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The contribution of age structure to cell population responses to

targeted therapeutics

Pierre Gabriel∗† Shawn P. Garbett‡ Darren R. Tyson† Glenn F. Webb§

December 7, 2011

Abstract

Cells grown in culture act as a model system for analyzing the effects of anticancer compounds,
which may affect cell behavior in a cell cycle position-dependent manner. Cell synchronization
techniques have been generally employed to minimize the variation in cell cycle position. However,
synchronization techniques are cumbersome and imprecise and the agents used to synchronize the
cells potentially have other unknown effects on the cells. An alternative approach is to determine
the age structure in the population and account for the cell cycle positional effects post hoc. Here
we provide a formalism to use quantifiable age distributions from live cell microscopy experiments
to parameterize an age-structured model of cell population response.

Keywords: Cell cycle, intermitotic time, renewal equation, exponentially modified gaussian

1 Introduction

When examined individually in time lapse microscopy experiments, cells grown in culture display
variability in the length of their cell cycles (between mitotic events), and this variability is represented
by intermitotic time (IMT) distributions [20, 32, 33]. These distributions are usually obtained from
asynchronously dividing populations of cells, which achieve a steady-state age structure when the
population is growing exponentially. In experimental studies that examine the effects of perturbations
on cellular proliferation, it is often desirable to determine whether the perturbation is affecting cells
in particular stages within their cell cycle, i.e. whether the perturbation has cell cycle-specific effects.
In this paper we provide a formalism to convert data obtained as IMT distributions to parameterize
an age-structured population model and, thus, identifying the contribution of age structure to the
response of the cell population to perturbation.
Models of age-structured populations using partial differential equations, such as those originally

discribed by A. Lotka, A.G. McKendrick, W.O. Kermack, and F. von Foerster, are well adapted to
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model the dynamical features of experimental cultures of cells transiting the cell cycle with variable
IMT. These models have been widely studied from a mathematical perspective [4, 3, 14, 15, 16, 21, 34,
36, 39, 45], but the application of the model to experimental data has been hampered by an inability
to determine the age-dependent model parameters. The usual approach for parameter estimation is
to solve numerically an inverse problem (see [1, 8, 9, 19, 18, 22, 26, 38, 40, 41, 42, 43, 37] on this
question for structured population models), but this requires extensive input data and is specific to
a given situation. A much more convenient approach is to assume that the distributed parameters
lie in a class of functions with only a few constants (power laws or other forms [23]) and obtain the
parameters from the fit of the functions to experimental data.

One function that often provides a better fit to IMT data than others, such as log-normal, inverse
normal or gamma functions, is an exponentially modified Gaussian (EMG) [25, 44]. Under conditions
in which the IMT distribution can be explained by an EMG model, we submit that the age-dependent
division rate can be identified as an error function. Starting from this observation, we present a simple
method to recover the parameters of this error function from parameters fitted to the experimental
IMT data. Once reliably parameterized, the age-structured model can be used to make predictions
about cell age-dependent effects of perturbations, for example, whether cells arrest during their cell
cycle in response to treatment with antiproliferative compounds.

2 Intermitotic time and age-structured model

As with human populations, we can associate an age to each individual cell in a cell population.
We define the age of a cell as the time elapsed from its last mitosis. Thus, the IMT of a cell is its
age at division. This definition allows us to interpret the IMT distributions in terms of a dynamic
age-structured population model.

Experimental IMT distributions can be seen as histograms which represent, for a given population,
the density of cells with a certain age of division (see Figure 1 for an example taken from [44]). The
age of division is distributed into N bins of width ∆a. For all i between 1 and N, the height Hi of
the ith bar represents the density of cells with an age of division in the window [i∆a, (i+ 1)∆a]. The
histogram (Hi)1≤i≤N is normalized to represent a density

∆a
N
∑

i=1

Hi = 1. (1)

