random vector X = (X1, · · · , Xp) ∈
R

p, p ≥ 1 and that PX is the pushforward measure of P by X,

Y :
(Ω,A, P ) → (Rp,B(Rp), PX) → (R,B(R))

ω 7→ X(ω) 7→ η(X(ω))

Let ν be a σ–finite measure on (Rp,B(Rp)). Assume that PX << ν and let

pX be the density of PX with respect to ν, that is pX =
dPX

dν
.

Also, assume that η ∈ L2
R(R

p,B(Rp), PX). The associated innner product of this
Hilbert space is:

〈h1, h2〉 =
∫

h1(x)h2(x)pXdν(x) = E(h1(X)h2(X))

Here E(·) denotes the expectation. The corresponding norm will be classically
denoted by ‖ · ‖.
Further, V (·) = E[(· − E(·))2] denotes the variance, and Cov(·, ∗) = E[(· −
E(·))(∗ − E(∗))] the covariance.

Let Pp := {1, · · · , p} and S be the collection of all subsets of Pp.
Define S− := S \ Pp as the collection of all subsets of Pp except Pp itself.

Further, let Xu := (Xl)l∈u, u ∈ S \ {∅}. We introduce the subspaces of
L2
R(R

p,B(Rp), PX) (Hu)u∈S , (H
0
u)u∈S and H0 . Hu is the set of all measurable

and square integrable functions depending only on Xu. H∅ is the set of constants
and is identical to (H0

∅ )u∈S . H
0
u, u ∈ S \ ∅, and H0 are defined as follows:

H0
u =

{
hu(Xu) ∈ Hu, 〈hu, hv〉 = 0, ∀ v ⊂ u, ∀ hv ∈ H0

v

}

H0 =

{

h(X) =
∑

u∈S

hu(Xu), hu ∈ H0
u

}

At this stage, we do not make assumptions on the support of X. For u ∈ S\∅,
the support of Xu is denoted by Xu.

2.2. Sobol sensitivity indices

In this section, we recall the classical Hoeffding-Sobol decomposition, and the
Sobol sensitivity indices if the inputs are independent, that is when PX =
PX1 ⊗ · · · ⊗ PXp

.
The usual presentation is done when X ∼ U([0, 1]p) [26], but the Hoeffding de-
composition remains true in general case [31].
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Let x = (x1, · · · , xp) ∈ R
p and assume that η ∈ L

2(Rp, PX). The decomposi-
tion consists in writting η(x) = η(x1, · · · , xp) as the sum of increasing dimension
functions:

η(x) = η0 +

p
∑

i=1

ηi(xi) +
∑

1≤i<j≤p

ηi,j(xi, xj) + · · ·+ η1,··· ,p(x)

=
∑

u⊆{1···p}

ηu(xu) (1)

The expansion (1) exists and is unique under one of the hypothesis:







i)
∫
ηu(xu)dPXi

= 0 ∀ i ∈ u, ∀ u ⊆ {1 · · ·p}
or

ii)
∫
ηu(xu)ηv(xv)dPX = 0 ∀ u, v ⊆ {1 · · · p}, u 6= v

Equation (1) tells us that the model function Y = η(X) can be expanded
in a functional ANOVA. The independence of the inputs and the orthogonality
properties ensure the global variance decomposition of the output as V (Y ) =
∑

u∈S V (ηu(Xu)).
Moreover, by integration, each term ηu has an explicit expression, given by:

η0 = E(X), ηi = E(Y/Xi)−E(Y ), i = 1, · · · , p, ηu = E(Y/Xu)−
∑

v⊂u

ηv, |u| ≥ 2

(2)
Hence, the contribution of a group of variables Xu in the model can be

quantified in the fluctuations of Y . The Sobol indices expressions are defined
by:

Su =
V (ηu)

V (Y )
=

V [E(Y/Xu)]−
∑

v⊂u V [E(Y/Xv)]

V (Y )
, u ⊆ Pp (3)

Furthermore,
∑

u∈S

Su = 1

However, the main assumption is that the input parameters are independent.
This is unrealistic in many cases. The use of expressions previously set up is
not excluded in case of inputs’ dependence, but they could lead to an unobvious
and sometimes a wrong interpretation. Also, technics exploited to estimate them
may mislead final results because most of them are built on the hypothesis of
independence. For these reasons, the objective of the upcoming work is to show
that the construction of sensitivity indices under dependence condition can be
done into a mathematical frame.
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In the next section, we propose a generalization of the Hoeffding decomposi-
tion under suitable conditions on the joint distribution function of the inputs.
This decomposition consists of summands of increasing dimension, like in Ho-
effding one. But this time, the components are hierarchically orthogonal instead
of being mutually orthogonal. The hierarchical orthogonality will be mathemat-
ically defined further. Thus, the global variance of the output could be decom-
posed as a sum of covariance terms depending on the summands of the HOFD.
It leads to the construction of generalized sensitivity indices summed to 1 to
perform well tailored SA in case of dependence.

2.3. Generalized decomposition for dependent inputs

We no more assume that PX is a product measure. Nevertheless, we assume:

PX << ν
where

ν(dx) = ν1(dx1)⊗ · · · ⊗ νp(dxp)
(C.1)

Our main assumption is :

∃ 0 < M ≤ 1, ∀ u ⊆ Pp, pX ≥ M · pXu
pXuc ν-a.e. (C.2)

where uc denotes the complement set of u in Pp. pXu
and pXuc are respec-

tively the marginal densities of Xu and Xuc .

The section is organized as follows: a preliminary lemma gives the main result
to show that H0 is a complete space. Then, this ensures the existence and the
uniqueness of the projection of η onto H0. The generalized decomposition of η
is finally obtained by adding a residual term orthogonal to every summand, as
suggested in [10]. The first part of the reasoning is mostly inspired by Stone’s
work [28], except that our assumptions are more general. Indeed, we have a
relaxed condition on the inputs distribution function. Moreover, the support X
of X is general.

To begin with, let us state some definitions. In the usual ANOVA context,
a model is said to be hierarchical if for every term involving some inputs, all
lower-order terms involving a subset of these inputs also appear in the model.
Correspondingly, a hierarchical collection T of subsets of Pp is defined as follows:

Definition 1. A collection T ⊂ S is hierarchical if for u ∈ T and v a subset of
u, one has v ∈ T .
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The next Lemma is a generalization of the Lemma 3.1 of [28]. As already
mentioned, it will be the key to show the hierarchical decomposition.

