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Abstract

We study the geometrical meaning of higher-order terms in matrix models of Yang-
Mills type in the semi-classical limit, generalizing recent results [1] to the case of 4-
dimensional space-time geometries with general Poisson structure. Such terms are ex-
pected to arise e.g. upon quantization of the IKKT-type models. We identify terms
which depend only on the intrinsic geometry and curvature, including modified versions
of the Einstein-Hilbert action, as well as terms which depend on the extrinsic curvature.
Furthermore, a mechanism is found which implies that the effective metric G on the
space-time brane M ⊂ RD “almost” coincides with the induced metric g. Deviations
from G = g are suppressed, and characterized by the would-be U(1) gauge field.
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1 Introduction and background

This paper is a continuation of our previous work [1], where gravitational actions, in par-
ticular an analog of the Einstein-Hilbert action, were obtained from higher-order terms in
matrix models of Yang-Mills type.

In this framework [2, 3, 4], space-time is realized as quantized Poisson manifold M ⊂ RD

with an induced metric gµν and Poisson tensor θµν . These structures determine an effective
gravitational metric Gµν = e−σθµµ′

θνν′
gµ′ν′ , to which matter couples more-or-less as in

general relativity (GR). Since generic 4-dimensional geometries can be realized (at least
locally) as sub-manifold M ⊂ R10 [5], this provides a suitable framework for a pre-geometric,
“emergent” theory of gravity. As an illustration, a realization of the Schwarzschild geometry
in this approach is presented in Ref. [6].

The dynamics of gravity in this framework and its relation resp. deviation from general
relativity is not yet very well understood. Upon quantization, various higher-order terms
are expected to arise in the matrix model, or alternatively such terms can be added by
hand. In [1], we identified a matrix model action which in the semi-classical limit reduces
to

∫
d4x

√
g e2σR[g], for the most natural case of geometries with Gµν = gµν . However, it

turns out that there are several possible matrix actions which reduce to the same semi-
classical form for Gµν = gµν . Moreover, in order to derive the equations of motion for the
geometry, it is necessary to consider variations which violate this condition. In the present
paper, we obtain a slightly modified action which for coinciding metrics reduces to the
Einstein-Hilbert action, and which is tensorial (i.e. depends only on the intrinsic geometry
of M ⊂ RD) for general Gµν 6= gµν . We also identify several other terms which have an
intrinsic geometrical meaning. Some of these terms depend also on the Poisson structure.

2



There are also “potential” terms which may set the non-commutativity (NC) scale e−σ, as
well as terms which depend on the extrinsic geometry, i.e. the embedding of M ⊂ RD. This
should be the beginning of a more systematic study.

An important issue which arises in this context is the role of the Poisson or NC structure
θµν, which in particular determines the difference hµν = Gµν − gµν . This Poisson structure
can be viewed as would-be U(1) gauge field, and is governed mainly by the “bare” Yang-Mills
term in the matrix model. We show that this action suppresses hµν , and singles out self-
dual and anti-selfdual Poisson structures with Gµν = gµν as vacuum solutions. In the case
of Minkowski signature, this holds once a specific complexification of Poisson structures is
adopted, which appears to be very natural. This is important progress in the understanding
of emergent gravity in these models, and exhibits more clearly the relation with general
relativity.

In the present work, we restrict ourselves essentially to the semi-classical limit of the
matrix model. Of course, the main appeal for this framework compared with other de-
scriptions of gravity is the fact that it goes beyond the classical concepts of geometry:
Space-time is not put in by hand but emerges, realized as non-commutative space with an
effective geometry, gauge fields, and matter. Moreover, the IKKT matrix model [7] (which
is the prime candidate of this class of models with D = 10) can alternatively be viewed as
N = 4 supersymmetric Yang-Mills gauge theory on R4

θ, and hence it is expected to define a
good quantum theory. Therefore these models provide promising candidates for a quantum
theory of fundamental interactions including gravity. Moreover, there are several intrigu-
ing hints that the role of vacuum energy in this framework may be different than in GR.
Nevertheless, much more work remains to be done in order to fully understand this class
of models, and we hope that the current paper provides useful results and tools for that
purpose.

This paper is organized in the following way: We start by reviewing properties and
important relations of the current framework of matrix models and emergent gravity in
Section 2.1. This will also fix our notation for the remaining sections. We then continue
Section 2 by deriving relations for the special case of a 4-dimensional embedded manifold
M4 ⊂ RD, and discuss connections and curvature. Section 3 will be devoted to higher order
extensions to Yang-Mills matrix models and their semi-classical limit, whose implications
will be discussed in Section 4.