We briefly explain here the method used in [44] to build IMT histograms (we refer to this paper
for more details). The data are obtained using extended temporally resolved automated microscopy
(ETRAM) in which cell nuclei are fluorescently labeled, imaged by automated time lapse fluorescence
microscopy, and tracked as individual cells from the resultant image stacks. Cells are subjected to
various microenvironmental conditions (such as the addition of a drug) at a specific time during image
acquisition (set to time t0) and the effect of the perturbation from that point in time is followed across
the entire population and individual cells within it. The duration of observation (T ) is chosen large
enough to observe that almost all cycling cells divide before this final time. The data are organized
into the bins to obtain a histogram, which is then normalized to represent a density of cells.
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Figure 1: Plot of an histogram (Hi)1≤i≤N representing the IMT distribution of a population of PC-9
lung cancer cells. The data is from [44] and the bin width is ∆a = 10

8 .

The next step is to describe the IMT distributions in terms of an age-structured model and use this
interpretation to parameterize the renewal equation, also known as the McKendrick–Von Foerster’s
model, which is widely used to model the cell cycle. The partial differential equation for this model
provides the evolution of the density p(t, a) of cells with age a at time t































∂

∂t
p(t, a) +

∂

∂a
p(t, a) + β(a)p(t, a) = 0, t ≥ 0, a > 0,

p(t, 0) = 2

∫ ∞

0
β(a)p(t, a) da,

p(0, a) = p0(a).

(2)

In this model, the cells age one-to-one with time at speed da
dt

= 1, and divide with rate β(a) ≥ 0.
When a cell divides at mitosis, it produces two daughters with age a = 0, which is taken into account
by the boundary condition at a = 0. The number of cells at time t with age between a1 and a2 is
∫ a2
a1

p(t, a) da, and the total number of cells at time t is
∫∞

0 p(t, a) da
The division rate β has a probabilistic interpretation: the probability that a cell did not divide by

age a is given by
P(a) = e−

∫ a

0
β(a′) da′ .

In this basic form of the model all cells are considered to be proliferating, and all must divide at some
time (models including cell cycle arrest and death are described in subsequent sections). Thus, the
division rate has to satisfy

lim
a→+∞

∫ a

0
β(a′) da′ = +∞. (3)

Equation (2) is a transport equation which satisfies a maximum principle, namely if the initial
distribution p0(a) is nonnegative (positive) then the distribution p(t, a) remains nonnegative (positive)
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for all time t > 0. The solutions of (2) have a remarkable behavior as time evolves, in that the age
structure equilibrates no matter what the initial age structure of the population may be. This effect
is known as asynchronous exponential growth, and its interpretation is that the population disperses
over time to a limiting asymptotic equilibrium age structure where the fraction of the population in
any age range [a1, a2] satisfies

lim
t→∞

∫ a2
a1

p(t, a) da
∫∞

0 p(t, a) da

= a constant independent of the initial age structure [46]. Moreover, the solutions to this equation, as
t → ∞, are known to behave like a separated variables solution, that is, p(t, a) = a function of time
only × a function of age only. More precisely, consider the eigenvalue problem















λp̂(a) + ∂ap̂(a) + β(a)p̂(a) = 0,

p̂(0) = 2
∫∞

0 β(a)p̂(a) da,

p̂(·) > 0,
∫

p̂(a) da = 1,

(4)

This problem has a unique solution given by

p̂(a) = p̂(0)e−
∫ a

0
(β(a′)+λ) da′

where λ > 0 is the unique value such that

1 = 2

∫ ∞

0
β(a)e−

∫ a

0
(β(a′)+λ) da′da (5)

and

p̂(0) =

(
∫ ∞

0
e−

∫ a

0
(β(a′)+λ) da′ da

)−1

.

Then we can prove that, for large times,

p(t, a) ∼ const p̂(a)eλt

(see Appendix A for more details and references). If the population of cells proliferates over a suffi-
ciently long time, we can assume that this asymptotic behavior is reached and use it to investigate
the IMT distributions. An experimental observation that the total population (independent of age
structure) is growing exponentially is an indicator that the population has effectively reached the
equilibrium age distribution, which can be checked using ETRAM for other time series data collection
(see Figure 2).