Lemma 1. Let T ⊂ S be hierarchical. Suppose that (C.1) and (C.2) hold. Set
δ = 1−

√
1−M ∈]0, 1]. Then, for any hu ∈ H0

u, u ∈ T , we have:

E[(
∑

u∈T

hu(X))2] ≥ δ#(T )−1
∑

u∈T

E[h2
u(X)] (4)

The proof of Lemma 1 is postponed to the Appendix. Our main theorem
follows:

Theorem 1. Let η be any function in L2
R(R

p,B(Rp), PX). Then, under (C.1)
and (C.2), there exist functions η0, η1, · · · , ηPp

∈ H∅ ×H0
1 × · · ·H0

Pp
such that

the following equality holds :

η(X1, · · · , Xp) =
∑

i

ηi(Xi) +
∑

i,j

ηij(Xi, Xj) + · · ·+ ηPp
(X1, · · · , Xp)

=
∑

u∈S

ηu(Xu) (5)

Moreover, this decomposition is unique.

The proof is given in the Appendix.
Notice that, in case where the input variablesX1, · · · , Xp are independent, δ = 1
and Inequality (4) of Lemma 1 is an equality. Indeed, in this case, this equality
is directly obtained by orthogonality of the summands.

The variational counterpart of Theorem 1 is a minimization problem under
conditional constraints.

Proposition 1. Suppose that (C.1) and (C.2) hold. Let (P) be the minimization
problem under constraints:

(P)







min
(η̃u)u∈S

E[(Y −
∑

u∈S

η̃u(Xu))
2]

E(η̃u(Xu)/Xu\i) = 0, ∀ i ∈ u, ∀ u ∈ S \ ∅
Then (P) admits a unique solution η∗ = (ηu)u∈S.

Proof of Proposition 1 is postponed to the Appendix. Notice that a similar
result for the Lebesgue measure is given in [10]. Its purpose was to provide
diagnostics for high-dimensional functions. Here, we will no more exploit this
idea. This will be done in a forthcoming work. Instead, we are going to construct
stochastic sensitivity indices based on the new decomposition (5) and focus on
a specific estimation method for IPDV models.
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2.4. Generalized sensitivity indices

As stated in Theorem 1, under (C.1) and (C.2), the output Y of the model can
be uniquely decomposed as a sum of hierarchically orthogonal terms. Thus, the
global variance has a simplified decomposition into a sum of covariance terms.
So, we can define generalized sensitivity indices.

Definition 2. The sensitivity index Su of order |u| measuring the contribution
of Xu into the model is given by :

Su =
V (ηu(Xu)) +

∑

u∩v 6=u,v Cov(ηu(Xu), ηv(Xv))

V (Y )
(6)

More specifically, the first order sensitivity index Si is given by :

Si =

V (ηi(Xi)) +
∑

v 6=∅
i6∈v

Cov(ηi(Xi), ηv(Xv))

V (Y )
(7)

An immediate consequence is given in Proposition 2 (see proof in the Ap-
pendix) :

Proposition 2. Under (C.1) and (C.2), the sensitivity indices Su previously
defined are summed to 1, i.e.

∑

u∈S\{∅}

Su = 1 (8)

Thus, sensitivity indices are summed to 1. Furthermore, the covariance terms
included in these new indices allow to take into account the inputs dependence.
Thus, we are now able to measure the influence of a variable on the model, espe-
cially when a part of its variability is embedded into the one of other dependent
terms. We can distinguish the full contribution of a variable and its contribution
into another correlated income.

Note that for independent inputs, the summands ηu are mutually orthogonal,
so Cov(ηu, ηv) = 0, u 6= v, and we recover the well known Sobol indices. Hence,
these new sensitivity indices can be seen as a generalization of Sobol indices.

However, the HOFD and subsequent indices are only obtained under con-
straints (C.1) and (C.2). In the following, we give illustrations of distribution
functions satisfying these main assumptions.
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3. Examples of distribution function

This section is devoted to examples of distribution function satisfying (C.1) and
(C.2). The first hypothesis only implies that the reference measure is a product
of measures, whereas the second is trickier to obtain.

In the first part, we give a sufficient condition to get (C.2) for any number p
of input variables. The second part deals with the case p = 2, for which we give
equivalences of (C.2) in terms of copulas.

3.1. Boundedness of the inputs density function

The difficulty of Condition (C.2) is that the inequality has to be true for any
splitting of the set (X1, · · · , Xp) into two disjoint blocks. We give a sufficient
condition for (C.2) to hold in Proposition 3 (the proof is postponed to the
Appendix):

Proposition 3. Assume that there exist M1,M2 > 0 with

M1 ≤ pX ≤ M2 (C.3)

Then, Condition (C.2) holds.

Let give now an example where (C.3) is satisfied.

Example 1: Let ν be the multidimensional gaussian distribution Np(m,Σ)
with

m =






m1

...
mp




 , Σ =






σ2
1 · · · 0

. . .

0 · · · σ2
p






Assume that PX is a Gaussian mixture α · Np(m,Σ) + (1 − α) · Np(µ,Ω),
α ∈]0, 1[ with

µ =






µ1

...
µp




 , Ω =





ϕ2
1 ρ12 · · · ρ1p

· · ·
ρ1p · · · · · · ϕ2

p





Then, (C.3) holds iff the matrix (Ω−1 − Σ−1) is positive definite.

In the next section, we will see that (C.2) has a copula version when p = 2.
We will give some examples of distribution satisfying one of these conditions.
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3.2. Examples of distribution of two inputs

Here, we consider the simpler case of inputs X = (X1, X2). Also, until Section
4, we will assume that ν is absolutely continuous with respect to Lebesgue mea-
sure. The structure of dependence of X1 and X2 can be modelized by copulas.
Copulas [19] give a relationship between a joint distribution and its marginals.
Sklar’s theorem [25] ensures that for any distribution function F (x1, x2) with
marginal distributions F1(x1) and F2(x2), F has the copula representation,

F (x1, x2) = C(F1(x1), F2(x2))

where the measurable function C is unique whenever F1 and F2 are absolutely
continuous.

The next corollary gives in the absolutely continuous case the relationship
between a joint density and its marginal:

Corollary 1. In terms of copulas, the joint density of X is given by:

pX(x1, x2) = c(F1(x1), F2(x2))pX1(x1)pX2(x2) (9)

Furthermore,

c(u, v) =
∂2C

∂u∂v
(u, v), (u, v) ∈ [0, 1]2 (10)

Now, Condition (C.2) may be rephrased in terms of copulas:

Proposition 4. For a two-dimensional model, the three following conditions
are equivalent:

1. pX ≥ M · pX1pX2 ν-a.e. for some 0 < M < 1 (C.4)

2. c(u, v) ≥ M, ∀ (u, v) ∈ [0, 1]2 (C.5)

3. C(u, v) = Muv + (1−M)C̃(u, v), for some copula C̃ (C.6)

The proof of Proposition 4 is postponed to the Appendix.
Hence, the generalized Hoeffding decomposition holds for a wide class of

examples. The first example is the Morgenstern copulas [18]:

Example 2: The expression of the Morgenstern copulas is given by:

Cθ(u, v) = uv[1 + θ(1 − u)(1− v)], θ ∈ [−1, 1]
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For θ ∈]− 1, 1[, (C.6) holds, and

Cθ(u, v) = (1− |θ|)uv + |θ|uv[1 + θ

|θ| (1− u)(1− v)]

Let now consider the class of Archimedian copulas,

C(u, v) = ϕ−1[ϕ(u) + ϕ(v)], u, v ∈ [0, 1] (11)

where the generator ϕ is a non negative two times differentiable function defined
on [0, 1] with ϕ(1) = 0, ϕ′(u) < 0 and ϕ′′(u) > 0, ∀ u ∈ [0, 1].