2 Matrix models and their geometry

We briefly collect the essential ingredients of the matrix model framework for emergent
gravity, referring e.g. to the recent review [4] for more details.

2.1 Reviewing the basic ingredients

The starting point is given by the matrix model of Yang-Mills type,

SY M = −Tr[Xa,Xb][Xc,Xd]ηacηbd , (2.1)

where ηac is the (flat) metric of a D dimensional embedding space (i.e. a, b, c, d ∈ 1, . . . ,D).
It can be purely Euclidean, or have one or more time-like directions. The “covariant coor-
dinates” Xa (cf. [8]) are Hermitian matrices, resp. operators acting on a separable Hilbert
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space H. The commutator of two coordinates will be denoted as

[Xa,Xb] = iθab . (2.2)

We are interested in configurations which can be interpreted as 2n dimensional non-com-
mutative space M2n

θ , in the spirit of non-commutative geometry. Thus we consider con-
figurations where 2n of the matrices (henceforth called Xµ) generate a non-commutative
algebra interpreted as non-commutative spaces M2n

θ , and the remaining D − 2n matrices
are (quantized) functions of the Xµ, i.e. functions on M2n

θ . In other words, we split1 the
matrices resp. coordinates as

Xa =
(
Xµ, φi

)
, µ = 1, . . . , 2n , i = 1, . . . ,D − 2n , (2.3)

so that the φi(X) ∼ φi(x) in the semi-classical limit define an embedding of a 2n dimensional
submanifold

M2n ↪→ RD. (2.4)

Moreover, we can interpret2

[Xµ,Xν ] ∼ iθµν(x) (2.5)

in the semi-classical limit as a Poisson structure on M2n. Thus we are considering quan-
tized Poisson manifolds (M2n, θµν), with quantized embedding functions Xa. Throughout
this paper, ∼ denotes the semi-classical limit, where commutators are replaced by Poisson
brackets. We will assume that θµν is non-degenerate, so that its inverse matrix θ−1

µν defines
a symplectic form on M2n. The sub-manifold M2n ⊂ RD is equipped with a non-trivial
induced metric3

gµν(x) = ∂µx
a∂νx

bηab = ηµν + ∂µφ
i∂νφ

jηij , (2.6)

via pull-back of ηab. Finally, we define the following quantities [13]:

Gµν = e−σθµρθνσgρσ , η =
1
4
eσGµνgµν ,

ρ =
√

det θ−1
µν , e−σ =

ρ√
detGµν

. (2.7)

The last relation gives a unique definition for e−σ provided n > 1, which we assume. It is
easy to see that the kinetic term for scalar fields on M2n is governed by the effective metric
Gµν(x), and in fact the same metric also governs non-Abelian gauge fields and fermions in
the matrix model (up to possible conformal factors), so that Gµν must be interpreted as
gravitational metric. Since the embedding φi is dynamical, the model describes a theory of
gravity realized on dynamically determined submanifolds of RD. We also recall that

Trφ ∼
∫

d2nx

(2π)n
√
Ge−σφ(x) (2.8)

1More generally, all of the Xa are interpreted as functions on M2n
θ subject to D−2n relations. Examples

for such NC submanifolds realized by matrix models have been known for a long time, cf. [7, 9].
2In the special case where θµν is constant, this leads to non-commutative field theories — see [10, 11] for

a review of the topic. However, a dynamical commutator seems essential in the context of gravity.
3For a related discussion see e.g. [12].
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in the semi-classical limit, and note the remarkable identity

|Gµν(x)| = |gµν(x)|, 2n=4 (2.9)

which holds on 4-dimensional M4 ⊂ RD. It is also useful to define the following tensor

J µ
ν = e−σ/2θµµ′

gµ′ν = −eσ/2Gµµ′
θ−1
µ′ν (2.10)

which satisfies

(J 2)µρ = −Gµνgνρ ,

trJ 2 = −4e−ση ≡ −(gG) , (2.11)

where ‘tr’ denotes the trace over Lorentz indices.
In Ref. [1], we focused on the particular case of 4-dimensional geometries with

Gµν = gµν → η = eσ . (2.12)