Now we give a continuous expression of the IMT distribution in terms of the age-structured model.
The age distribution of the cells relative to time t0 (time of perturbation) is given by a truncation of
the equilibrium age distribution p̂

p̄0(a) =

{

ρ e−
∫ a

0
(β(a′)+λ) da′ if 0 ≤ a ≤ t0,

0 if a > t0.

where ρ is a scaling constant. We then follow this age distribution along time and obtain for t > 0

p̄(t, a) =

{

ρ e−
∫ a

0
(β(a′)+λ) da′eλt if t ≤ a ≤ t+ t0,

0 otherwise.
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Figure 2: The evolution of the total population N(t) is plotted on log-scale (blue) (the data is
from [44]). The graph is well-fitted with a line of slope λ = 0.022 (correlation coefficient: R2 = 0.9967).
This gives evidences that the total population is growing exponentially fast with exponential constant
λ. Thus, N(t) = expλtN(0), and if t⋆ is the population doubling time, then N(t⋆) = 2N(0), and
t⋆ = ln 2/λ.

According to the age-structured model, and because of the normalization (1), the IMT distribution
satisfies

IT (a) := C−1
T

∫ T

0
β(a)p̄(t, a) dt, CT :=

∫ ∞

0

∫ T

0
β(a)p̄(t, a) dt da, (6)

by definition of the division rate β. The fact that no cell can divide in a time less than t0 means

∀ a ≤ t0, β(a) = 0. (7)

Under this condition, for T large, the function IT is close to the function

I∞(a) := β(a)e−
∫ a

0
β(a′) da′ . (8)

This convergence is made mathematically precise by the following claim (the proof is given in Ap-
pendix B for a more general case in which it is not assumed that p(t, a) is close to the equilibrium age
distribution):

Claim 1. Under Assumptions (3) and (7), we have the convergence

∫ ∞

0
|IT (a)− I∞(a)| da −−−−→

T→∞
0.

Remark 2. We can easily prove that, under the additional assumption

lim
a→+∞

β(a)e−
∫ a

0
β(a′) da′ = 0, (9)
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we also have

sup
a≥0

|IT (a)− I∞(a)| −−−−−→
T→+∞

0.

Condition (9) is satisfied from Assumption (3), if for example, β bounded or monotonic.

Because in the experimental protocol T is chosen large enough to observe no dividing cells at the
end, we can approximate IT by I∞ which has a simple expression in terms of the division rate (8).

3 From the intermitotic time to the division rate

The expression I∞ can be inverted to recover the division rate from the IMT distribution (see [30, 13])

β(a) =
I∞(a)

∫∞

a
I∞(a′) da′

. (10)

We start from the fitting of the experimental IMT distributions, which are observed to be positively
skewed. From a fitting procedure for I∞, we use Equation (10) to recover the division rate of the
renewal equation, which is very important for applications of age-structured models (see Section 5).

First consider as in [30] that the IMT distribution is a shifted gamma function (see also [12] and
references therein). Setting

I∞(a|m,σ) =

{

0 if 0 ≤ a ≤ m,
a−m

σ2
e−

a−m
σ if a ≥ m,

(11)

we can solve explicitly Equation (10) and we find

β(a) =







0 if 0 ≤ a ≤ m,
a−m

σ(σ + a−m)
if a ≥ m.

(12)

So by fitting an experimental IMT distribution with a shifted gamma function, we obtain two param-
eters m and σ which allows reconstruction of the division rate of the renewal equation.

To have a smoother transition at the minimum age of division m, one can consider a second shifted
gamma function

I∞(a|m,σ) =







0 if 0 ≤ a ≤ m,
(a−m)2

2σ3
e−

a−m
σ if a ≥ m.

(13)

Then the corresponding β is

β(a) =







0 if 0 ≤ a ≤ m,
1

σ

(a−m)2

2σ2 + 2σ(a−m) + (a−m)2
if a ≥ m.

(14)

The different functions (11) to (14) are plotted in Figure 3
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Figure 3: The two different gamma functions and their corresponding division rate β(a) are plotted
for coefficients m = 17 and σ = 2.