A sufficient condition for (C.5) is given in Proposition 5:

Proposition 5. If there exist M1, M2 > 0 such that:

−ϕ′(u) ≥ M1 ∀ u ∈ [0, 1] (12)

d

du
(
1

2

1

ϕ′(u)2
) ≥ M2, ∀ u ∈ [0, 1] (13)

Then, Condition (C.5) holds.

The proof is straightforward. Now, we will see three illustrative Archimedian
copulas satisfying (C.5).

Example 3: The Frank copula is characterized by the generator:

ϕ1(x) = log

(
e−θx − 1

e−θ − 1

)

, θ ∈ R \ {0}

Condition (C.5) holds, and c(u, v) ≥ −θ(e−θ − 1)e−2θ if θ > 0, c(u, v) ≥
−θ(e−θ − 1) elsewhere.

The next two examples also satisfy (C.5) by the intermediate Proposition 5.

Example 4: Let α < 0, θ > 0 and β with β < −αe−θ. Set

ϕ2(x) = −α

θ
e−θx + βx+ (

α

θ
e−θ − β), x ∈ [0, 1] (14)

Example 5: Let C < 0 and set

ϕ3(x) = x lnx+ (C − 1)x+ (1− C), x ∈ [0, 1] (15)

Leaving the class of copulas, we now directly work with the joint density
function. Proposition 6 gives a general form of distribution for our framework:
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Proposition 6. If pX has the form

pX(x1, x2) = α · fX1(x1)fX2(x2) + (1− α) · gX(x1, x2), α ∈]0, 1[ (16)

where fX1 , fX2 are univariate density functions, and gX is any density function
(with respect to ν) with marginals fX1 and fX2 , then pX satisfies (C.5).

The proof is straightforward.

Example 6: As an illustration of Proposition 6, take ν = νL, fX = fX1fX2

a normal density with a diagonal covariance matrix Σ, and gX a normal density
of covariance matrix Ω, with Ωii = Σii, i = 1, 2. Notice that because a copula of
Gaussian mixture distribution is a mixture of Gaussian copulas (see [20]), this
example can be directly recovered by the copula approach.

Example 7: Let generalize Example 6. If PX is a Gaussian mixture

α ·N2(m,Σ) + (1 − α) ·N2(µ,Ω), α ∈]0, 1[

with

m =

(
m1

m2

)

, µ =

(
µ1

µ2

)

, Σ =

(
σ2
1 0
0 σ2

2

)

, Ω =

(
ω2
1 ρω1ω2

ρω1ω2 ω2
2

)

, ρ ∈]− 1, 1[

then (C.4) holds iff ω2
1 ≤ σ2

1 and ω2
2 ≤ σ2

2 .

Thus, for many distributions, the generalized decomposition holds, and gen-
eralized sensitivity indices may thus be defined.

For the remaining part of the paper, we will assume that the set of inputs is
an IPDV. If p is odd, we will assume that an input variable is independent to
all the others.
The next section is devoted to the estimation of HOFD components. The sim-
plest case of a single pair of dependent variables is first discussed. Then, the
more general IPDV case is studied. In this last part, first and second order
indices are defined to measure the contribution of each pair of dependent vari-
ables and each of its components in the model. Indices of order greater than one
involving variables from different pairs will not not be studied here.

4. Estimation

Using the property of hierarchical orthogonality (H0
u ⊥ H0

v , ∀ v ⊂ u), we will
see that the summands of the decomposition are solution of a functional linear
system. For u ∈ S, the projection operator onto H0

u is denoted by PH0
u
.

In this section, we present the HOFD terms computation, based on the res-
olution of a functional linear system. The result relies on projection operators
previously set up. Further, we expose the linear system estimation for practice.
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4.1. Models of p = 2 input variables

This part is devoted to the simple case of bidimensional models. Let

Y = η(X1, X2)

Assuming that Conditions (C.1) and (C.2) both hold, we proceed as follows:

Procedure 1

1. HOFD of the output:

Y = η0 + η1(X1) + η2(X2) + η12(X1, X2) (17)

2. Projection of Y = η(X) on H0
u, ∀ u ⊆ {1, 2}. As H0

u ⊥ H0
v , ∀ v ⊂ u, we

obtain:







Id 0 0 0
0 Id PH0

1
0

0 PH0
2

Id 0

0 0 0 Id













η0
η1
η2
η12







=







PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)







(18)

3. Computation of the right-hand side vector of (18):







PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)







=







E(η)
E(η/X1)− E(η)
E(η/X2)− E(η)

η − E(η/X1)− E(η/X2) + E(η)







(19)

In this frame, we have:

Proposition 7. Let η be any function of L2
R(R

p,B(Rp), PX). Then, under
(C.1) and (C.2), the linear system

(S)







Id 0 0 0
0 Id PH0

1
0

0 PH0
2

Id 0

0 0 0 Id













h0

h1

h2

h12







=







PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)







(20)

admits in h = (h0, · · · , h12) ∈ H∅ × · · · × H0
12 the unique solution h∗ =

(η0, η1, η2, η12).

4. Reduction of the system (18). As the constant term corresponds to the
expected value of η, and the residual one can be deduced from the others,
the dimension of the system (20) can even be reduced to:

(
Id PH0

1

PH0
2

Id

)

︸ ︷︷ ︸

A2

(
η1
η2

)

︸ ︷︷ ︸

∆

=

(
E(η/X1)− E(η)
E(η/X2)− E(η)

)

︸ ︷︷ ︸

B

(21)
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5. Practical resolution: The numerical resolution of (21) is achieved by an
iterative Gauss Seidel algorithm [13] which consists first in decomposing
A2 as a sum of lower triangular (L2) and strictly upper triangular (U2)
matrices.
Further, the technique uses an iterative scheme to compute ∆. At step
k + 1, we have:

∆(k+1) :=

(

∆
(k+1)
1

∆
(k+1)
2

)

= L−1
2 (B − U2 ·∆(k)) (22)

Using expression of A2, we get:

∆(k+1) =

(

E(Y −∆
(k)
2 /X1)− E(Y −∆

(k)
2 )

E(Y −∆
(k+1)
1 /X2)− E(Y −∆

(k+1)
1 )

)

(23)

6. Convergence of the algorithm: now, we hope that the Gauss Seidel algo-
rithm converges to the true solution. Looking back at (18) , we see that we
only have to consider PH0

1
(respectively PH0

2
) restricted to H0

2 (respectively

to H0
1 ).