Clearly, this defines an almost-Kähler manifold with almost-complex structure J 2 = −1.
For such geometries to be consistent in the case of Minkowski signature, we have to assume
that θµν has imaginary time-like components, which is natural in view of the correspondence
X0 → iT , as discussed in [4]. It is not hard to see that this corresponds to θµν being self-
dual with respect to the metric gµν (cf. Section 2.2 and Ref. [14]). Such θµν indeed exist for
generic geometries4. We then showed that the Einstein-Hilbert action can be obtained by a
certain matrix action (2.46). However, variations of θµν away from a self-dual case lead to
metric variations

Gµν = gµν + hµν . (2.13)

Therefore, in order to derive the equations of motion for both the (embedding) metric as well
as the Poisson structure θµν , it is necessary to allow at least small deviations fromGµν = gµν .
We will in fact identify a mechanism in Section 4 which generically implies G ≈ g to a very
good approximation, at least for geometries with mild curvature. This justifies to consider
only linearized corrections in hµν , and provides an important step towards clarifying the
relation with general relativity.

Notation. We will adopt the convention that Latin matrix indices are raised and lowered
with ηab throughout this paper (resp. δab in the Euclidean case). As we consider deviations
from the self-dual geometries introduced above, we will inevitably encounter two types of
covariant derivatives: those with respect to the effective metric ∇ := ∇[G], and those
with respect to the induced metric ∇′ := ∇[g]. We will use this notation throughout the
remainder of this paper. Furthermore, we will use the abbreviations (Gg) ≡ Gµνgµν and
(Gg)µα ≡ Gµρgρα.

2.2 Special relations in 2n = 4 dimensions

In this section we collect some basic results on the geometry of M4 ⊂ RD in the presence
of the structures defined above. We consider the case of general metrics Gµν 6= gµν on
2n = 4 dimensional manifolds where the tensor J µ

ν defined in (2.10) becomes unimodular,
4with suitable technical assumptions, such as global hyperbolicity or asymptotic flatness.
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i.e. detJ = 1. This leads to the existence of a remarkable identity which we will now derive.
Consider first the Euclidean case. Since everything is formulated in a tensorial way, we can
diagonalize the embedding metric at that point gµν |p = δµν , and bring the Poisson tensor
resp. the symplectic form into canonical form

ω = θ−1 (α dx0dx3 ± α−1dx1dx2) (2.14)

at p ∈ M using a suitable SO(4) rotation. This leads to

Gµν = diag(α2, α−2, α−2, α2) at p ∈ M , (2.15)

and similarly J µ
ν = −diag(α2, α−2, α−2, α2) at p ∈ M. In particular, it follows that

1
4
(Gg) = e−ση =

1
2
(α2 + α−2) ≥ 1 . (2.16)

Furthermore, we obtain the following characteristic equation5 for J 2 [14]:

(J 2)µν + 2e−σηδµ
ν + (J−2)µν = 0 , (2.17)

or equivalently

(GgG)µν = −
(
J 2G

)µν = 2e−σηGµν − gµν =
1
2
(Gg)Gµν − gµν . (2.18)

Furthermore, observe that ?(dx0dx3) = dx1dx2 where ? denotes the Hodge star defined by
εµνρσ and gµν on M4. This means that the corresponding symplectic form is (anti-) self-dual
((A)SD) if and only if

?ω = ±ω ⇔ α = 1 resp. e−ση = 1 ⇔ Gµν = gµν ⇔ J 2 = −1 , (2.19)

in which case M4 becomes an almost-Kähler manifold with almost-complex structure J .
These statements generalize to the case of Minkowski signature, provided we consider com-
plexified θµν with imaginary time-like components θ0ν , see [4].

Furthermore, we also note the following useful identity

∂α(ρθµα) = 0 (2.20)

which holds in any coordinates, and follows from the Jacobi identity. On 2n = 4-dimensional
branes, it implies

0 = ∂α(e−σ
√
|g|θµα) =

√
|g| ∇′

α(e−σθµα)
= ∂α(e−σ

√
|G|θµα) =

√
|G| ∇α(e−σθµα) (2.21)

using |g| = |G|. Note furthermore that

Gµα∇′
αθ

−1
µν = ∇′

α(Gµαθ−1
µν ) − θ−1

µν ∇′
αG

µα

= −∇′
α(e−σθµαgµν) − θ−1

µν ∇′
αG

µα

= −θ−1
µν ∇′

αG
µα (2.22)

using the basic identity (2.21).
5If we would consider real θµν in the Minkowski case, this relation would be replaced by J 2 + 2e−ση −

J−2 = 0.
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Determinants. Consider the scalar function

detJ = e−nσ det(θµν) det(gµν) (2.23)

which satisfies detJ = 1 in 2n = 4 dimensions. In that case, it follows that

∂αe
2σ = ∂α det(θµηgην) = e2σgµσθ−1

σν ∂α(θνηgηµ)