It has been observed that an exponentially modified Gaussian (EMG) is often a better model for
IMT distributions than the gamma function [25, 44] . An EMG is defined as the convolution of a
Gaussian with a decreasing exponential, but after solving it can be written with three parameters as

I∞(a|β0,m, σ) = β0 Erfc
(m− a

σ

)

e−2β0

(

β0σ
2

2
−m+a

)

. (15)

where the (complementary) error function is defined by

Erfc(z) = 1− 2√
π

∫ z

0
e−t2 dt.

Replacing I∞ by an EMG in Equation (10), we cannot compute explicitly the expression for β. But by
numerical comparison, we obtain a division rate β that is essentially indistinguishable from an error
function (see Figure 4).
Instead of fitting the IMT distribution by an EMG and then fitting the corresponding β by an error

function, we may directly assume that β is an error function

β(a) = β0 Erfc
(m− a

σ

)

. (16)

We can then explicitly derive a new fitting formula for I∞ due to Equation (8)

I∞(a|β0,m, σ) = β0 Erfc
(m− a

σ

)

e−
∫ a

0
β0 Erfc(m−a′

σ
) da′ (17)

where the integral in the exponential can be computed as

∫ a

0
Erfc

(m− a′

σ

)

da′ = mErfc
(m

σ

)

− σ√
π
e−(m

σ
)2 − (m− a)Erfc

(m− a

σ

)

+
σ√
π
e−(m−a

σ
)2 . (18)

Using this formula for the IMT instead of an EMG formula, the fitting parameters provide immediately
the division rate β.
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Figure 4: Left: The division rate β(a) is obtained numerically from (10) by using an EMG with
coefficients m = 22, σ = 2 and β0 = 0.2 to fit I∞ (15). Right: The formula for β, as an error function
with these same three parameters, is numerically indistinguishable from the numerically obtained β
(R2 = 1).

When we know the Malthusian growth parameter (population growth rate λ) from experimental
data (see Figure 2), it is possible to recover a division rate β such that relation (5) is satisfied. This is
an important step in order to parameterize and apply an age-structured model to experimental data
(see Section 5 below). We notice the relationship of β in terms of I∞(a) is

2

∫ ∞

0
I∞(a)e−λa da = 2

∫ ∞

0
β(a)e−

∫ a

0
β(a′) da′e−λada = 1.

To take advantage of this relationship between the IMT data, β(a), and the malthusian parameter λ
at the equilibrium distribution, we define a new histogram (H̃i)1≤i≤N by

∀ i, H̃i :=
2Hie

−λai

∆a
∑N

i=1 2Hie−λai
(19)

where ai := (i + 1
2)∆a is the mean age of the ith bar. Thus defined, the new histogram incorporates

information about λ and satisfies the relation

∆a

∞
∑

i=1

H̃i = 1. (20)

We then fit this new histogram (H̃i) with the model

Ĩ∞(a) := 2I∞(a)e−λa (21)

instead of fitting (Hi) with I∞(a). Because of the normalization (20), we expect that the fitting provides
parameters such that

∫∞

0 Ĩ∞(a) da ≈ 1, and this relation can be checked numerically a posteriori.
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Method and example. We divide the process in three steps and illustrate it by an example. Each
required fitting step can be performed using the freely available Ezyfit Matlab toolbox
[< http://www.fast.u-psud.fr/ezyfit/>].

Step 1: Determine equilibrium IMT distribution

a) Obtain a histogram (Hi) for the experimental IMT distribution of control (untreated) cells.
Here we use an IMT distribution obtained in [44] for PC-9 lung cancer cells using ETRAM
(see Figure 1).

b) Plot the time evolution of the total population on a loge-scale, verify a linear fit and obtain
the slope as the experimental value for the Malthusian parameter λ of the cell population
(see Figure 2 for an example).

c) Construct the new histogram (H̃i) from (Hi) and λ by using the definition (19).

Step 2: Obtain parameters from model fit to IMT distribution

a) Choose a form for I∞ as a gamma function (11) or (13), or as the new EMG form (17).

b) Fit the histogram (H̃i) with the corresponding form Ĩ∞ from definition (21). For PC-9 can-
cer cells we choose the form (17), because in [44] it was observed that the IMT distribution
appeared to be an EMG (see Figure 5 for the example).

c) Verify that the correlation coefficient R2 of the IMT data and the chosen form Ĩ∞(a) is
close to 1.