Under this restriction, let us define the associated norm operator as :

‖PH0
i
‖2 := sup

E(U2)=1

U∈H0
j

E[PH0
i
(U)2], i, j = 1, 2, j 6= i

As explained in [7], Gauss Seidel algorithm converges to the true solution
∆ if A2 is striclty diagonally dominant, which is implied by :

‖PH0
i
‖ < ‖Id‖, i = 1, 2 (24)

i.e.

sup
E(U2)=1

U∈H0
j

E[PH0
i
(U)2] < 1, i = 1, 2, j 6= i (25)

Equality (19) reveals that PH0
i
(U) = E(U/Xi) − E(U). Hence, by the

Jensen inequality [12] for conditional expectations, ‖PH0
i
‖, i = 1, 2 ad-

mits an upper bound:

Take U ∈ H0
1 :

‖PH0
2
‖ = sup

E(U2)=1

U∈H0
1

E[(E(U/X2)− E(U))2]

= sup
E(U2)=1

U∈H0
1

E[E(U/X2)
2] as U ∈ H0

1

≤ sup
E(U2)=1

U∈H0
1

E[E(U2/X2)] = 1 by Jensen
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The same holds for U ∈ H0
2 , and we also have ‖PH0

2
‖ ≤ 1.

Moreover, the Jensen’s inequality is strict if U is not Xi-measurable. As U
is a function of Xj (that is j = 2 if i = 1 and conversely), the condition of
convergence holds if X1 is not a measurable function of X2. Hence, Gauss
Seidel algorithm converges if X1 is not a function of X2.

7. Estimation procedure: Suppose that we get a sample of n observations
(Yk,Xk)k=1,··· ,n.

• Estimation of the components of the HOFD: the iterative scheme
(23) requires to estimate conditional expectations. As extended in Da
Veiga et al [6], we propose to estimate them by local polynomial re-
gression at each point of observation. Then, we use the leave-one-out
technique to set the learning sample and the test sample. Moreover,
as the local polynomial method can be summed up to a generalized
least squares (see Fan and Gijbels [8]), the Sherman-Morrison for-
mula [24] is applied to reduce the computational time.
A more detailed procedure is given in the Appendix. The iterative al-
gorithm is easy to implement. We stop when ‖∆(k+1) − ∆(k)‖ ≤ ε,
for a small positive ε.

Once (η1, η2) have been estimated, we estimate η0 by the empirical
mean of the output. Then, an estimation of η12 is obtained by sub-
straction.

• We use empirical variance and covariance estimation to estimate sen-
sitivity indices S1, S2 and S12.

4.2. Generalized IPDV models

Assume that the number of inputs is even, so p = 2k, k ≥ 2. We note each group

of dependent variables as X(i) := (X
(i)
1 , X

(i)
2 ), i = 1, · · · , k. By rearrangement,

we may assume that:

X = (X1, X2
︸ ︷︷ ︸

X(1)

, · · · , X2k−1, X2k
︸ ︷︷ ︸

X(k)

)

SA for IPDV models has already been treated in [11]. Indeed, they proposed
to estimate usual sensitivity indices on groups of variables via Monte Carlo
estimation. Thus, they have interpreted the influence of every group of variables
on the global variance. Here, we will go further by trying to measure the influence
of each variable on the output, but also the effets of the independent pairs.
To begin with, as a slight generalization of [26] and used in [11], let apply the
Sobol decomposition on groups of dependent variables,

η(X) = η0 + η1(X
(1)) + · · ·+ ηk(X

(k)) +

k∑

|u|=2

ηu(X
(u))
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where for u = {u1, · · · , ut} and t = |u|, we set X(u) = (X(u1), · · · , X(ut)).
Furthermore, 〈ηu, ηv〉 = 0, ∀ u 6= v.

Thus, we obtain independent components of IPDV. Under the assumptions
discussed in the previous section, we can apply the HOFD of each of these
components, that is,

ηi(X
(i)) = ηi(X

(i)
1 , X

(i)
2 ) = ϕi0 + ϕi,1(X

(i)
1 ) + ϕi,2(X

(i)
2 ) + ϕi,12(X

(i))

with 〈ϕi,u, ϕi,v〉 = 0, ∀ v ⊂ u ⊆ {1, 2}. In this way, let define some new
generalized indices for IPDV models:

Definition 3. For i = 1, · · · , k, the first order sensitivity index measuring the

contribution of X
(i)
1 (respectively X

(i)
2 ) on the output of the model is:

Si,1 =
V (ϕi,1) + Cov(ϕi,1, ϕi,2)

V (Y )
,

(

Si,2 =
V (ϕi,2) + Cov(ϕi,1, ϕi,2)

V (Y )

)

(26)

The second order sensitivity index for the pair X(i), i = 1, · · · , k, is defined
as:

Si,12 =
V (ϕi,12)

V (Y )
(27)

The estimation procedure of these indices is quite similar to Procedure 1:

Procedure 2

1. Estimation of (ηi)i=1,··· ,k: as reminded in Part 2.2 with Equations (2),
ηi = E(Y/X(i)) − E(Y ). Step 7 of Procedure 1 gives method to estimate
the conditional expectations. So that, we will have estimations of ηi, i =
1, · · · , k.

2. For i = 1, · · · , k, we apply step 2 to step 7 of Procedure 1, considering ηi
as the output.

If p is odd, the procedure is the same except that the influence of the inde-
pendent variable is measured by a Sobol index, as it is independent from all the
others.
The next part is devoted to numerical examples.

5. Numerical examples

In this section, we study three examples with dependent input variables. We
consider IPDV models and a Gaussian mixture distribution on the input vari-
ables. We choose covariance matrices of the mixture satisfying conditions of
Example 1.
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We give estimations of our new indices, and compare them to the analytical
ones, computed from expressions (6). We also compute dispersions of the esti-
mated new indices.
In [6], Da Veiga et al. proposed to estimate the classical Sobol indices Su =
(V [E(Y/Xu)]−

∑

v⊂u V [E(Y/Xv)])/V (Y ), u ⊆ Pp, by nonparametric tools. In-
deed, the local polynomial regression were used to estimate conditional moments
E(Y/Xu), u ⊆ Pp. This method, used further, will be called Da Veiga procedure
(DVP). Results given by DVP are compared with the ones given by our method.
The goal is to show that the usual sensitivity indices are not appropriate in the
dependence frame, even if a relevant estimation method is used.

5.1. Two-dimensional IPDV model

Let consider the model

Y = X1 +X2 +X1X2

Here, ν and PX are of the form given by Example 1, with m = µ = 0.