Step 3: Parameterize age-structured model

If numerical integral
∫∞

0 Ĩ∞(a) da is close to 1, the fitting parameters provide a good approxi-
mation of the division rate β, which can then be propagated through the population, based on
the choice of I∞. In the example, β is given by Equation (16) with the numerical paramaters of
Figure 5.

4 Model with a death rate

If it is known that the proliferating cells have a mortality rate µ(a) ≥ 0, then this mortality rate can
be introduced in the renewal equation:































∂

∂t
p(t, a) +

∂

∂a
p(t, a) + β(a)p(t, a) + µ(a)p(t, a) = 0, t ≥ 0, a > 0,

p(t, 0) = 2

∫ ∞

0
β(a)p(t, a) da,

p(0, a) = p0(a).

(22)

We have the same result as before about the long-term behavior

p(t, a) ∼ const p̂(a)eλt
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Figure 5: Fitting of experimental data in [44] with the model (17). The fitting parameters are
β0 = 0.14204, m = 24.456 and σ = 3.3451. The correlation coefficient is R2 = 0.95363 and the
integral of Ĩ∞(a|β0,m, σ) is

∫∞

0 Ĩ∞(a) da ≈ 1.0983. The formula for the age dependent division rate is
β(a) = β0Erfc(m−a

σ
).

where the eigenfunction p̂(a) is now

p̂(a) = p̂(0)e−
∫ a

0
(β(a′)+µ(a′)+λ) da′

and the eigenvalue λ satisfies

2

∫ ∞

0
β(a)e−

∫ a

0
(β(a′)+µ(a′)+λ) da′ da = 1. (23)

Assuming that the stable distribution is reached, we define as in Section 2 the IMT function

IT (a) := C−1
T

∫ T

0
β(a)p̄(t, a) dt

with

p̄(t, a) = ρ e−
∫ a

0
(β(a′)+µ(a′)+λ) da′eλt1lt≤a≤t+t0 and CT =

∫ ∞

0

∫ T

0
β(a)p̄(t, a) dt da.

Adapting the proof of Theorem 3 in Appendix B, we obtain that IT (a) converges as T → ∞ to

I∞(a) := C−1
∞ β(a)e−

∫ a

0
(β(a′)+µ(a′)) da′ (24)

where

C∞ :=

∫ ∞

0
β(a)e−

∫ a

0
(β(a′)+µ(a′)) da′ da. (25)

For this model there does not exist an inversion formula as Equation (10) to recover β analytically. So
we consider that β is a rational fraction given by Equation (12) or (14), or an error function given by

10



Equation (16), and we derive the corresponding model I∞ from Equation (24). To use this model to fit
IMT distributions, one has to prescribe the shape of the death rate. If we do not have any information
about its age dependency, we assume that µ(a) ≡ µ is age-independant, and thus an additional fitting
parameter (a fixed rate based on measured data can also be used if available).

The constant C∞ was equal to 1 in model (2), but if there is a positive death rate, we have that
C∞ < 1. This constant is a function of the fitting parameters (see Equation (25)), but we do not have
an analytic expression of this function in general. A solution to this problem is to use the Malthusian
parameter λ, which incorporates information about µ and β(a), to define a form Ĩ∞(a) as in Section 3.
Indeed, because of relation (23), we obtain

Ĩ∞(a) := 2β(a)e−
∫ a

0
(β(a′)+µ) da′e−λa

which does not involve C∞. Then, the division rate β(a) is obtained from Ĩ∞(a) as before using the
modified histogram (H̃i) defined from (Hi) by (19).

Example. We fit the same distribution as in Section 3 still considering that β is an error function.
With a constant death rate µ, we obtain the four parameters model

Ĩ∞(a|β0,m, σ, µ) = 2β0 Erfc
(m− a

σ

)

e−
∫ a

0
(β0 Erfc (m−a′

σ
)+µ+λ) da′ (26)

where the integral
∫ a

0 β0 Erfc
(

m−a′

σ

)

da′ is given by Equation (18). The fitting provides new param-
eters for β and a positive death rate µ (see Figure 6). The correlation R2 is slightly better than in
Figure 5 and the integral

∫∞

0 Ĩ∞(a) da is closer to 1. So we can consider that mortality has to be
considered for this cell line.