Thus, the analytical decomposition of Y is

η0 = E(X1X2), η1 = X1, η2 = X2 η12 = X1X2 − E(X1X2)

For the application, we implement Procedure 1 in Matlab software. We pro-
ceed to L = 50 simulations and n = 1000 observations. Parameters were fixed
at σ1 = σ2 = 1, ϕ2

1 = ϕ2
2 = 0.5, ρ12 = 0.4 and α = 0.2.

In Table 1, we give the estimation of our indices and their standard deviation
(indicated by ±·) on L simulations. In comparison, we give the analytical value
of each index.

The analytical classical Sobol indices are difficult to obtain, but we give
estimators of the classical Sobol indices with DVP.

Table 1

Estimation of the new and DVP indices with ρ12 = 0.4

S1 S2 S12
∑

u Su

New
indices

Estimation 0.42± 0.041 0.41± 0.043 0.17± 0.026 1± 9.10−16

Analytical 0.39 0.39 0.22 1

DVP
indices Estimation 0.64± 0.045 0.65± 0.044 0.41± 0.038 1.7± 0.09

We notice that estimations with our method give quite good results in com-
parison with their analytical values. The estimation error of the interaction term
is due to the fact that the component η̂12 is obtained by difference between the
output and the other estimated components.
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The DVP indices are are difficult to interpret as the sum is higher than 1.
In our method, it would be relevant to separate the variance part to the

covariance one in the first order indices. Indeed, in this way, we would be able
to get the part of variability explained by Xi alone in Si, and its contribution
hidden in the dependence with Xj . We note Sv

i the variance contribution alone,
and Sc

i the covariance contribution, that is

Si =
V (Xi)

V (Y )
︸ ︷︷ ︸

Sv
i

+
Cov(Xi, Xj)

V (Y )
︸ ︷︷ ︸

Sc
i

, i = 1, 2, j 6= i

The new indices estimations given in Table 1 are decomposed in Table 2. As
previously, the number at the right of ± indicates the standard deviation on L
simulations.

Table 2

Estimation of Sv
i and Sc

i with ρ12 = 0.4

Sv
i Sc

i Si

X1 0.28± 0.04 0.14± 0.01 0.42± 0.041

X2 0.27± 0.043 0.14± 0.01 0.41± 0.043

Analytical 0.25 0.14 0.39

For each index, the covariate itself explains 28% (in estimation, 25% in re-
ality) of the part of the total variability. However, the contribution embedded
in the correlation is not negligible as it represents 14% of the total variance.
Considering the shape of the model, and coefficients of parameters distribution,
it is quite natural to get the same contribution of X1 and X2 into the global
variance. Also, as their dependence is quite important with a covariance term
equals to 0.4, we are not surprised by the relatively high value of Sc

1 (resp. Sc
2).

From now, we take ρ12 = 0, i.e. we assume that the inputs are independent.
Let compare our new estimated indices with their analytical values in Table 3.
We again decompose new indices into a variance (Sv

i ) and a covariance (Sc
i )

contribution.

Table 3

Comparison between analytical and estimated indices with ρ12 = 0

New indices Theoretical

Sv
i Sc

i Si Si

X1 0.39± 0.039 −0.01± 0.01 0.38± 0.036 0.375

X2 0.38± 0.045 −0.01± 0.024 0.37± 0.037 0.375

X1X2 0.26± 0.038 −0.01± 0.01 0.25± 0.027 0.25

Thus, the new indices are well tailored if we have a small idea on inputs depen-
dence in a system. Indeed, Table 3 shows that our new indices take dependence

imsart-ejs ver. 2011/12/06 file: ps-template.tex date: March 9, 2012



G. Chastaing et al./Generalized ANOVA Decomposition for Dependent Variables 19

into account if it exists, and the covariance contribution is estimated by 0 if not.
New indices recover the classical Sobol indices in case of independence.

5.2. Linear Four-dimensional model

The test model is

Y = 5X1 + 4X2 + 3X3 + 2X4

Actually, Condition (C.2) only needs to be satisfied on groups of correlated
variables.
Let consider the two blocks X(1) = (X1, X3) and X(2) = (X2, X4) of correlated
variables.
The previous form of density can be taken for X(1) and X(2). PX(i) is then the
Gaussian mixture αi · N2(0, I2) + (1 − αi) · N2(0,Ωi), i = 1, 2. The analytical
sensitivity indices are given by (26) & (27).

For L = 50 simulations and n = 1000 observations, we took ϕ
2(1)
1 = ϕ

2(1)
2 =

0.5, ϕ
2(2)
1 = 0.7, ϕ

2(2)
2 = 0.3, ρ

(1)
12 = 0.4, ρ

(2)
12 = 0.37 and α1 = α2 = 0.2.

Figure 1 displays the dispersion of indices of first order for all variables and
second order for grouped variables. We compare them to their analytical values.
In the same figure, we also represented the estimators of classical Sobol indices
with DVP.
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Fig 1. Boxplots representation of new indices-Comparison with analytical and DVP indices

We see that X1 has the biggest contribution, whereas the influence of X4

is very low. It reflects well the model if we look at the coefficients of Xi, i =
1, · · · , 4. Also, interaction terms are well estimated, as they are closed to 0. For
each case, the dispersion on 50 simulations is very low.
As for the DVP estimation, it is once again very high compared with the true
indices values.

5.3. The Ishigami function

This function is well known in SA ([23]). It is defined by:

Y = sin(X1) + a sin2(X2) + bX3
3 sin(X1)

We assume that X3 is the independent variable, and that X1 and X2 are corre-
lated. PX is again the Gaussian mixture α ·N3(0, I3) + (1− α) ·N3(0,Ω).

With L = 50 simulations of n = 1000 observations, we fixed parameters of
distribution at ϕ2

1 = 0.15, ϕ2
2 = 0.85, ϕ2

3 = 0.75, ρ12 = 0.3 and α = 0.2.
In Figure 2, the dispersion of the new measures is represented for fixed b = 0.1
and different values of a. In addition, the analytical new indices and estimated
classical Sobol indices with DVP are displayed.
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Fig 2. Boxplots of new indices for different values of a for Ishigami function

Every boxplot shows that there is a small dispersion. For all estimations,
DVP indices are larger that the new ones. The figure clearly shows that, for all
values of a, the sum of these four indices is greater than 1. It again shows their
non adaptation to a situation of dependence.
If we have a look on the values taken by our new sensitivity indices, we see
that, for small values of a, the variable X1 contributes the most to the model’s
variability. This role decreases as a increases, and X2 then gets the biggest
contribution. For any value of a, the input X3 plays a very negligible role, which
seems realistic as b is a small fixed value. As for the interaction index S12, it is
getting bigger with the increasing importance of a, but the contribution remains
low.

6. Conclusions and Perspectives

The Hoeffding decomposition and associated Sobol indices have been widely
studied in SA over past years. Recently, a literature appears to treat the case of
dependent input variables, in which authors propose different ways to deal with
dependence. The goal of this paper is to conciliate the problem of inputs depen-
dence with the Hoeffding decomposition. Indeed, we study a functional ANOVA
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decomposition in a generalized inputs distribution frame. Thus, we show that a
model can be uniquely decomposed as a sum of hierarchically orthogonal func-
tions of increasing dimension. Also, this approach generalizes the Hoeffding’s
one, as we recover it in case of independence.
Similarly to the classical Sobol decomposition, this leads to the construction of
new sensitivity indices. They consist of a variance and a covariance contribution
able to take into account the possible correlation among variables. In case of
independence, these indices are the classical Sobol indices. However, the indices
construction is only possible under specific assumptions on the joint distribution
function of the inputs. We expose few cases that satisfy these assumptions for
any p-dimensional models. More specifically, for two-dimensional models, the
required assumption is equivalent to assumptions on copulas. In this context,
we give examples satisfying one of these assumptions .
Focused on the IPDV models, summands of the decomposition are estimated
thanks to projection operations. This leads to the numerical resolution of func-
tional linear systems. The strength of this method is that it does not require to
make assumptions on the form of the model or on the structure of dependence.
We neither use meta-modelling and avoid in this way many sources of errors.
Through three applications on test models, we observe the importance of con-
sidering the inputs correlation, and show how our method could catch it. The
comparison with estimators of classical indices with DVP shows that the Sobol
indices are not appropriate in case of correlations, even when using nonpara-
metric method. Also, when inputs independence holds, the new indices remain
well suited to measure sensitivity into a model.
Nevertheless, only considering IPDV models for estimation is restrictive. The
perspective is to explore other estimation methods suitable for more general
models. Also, we intend to lead a systematic study on copulas satisfying or not
our assumptions.

Appendix A: Generalized Hoeffding decomposition

A.1. Generalized decomposition for dependent inputs

The upcoming proof follows the guideline of the proof of Lemma 3.1 in Stone [28].

Proof of Lemma 1

By induction on the cardinal of T , let show that

H(n) : ∀ T/#(T ) = n, E[(
∑

u∈T hu(X))2] ≥ δ#(T )−1
∑

u∈T E[h2
u(X)]

• H(1) is obviously true, as T is reduced to a singleton

• Let n ∈ N
∗. Suppose that H(n′) is true for all 1 ≤ n′ ≤ n. Let T such that

#(T ) = n+ 1. We want to prove H(n+ 1).

Choose a maximal set r of T , i.e. r is not a proper subset of any set u in T . We
show first that
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E[(
∑

u∈T

hu(X))2] ≥ M · E(h2
r(X)) (28)

– If #(r) = p, by definition of H0
r , we get E[(

∑
u∈T hu(X))2] ≥ E(h2

r(X)) ≥
ME(h2

r(X)) as M ≤ 1.

– If 1 ≤ #(r) ≤ p − 1, set X = (X1, X2), where X1 = (Xl)l/∈r and X2 =
(Xl)l∈r. By Condition (C.2), it follows that

pX ≥ M · pX1pX2

As a consequence,

E[(
∑

u∈T hu(X))2] =
∫
X1

∫
X2

[hr(x2) +
∑

u 6=r hu(x1, x2)]
2pXν(dx1, dx2)

≥ M
∫
X1

∫
X2

[hr(x2) +
∑

u 6=r hu(x1, x2)]
2pX1pX2ν1(dx1)ν2(dx2)

≥ M
∫
X1

E[(hr(X2) +
∑

u 6=r hu(x1, X2))
2]pX1ν1(dx1)

By maximality of r and by definition of H0
r ,

∗ If u ⊂ r, hu only depends on X2 and by orthogonality,

E(hu(X2)hr(X2)) = 0

∗ If u 6⊂ r, hu depends on X1 fixed at x1, and Xu
2 = (Xl)l∈r∩u, so

hu ∈ H0
r∩u, with r ∩ u ⊂ r, it comes then

E(hu(x1, X2)hr(X2)) = 0

Thus,

E[(
∑

u∈T

hu(X))2] ≥ M

∫

X1

E(h2
r(X2))pX1ν1(dx1)

= M · E(h2
r(X))

So (28) holds for any size of any maximal sets of T .

By using (28) with h̃r = hr and h̃u = −βhu, ∀ u 6= r, we get

E[(hr(X)− β
∑

u 6=r

hu(X))2] ≥ ME(h2
r(X)) (29)

Taking β =
E[hr(X)

∑
u 6=r hu(X)]

E[(
∑

u 6=r hu(X))2]
, it follows that:

E[(hr(X)− β
∑

u 6=r hu(X))2] ≥ ME(h2
r(X))

that is E[h2
r(X)]−

[E(hr(X)
∑

u 6=r hu(X))]2

E[(
∑

u 6=r hu(X))2]
≥ ME(h2

r(X))

Hence,
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[E(hr(X)
∑

u 6=r

hu(X))]2 ≤ (1−M) · E(h2
r(X)) · E[(

∑

u 6=r

hu(X))2] (30)

This implies

E[(
∑

u

hu(X))2] ≥ (1−
√
1−M)



E(h2
r(X)) + E[(

∑

u 6=r

hu(X))2]



 (31)

Set x = hr(X) and y =
∑

u 6=r hs(X).(31) is rephrased as

‖x+ y‖2 ≥ (1−
√
1−M){‖x‖2 + ‖y‖2} (32)

Further, (30) is 〈x, y〉 ≥ −
√
1−M‖x‖ · ‖y‖. Thus,

‖x‖2 + ‖y‖2 ≥ 2〈x, y〉
≥ − 2√

1−M
〈x, y〉 by (32)

So ‖x+ y‖2 ≥ (1−
√
1−M){‖x‖2 + ‖y‖2}.

As H(n) is supposed to be true and (31) holds, it follows that:

E[(
∑

u hu(X))2] ≥ δ
[
E(h2

r(X)) + δn−1 ∑
u 6=r E(h

2
u(X))

]

≥ δn
∑

u E(h2
u(X)) as δ ∈ ]0, 1]

= δ#(T )−1 ∑
u E(h2

u(X))

Hence, H(n+ 1) holds.

We can deduce that H(n) is true for any collection T of Pp.

Proof of Theorem 1

Let define the vector space K0 = {∑u∈S− hu(Xu), hu ∈ H0
u,∀ u ∈ S−}.

In the first step, we will prove that K0 is a complete space to prove the existence
and uniqueness of the projection of η in K0, thanks to the projection theorem [16].
Secondly, we will show that η is exactly equal to the decomposition into H0, and finally,
we will see that each term of the summand is unique.