5 Application

Once accurately parameterized, model (2) or (22) can be used for further investigations into the
dynamics of age-structured cell populations. We give here one application for in vitro PC-9 cancer
cell lines undergoing treatment by the drug erlotinib. It has been recently shown in [44] that the
main effect of erlotinib on cancer cells is to induce entry into quiescence. In [44] a system of ordinary
differential equations (without age structure) is used to model these experiments. We hypothesize
here that erlotinib induced quiescence is linked to the age of the cells involved. Many age-structured
models with quiescence can be found in the literature (see [7, 10, 11, 27, 28, 29] for examples). Here
we present a simple age-structured model with quiescence which allows us to explain observed delays
in response to erlotinib. We start from the observation that there is no effect of the treatment on total
population growth during the first twenty hours (see Figure 7). This time corresponds almost exactly
to the minimal age of division observed for PC-9 cells. It suggests that erlotinib acts only during a
specific phase of the cell cycle, which based on its biological activity would be expected to be in G1.
The model we present is based on this idea and considers a fractional rate f of cells that become
quiescent in an age-dependent manner, where the fraction is assumed to reflect the dose of erlotinib
used for the treatment. We estimate the value of f from data available in [44], and then compare
numerical simulations of the model to the experimental data. Many numerical methods are available
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Figure 6: Fitting of experimental data with the model (26). The fitting parameters are β0 = 0.17879,
m = 25.007, σ = 3.6141 and µ = 0.00333. The correlation coefficient is R2 = 0.95611 and the
integral of Ĩ∞(a|β0,m, σ) is

∫∞

0 Ĩ∞(a) da ≈ 1.0132. The formula for the age dependent division rate is
β(a) = β0Erfc(m−a

σ
).

for structured population equations (see for instance [2, 6, 5, 17, 24, 31]). Here we use a scheme based
on the method of characteristics, as in [6, 5, 31], for its anti-dissipative properties.

We start from the renewal equation (22) and we introduce the quantity Q(t) of quiescent cells at
time t. This quantity evolves according to an ordinary differential equation which is coupled to the
renewal equation through the system































































∂

∂t
p(t, a) +

∂

∂a
p(t, a) + β(a)p(t, a) + µ p(t, a) = 0, t ≥ 0, a > 0,

p(t, 0) = 2(1− f)

∫ ∞

0
β(a)p(t, a) da,

p(0, a) = p0(a),

d

dt
Q(t) = 2f

∫ ∞

0
β(a)p(t, a) da − νQ(t),

Q(0) = Q0.

(27)

The coefficient ν is the death rate of quiescent cells and f ∈ [0, 1] represents the fraction of proliferating
cells which become quiescent. The erlotinib treatment starts at time t = 0, so at this time there are no
quiescent cells (Q0 = 0). The age distribution of the proliferating cells is assumed to be at equilibrium
as in Equation (22) (i.e. p0(a) = const p̂(a)). The experimental values of the total population N(t)
along time are ploted after normalization by the initial value N(0) on a log-scale (see Figure 7).
Because of this normalization, we consider an initial distribution such that

∫∞

0 p0(a) da = 1 which
leads to p0(a) = p̂(a) because of the definition of p̂.
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The coefficients β and µ are parameterized from IMT distributions for cells without treatment using
the model (26). To estimate the value of the fraction f for different doses of treatment, we use data
available in [44]. The fraction F of quiescent cells is estimated by examination of whether cells treated
with erlotinib divide or not before the end of the experiment. We want to use this experimental
fraction F to estimate the coefficient f of the model. For the sake of simplicity, assume that the death
rates µ and ν are 0 in (27). In this case, at the end of the labeling period t0, the quantity of labeled
quiescent cells corresponds to Q(t0) and the quantity of proliferating cells corresponds to

∫ t0
0 p(t, 0) dt.

Thus, the fraction F of quiescent cells at t0 is

F =
Q(t0)

Q(t0) +
∫ t0
0 p(t, 0) dt

. (28)

Now we compute this quantity from model (27), keeping in mind that we have assumed no mortality.
We have

Q(t0) =

∫ t0

0

dQ

dt
(t) dt

= 2f

∫ t0

0

∫ ∞

0
β(a)p(t, a) da dt

and
∫ t0

0
p(t, 0) dt = 2(1 − f)

∫ t0

0

∫ ∞

0
β(a)p(t, a) da dt.

Finally we obtain
Q(t0)

Q(t0) +
∫ t0
0 p(t, 0) dt

=
2f

2f + 2(1− f)
= f.

So when there is no death rate, the experimental fraction F corresponds exactly to the coefficient
f. In our simulations we consider positive death rates as suggested in Section 4. Since we cannot
directly measure the coefficient ν, we assume that its value is close to the value of µ. Because the
numerical values of ν and µ are similar and very small (µ ≪ 1), we can consider that f is still well-
approximated by F and we use the fractions found in [44] to parameterize f. We can see in Figure 7
that the numerical simulations are very similar to the experimental curves. In particular, the delay of
twenty hours before the effect of the treatment on the growth of the population is apparent, and this
twenty hour period pulses two more times as the population approaches a new equilibrium distribution
during the total time of the experiment. We have thus developed an age-structured model that can
explain the dynamic effects of erlotinib on PC-9 cells, which are intrinsically dependent on the age of
proliferating cells.

Conclusion

Linking experimental observation of cell behavior between the single-cell and population scales has
recently been described using newly developed mathematical models [44]. However, this approach
does not take into account the possible cell age-dependent effects of a perturbation on cell behavior,
such as would be expected if the effects occur in cells at a specific position in the cell cycle. Since
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Figure 7: Left: experimental data without erlotinib, with a 50nM dose and with a 5000nM dose. The
total quantity N(t) is plotted on a log-scale. Right: numerical simulation of model (27) for f = 0,
f = 0.6 and f = 0.84. The curves represent the evolution of ln(P (t)+Q(t)) where P (t) :=

∫∞

0 p(t, a) da
is the total quantity of proliferating cells at time t. They are obtained by solving numerically Equa-
tion (27) with the parameters of Figure 6 and with ν = 0.004.

these studies were performed with asynchronously dividing cell populations, it is evident that the
mathematical models of these experiments should have age structure as a primary feature. In fact,
to fit the data, the authors had to use an artificial time offset to account for the age-structured
effects. Here we provide a formalized approach to accurately account for cell age-dependent effects
on cellular behavior. A major difficulty in the parameterization of age-structured models is the
determination of the age dependent division rate. Our study provides a method for the quantitative
recovery of this rate by fitting experimental IMT distributions to special forms, such as gamma
functions or exponential modified Gaussians. This model, once successfully parameterized, is very
useful for simulating and analyzing age-dependent phenomena in cell population dynamics. We have
presented one such application for the in vitro treatment of cancer cells by erlotinib. This example
shows the utility of age-structured population models in explaining the connection of drug therapy
to phenomena such as cell cycle phase entry into quiescence. The method we have presented can be
implemented readily to many issues in cell population behavior when there is experimental data based
on cell age.
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A Convergence to the equilibrium

The long-time behavior p(t, a) ∼ const p̂(a)eλt can be proven by using semi-groups methods (see [34,
45]) or General Relative Entropy (see [35, 36]) techniques. We detail here a result provided by General
Relative Entropy.
Consider φ the unique solution to the adjoint eigenvalue problem

{

λφ(a) − ∂aφ(a) + β(a)φ(a) = 2φ(0)β(a),

φ(·) ≥ 0,
∫

p̂(a)φ(a) da = 1.

Then the General Relative Entropy method (see [35, 36]) allows us to prove that
∫ ∞

0
|p(t, a)e−λt − ρ0p̂(a)|φ(a) da −−−→

t→∞
0

where

ρ0 =

∫ ∞

0
φ(a)p0(a) da.