• We show that H0
u is closed into Hu (as Hu is a Hilbert space).

Let (hn,u)n be a convergent sequence of H0
u with hn,u → hu. As (hn,u)n ∈ H0

u ⊂
Hu complete, hu ∈ Hu. Let v ⊂ u, and hv ∈ H0

v :

〈hu − hn,u, hv〉 = 〈hu, hv〉 −〈hn,u, hv〉
↓ q

0 0 as H0
u ⊥ H0

v
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Thus, 〈hu, hv〉 = 0, so that hu ∈ H0
u. H

0
u is then a complete space.

Let (hn)n be a Cauchy sequence in K0 and we show that each component is of
Cauchy and that hn → h ∈ K0.

As hn ∈ K0, hn =
∑

u∈S− hn,u, hn,u ∈ H0
u. It follows that :

‖hn − hm‖2 = ‖∑u(hn,u − hm,u)‖2
≥ δ#(S−)−1 ∑

u∈S− ‖hn,u − hm,u‖2 by Inequality (4)

As (hn)n is a Cauchy sequence, by the above inequality, (hn,u)n is also Cauchy.
As hn,u → hu ∈ H0

u, we deduce that hn −→
n→∞

∑
u∈S− hu = h ∈ K0.

Thus, K0 is complete. By the projection theorem, we can deduce there exists a
unique element into K0 such that :

‖η −
∑

u∈S−

ηu‖2 ≤ ‖η − h‖2 ∀ h ∈ K0

• Decomposition of η: following Hooker [10], we introduce the residual term as

ηPp(X1, · · · , Xp) = η(X1, · · · , Xp)−
∑

u∈S−

ηu(Xu)

By projection, 〈η − ∑
v∈S− ηv, hu〉 = 0 ∀ u ∈ S−, ∀ hu ∈ H0

u. Hence, η(X) =∑
u∈S ηu(Xu), ηu ∈ H0

u, ∀ u ∈ S, and this decomposition is well defined.

• Terms of the summand are unique: assume that η =
∑

u∈S ηu =
∑

u∈S η̃u, η̃u ∈
H0

u.
By Lemma 1, it follows that

∑
u∈S(ηu − η̃u) = 0

‖∑u∈S(ηu − η̃u)‖2 ≥ δ#(S)−1
∑

u∈S ‖ηu − η̃u‖2
}

⇒ ‖ηu − η̃u‖2 = 0 ∀ u ∈ S

Proof of Proposition 1

Let first prove the following equivalence :

∫
ηu(xu)ηv(xv)pX(x)dν(x) = 0 ∀v ⊂ u, ∀ ηv

m∫
ηu(xu)pX(x)dνi(xi) dνuc(xuc) = 0 ∀u ∈ S, ∀i ∈ u

Let v ⊂ u and i ∈ u \ v, then

∫
ηv(xv)ηu(xu)pX(x)dν(x) =

∫
ηv(xv)ηu(xu)pX(x)dνi(xi) dνuc(xuc) dνu\i(xu\i)

=

∫
ηv(xv)

(∫
ηu(xu)pX(x)dνi(xi) dνuc(xuc)

)
dνu\i(xu\i)

= 0 by assumption
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Conversely, assume that ∃ u, ∃i ∈ u such that
∫
ηu(xu)pX(x)dνi(xi) dνuc(xuc) 6=

0, then,

ηv =

∫
ηu(xu)pX(x)dνi(xi) dνuc(xuc) with v = u \ i

and

∫
ηu(xu)ηv(xv)pX(x)dν(x) =

∫
ηu(xu)

(∫
ηu(xu)pX(x)dνi dνuc

)
pX(x)dνi dνuc dνu\i

=

∫(∫
ηu(xu)pX(x)dνi(xi) dνuc(xuc)

)2

dνu\i(xu\i)

> 0

There is a contradiction, so that
∫
ηu(xu)pX(x)dνi(xi) dνuc(xuc) = 0 ∀i ∈ u,∀u.

The second expression can be rewritten as :
∫

ηu(xu)pX(x)dνi(xi) dνuc(xuc) = E(ηu/Xu\i) ∀i ∈ u,∀u ∈ S

Then, by Theorem 1, the minimization problem (P) admits a unique solution.

A.2. Generalized sensitivity indices

Proof of Proposition 2

Under (C.1) and (C.2), Theorem 1 states the existence and the uniqueness decom-
position of η:

η(X) =
∑

u∈S

ηu(Xu),

with H0
u ⊥ H0

v , ∀ v ⊂ u. Therefore,

E(η(X)) = E(
∑

u∈S

ηu(Xu)) = η0

and

V (Y ) = V (η(X)) = E(η2(X))− η2
0

=
∑

u 6=∅

E(η2
u(Xu)) +

∑

u 6=v

E(ηu(Xu)ηv(Xv))

=
∑

u 6=∅

V (ηu(Xu)) +
∑

u 6=∅
u 6=Pp

∑

v 6=∅
u*v,v*u

E(ηu(Xu), ηv(Xv))

=
∑

u 6=∅


V (ηu(Xu)) +

∑

v
u∩v 6=u,v

Cov(ηu(Xu), ηv(Xv))




Thus, (6) holds, and equalities (7) and (8) follow obviously.
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Appendix B: Examples of distribution function

B.1. Boundedness of the inputs density function

Proof of Proposition 3
Let u ⊂ Pp, and 0 < M1 ≤ pX ≤ M2. As pXu and pXc

u
are marginals, they are upper

bounded by M2.

As a consequence, pXupXuc ≤ M2
2

M1
M1 ≤ M2

2

M1
pX , so that pX ≥ M1M

−2
2 pXupXuc ,

with 0 < M1M
−2
2 < 1.

Proof of Example 1

• ν is a product of measure as
dν

dνL
=

∏p
i=1 νi(xi), with νi ∼ N(mi, σ

2
i ). So

ν =

p⊗

i=1

νi

• pX is given by

pX(x) =
dPX

dν
(x) =

dPX

dνL
× dνL

dν
(x)

= α+ (1− α)

∣∣∣∣
Σ

Ω

∣∣∣∣
1/2

exp−1

2
t(x−m)(Ω−1 − Σ−1)(x−m) (33)

First, we have pX(x) ≥ α > 0.
Further, the sufficient and necessary condition to have pX ≤ M2 < ∞ is to get
(Ω−1 − Σ−1) positive definite. Indeed, if (Ω−1 − Σ−1) admits a negative eigen-
value, pX can not be bounded. Thus, 0 < α ≤ pX ≤ M2 iff (Ω−1 − Σ−1) is
positive definite.

B.2. Examples of distribution of two inputs

Proof of Proposition 4

Condition (C.5) is immediate with Equation 9. Let prove that (C.5) is equivalent
to (C.6).