B Convergence of the IMT distribution

Theorem 3. Suppose that Assumptions (3) and (7) are satisfied and consider an initial distribution
p̄0 such that p̄0(a) = 0 for all a > t0. Then we have the convergence

∫ ∞

0
|IT (a)− I∞(a)| da −−−−→

T→∞
0

where IT and I∞ are defined in (6) and (8).

Proof. First we extend the initial distribution and the division rate β(a) to negative ages by setting
p̄0(a) = β(a) = 0 for a < 0. Since the daughters of the labeled cells are not tracked, the age distribution
p̄(t, a) of labeled cells satisfies a transport equation without boundary condition. Thus it writes, using
the characteristic method,

∀ t, a ≥ 0, p̄(t, a) = p̄0(a− t)e−
∫ t

0
β(a−s) ds.

Introducing this expression in the definition of IT (a) we obtain, with changes of variables,

IT (a) = C−1
T

∫ T

0
β(a)p̄0(a− t)e−

∫ t

0
β(a−s) dsdt

= C−1
T

∫ T

0
β(a)p̄0(a− t)e−

∫ a

a−t
β(a′) da′dt

= C−1
T

∫ a

a−T

β(a)p̄0(u)e
−

∫ a

u
β(a′) da′du

= C−1
T β(a)e−

∫ a

0
β(a′) da′

∫ a

a−T

p̄0(u)e
∫ u

0
β(a′) da′du.

Since the support of p̄0 is included in [0, t0] and β(a) = 0 for a ∈ [0, t0] due to Assumption (3), we
have for all u ∈ R

p̄0(u)e
∫ u

0
β(a′) da′ = p̄0(u)
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so IT (a) writes

IT (a) = C−1
T β(a)e−

∫ a

0
β(a′) da′

∫ a

a−T

p̄0(u)du.

Define the primitive

P (a) :=

∫ a

0
p̄0(u) du.

This function is nondecreasing and satifies P (a) = 0 for a ≤ 0 and P (a) = P (t0) =
∫∞

0 p̄0 for a ≥ t0,
so we have

∫ a

a−T

p̄0(u)du = P (a)− P (a− T ) =















P (a) if 0 ≤ a ≤ t0,
P (t0) if t0 ≤ a ≤ T,
P (t0)− P (a− T ) if T ≤ a ≤ T + t0,
0 if a ≥ T + t0.

Because β(a) = 0 for a ≤ t0, we obtain by integration of IT (a) on R
+

1 = C−1
T P (t0)

∫ T

0
β(a)e−

∫ a

0
β(a′) da′ da+ C−1

T

∫ T+t0

T

β(a)e−
∫ a

0
β(a′) da′(P (t0)− P (a− T )) da

which gives

CT − P (t0)

∫ T

0
β(a)e−

∫ a

0
β(a′) da′ da =

∫ T+t0

T

β(a)e−
∫ a

0
β(a′) da′(P (t0)− P (a− T )) da

≤ P (t0)

∫ T+t0

T

β(a)e−
∫ a

0
β(a′) da′ da

−−−−−→
T→+∞

0.

Since
∫ ∞

0
β(a)e−

∫ a

0
β(a′) da′ da = 1,

we conclude that

CT −−−−−→
T→+∞

P (t0) =

∫ ∞

0
p̄0(a) da.

Then we have
∫ ∞

0
|IT (a)− I∞(a)| da ≤

∣

∣C−1
T P (t0)− 1

∣

∣

∫ T

0
β(a)e−

∫ a

0
β(a′) da′ da

+

∫ T+t0

T

∣

∣C−1
T [P (t0)− P (a− T )]− 1

∣

∣ β(a)e−
∫ a

0
β(a′) da′ da

+

∫ ∞

T+t0

β(a)e−
∫ a

0
β(a′) da′ da

≤
∣

∣C−1
T P (t0)− 1

∣

∣

∫ T

0
β(a)e−

∫ a

0
β(a′) da′ da+K

∫ ∞

T

β(a)e−
∫ a

0
β(a′) da′ da

−−−−→
T→∞

0

and it ends the proof of Theorem 3.
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