If (C.6) holds, then c(u, v) ≥ M . Conversely, we assume that 0 < M < 1, and

C̃(u, v) =
C(u, v)−Muv

1−M

imsart-ejs ver. 2011/12/06 file: ps-template.tex date: March 9, 2012



G. Chastaing et al./Generalized ANOVA Decomposition for Dependent Variables 28

It is enough to show it is a copula : Obviously, C̃(0, u) = C(u, 0) = 0 and C̃(1, u) =

C̃(u, 1) = u ∀ u ∈ [0, 1]. By second order derivation, it comes that c̃(u, v) =
c(u, v)−M

1−M
,

so c̃(u, v) ≥ 0 by hypothesis (C.5).

Appendix C: Estimation

C.1. Model of p = 2 input variables

Proof of Proposition 7

• We first show first that (S) admits an unique solution.

Under (C.1) and (C.2), by Theorem 1, the decomposition of η(X) is unique and

η(X1, X2) = η0 + η1(X1) + η2(X2) + η12(X1, X2)

with






η0 ∈ H∅

ηi ∈ H0
i ⊥ H∅, i = 1, 2

η12 ∈ H0
12 ⊥ H0

i , i = 1, 2, H0
12 ⊥ H∅

Thus,




Id 0 0 0
0 Id PH0

1
0

0 PH0
2

Id 0

0 0 0 Id







η0
η1
η2
η12


 =




PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)


 (34)

So (η0, η1, η2, η12) is solution of (S).

Now, assume there exists an another solution of the system, say (η̃0, · · · , η̃Pp ) ∈
H∅ × · · · ×H0

Pp
, then





η0 − η̃0 = 0
η1 − η̃1 + PH0

1
(η2 − η̃2) = 0

PH0
2
(η1 − η̃1) + η2 − η̃2 = 0

η12 − η̃12 = 0

⇒





η0 = η̃0
PH0

1
(η1 − η̃1 + η2 − η̃2) = 0

PH0
2
(η1 − η̃1 + η2 − η̃2) = 0

η12 = η̃12

⇒






η0 = η̃0
η1 − η̃1 + η2 − η̃2 ∈ H0⊥

1 ∩H0⊥
2

η12 = η̃12

As η1 − η̃1 ∈ H0
1 and η2 − η̃2 ∈ H0

2 , it follows that
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{
〈η1 − η̃1, η1 − η̃1 + η2 − η̃2〉 = 0
〈η2 − η̃2, η1 − η̃1 + η2 − η̃2〉 = 0

⇒
{

‖η1 − η̃1‖2 + 〈η1 − η̃1, η2 − η̃2〉 = 0
‖η2 − η̃2‖2 + 〈η1 − η̃1, η2 − η̃2〉 = 0

⇒ ‖η1 − η̃1 + η2 − η̃2‖2 = 0
⇒ η1 − η̃1 + η2 − η̃2 = 0

As 0 can be uniquely decomposed into H0 as a sum of zero, then,

η1 − η̃1 = η2 − η̃2 = 0

• Let now compute 


PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)




First of all, it is obvious that the constant term η0 = E(η) and that η12 is
obtained by subtracting η with all other terms of the right of the decomposition.

Now, let us use the projector’s property of embedded spaces. Indeed, as H0
i ⊂ Hi,

∀ i = 1, 2, it comes

PH0
i
(η) = PH0

i
(PHi

(η)) = PH0
i
[E(η/Xi)︸ ︷︷ ︸

ϕ(Xi)

]

ϕ is a function of Xi, so it can be decomposed into the following expression :

ϕ(Xi) = ϕ0 + ϕi(Xi), ϕ0 ∈ H∅, ϕi ∈ H0
i

with ϕ0 = E(ϕ) = E(η).
Hence, one can easily deduce PH0

i
(η), i = 1, 2, as the term ϕi = E(η/Xi)−E(η)

We obtain




PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)


 =




E(η)
E(η/X1)− E(η)
E(η/X2)− E(η)

η − E(η/X1)− E(η/X2) + E(η)


 (35)

C.2. Numerical procedure

Gauss-Seidel algorithm requires the estimation of conditional expectation at each
iteration. To do this, we use the local polynomial estimation with a leave-one-
out technique. To considerably reduce time cost in application, the Sherman-
Morrison formula is exploited.
We are going to review these methods for estimating E(Y/X = x), when Y and
X are supposed to be real random variable.
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The local polynomial estimation [8] consists in approximating m(x) = E(Y/X =
x) by a qth-order polynomial fitted by a weight least squared estimation.

An explicit solution of m̂(x) is given by :

m̂(x) = t(1 0 · · · 0)[tX(x)D(x)X(x))]−1 · tX(x)D(x)Y (36)

with

X(x) =






1 X1 − x · · · (X1 − x)q

...
...

...
1 Xn − x · · · (Xn − x)q




 D(x) =










K

(
X1 − x

h

)

· · · 0

. . .

0 · · · K

(
Xn − x

h

)










Y =






Y1

...
Yn






The leave-one-out technique on local estimation consists in estimating m in
every observation point X1, · · · , Xn, i.e. computing Equation (36) when the kth

line of matrices has been removed for estimating m̂(Xk). It means that we would
need to inverse t

X−k(x)D−k(x)X−k(x) n times, which is very expensive. To
avoid these expensive computations, Sherman and Morrison [24] proposed a for-
mula :

Lemma 2. If A is a square invertible matrix, and u, v are vectors such that
1 + tvA−1u 6= 0, then

(A+ utv)−1 = A−1 − A−1utvA−1

1 + tvA−1u
(37)

In our problem, set Sn(x) =
t
X(x)D(x)X(x). Sn(x) can be rewritten as :

Sn(x) =

n∑

i=1

Φi(x)
tΦi(x) =

∑

i6=k

Φi(x)
tΦi(x)

︸ ︷︷ ︸

S−k(x)

+Φk(x)
tΦk(x) (38)

where

Φi(x) =
t(K(

Xi − x

h
)Xi(x)), Xi(x) = (1 · · · (Xi − x)q), ∀ i = 1, · · · , n

Thus, S−k(x), corresponding to t
X(x)D(x)X(x) when the kth line has been

removed, is of the form :

S−k(x) = Sn(x)− Φk(x)
tΦk(x), ∀ k = 1, · · · , n

The Sherman-Morrison formula gives :
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S−1
−k(x) = S−1

n (x) +
S−1
n (x)Φk(x)

tΦk(x)S
−1
n (x)

1− tΦk(x)S
−1
n (x)Φk(x)

, ∀ k = 1, · · · , n (39)

As m̂(Xk) = t(1 0 · · · 0)S−1
−k(Xk) · tX−k(Xk)D−k(Xk)Y, ∀ k, it is faster to

estimate S−1
n (x) and Φk(x) at each point of the design.
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aux modèles de cinétique chimique PhD thesis, Université Toulouse III.
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