= e2σ
(
θ−1
ην ∂αθ

νη + gµη∂αgηµ

)
. (2.24)

We can replace ∂α with any covariant derivative operator ∇α in this formula. In particular,
for ∇′ = ∇[g] we obtain

∂αe
2σ = e2σθ−1

ην ∇′
αθ

νη . (2.25)

Similarly, using J µ
ν = −eσ/2Gµηθ−1

ην we get

∂αe
−2σ = e−2σθνη∇αθ

−1
ην , (2.26)

so for 2n = 4 we have

2∂ασ = θ−1
ην ∇′

αθ
νη = θ−1

ην ∇αθ
νη . (2.27)

Since det(Gµηgην) = 1 in 2n = 4 dimensions, a similar argument yields

0 = ∂α det(Gµηgην) = gµσGσν∂α(Gνηgηµ)
= Gην∂αG

νη + gµη∂αgηµ , (2.28)

and likewise for any covariant derivatives. This implies

gµη∇αgηµ = 0 = Gην∇′
αG

νη . (2.29)

In the computations of the subsequent sections, we will make use of the important relations
(2.18), (2.21), (2.22) and (2.29) in many places.

2.3 Intrinsic curvature.

Since we consider general geometries Gµν 6= gµν in this paper, we will inevitably encounter
the tensor

Cα;µν := ∂αx
a∇µ∂νxa =

1
2

(∇µgνα + ∇νgµα −∇αgµν) , (2.30)

in subsequent computations. Contracting this tensor with Gµν , one derives

∂αx
a�Gxa = ∇µ(Gµνgνα) − 2∂α(e−ση) = ∇νgνα − 1

2
∂α(gG) , (2.31a)

2n=4= −Gαν∇µg
µν . (2.31b)

∂αx
a∇µ∂

αxa =
1
2
∂µ(Gg) , (2.31c)

where the 4D identity (2.18) is used in (2.31b) and “l.h.s.2n=4= r.h.s.” denotes equality iff
2n = 4.
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Keeping these relations in mind, we now derive the curvature tensor with respect to
the metrics Gµν and gµν : For a general embedding M ⊂ RD with Cartesian embedding
functions xa : M ↪→ RD, consider the expression

∇σ∇µx
a∇ρ∇νxa −∇σ∇νx

a∇µ∇ρxa

= ∇σ(∇µx
a∇ρ∇νxa) −∇µx

a∇σ∇ρ∇νxa −∇ρ(∇σ∇νx
a∇µxa) + ∇ρ∇σ∇νx

a∇µxa

= ∇σCµ;ρν −∇ρCµ;σν + [∇ρ,∇σ]∇νx
a∇µxa

= ∇σCµ;ρν −∇ρCµ;σν + (Gg)ηµRρσνη [G] . (2.32)

Unless stated otherwise, we will always understandRρσνη ≡ Rρσνη [G] throughout this paper.
All the terms in (2.32) are tensorial, and we obtain

(Gg)ηµRρσνη [G] = ∇σ∇µx
a∇ρ∇νxa −∇σ∇νx

a∇µ∇ρxa −∇σCµ;ρν + ∇ρCµ;σν . (2.33)

Repeating this calculation with ∇ replaced by the covariant derivative with respect to the
induced metric ∇[g] = ∇′, we recover the Gauss-Codazzi theorem due to ∇′

µx
a∇′

ρ∇′
νxa = 0:

Rρσνµ[g] = gµτR[g]ρσν
τ = ∇′

σ∇′
µx

a∇′
ρ∇′

νxa −∇′
σ∇′

νx
a∇′

µ∇′
ρxa . (2.34)

For the self-dual case Cµ;ρν = ∇µx
a∇ρ∇νxa = 0, and both curvature tensors (2.33) and

(2.34) coincide.

Relating R[g] and R[G]. The covariant derivatives ∇µ and ∇′
µ are related via the tensors

Cα;µν as follows:

∇′
µVν = ∇µVν − Cα;µνg

αβVβ = ∇µVν + C̃α;µνG
αβVβ , (2.35)

for some vector Vν , and where C̃α;µν is defined by replacing g with G (and hence ∇ with
∇′) in (2.30). This implies

gαβCα;µν =
1
2
gαβ (∇µgνα + ∇νgµα −∇αgµν)

= −GαβC̃α;µν = −1
2
Gαβ

(
∇′

µGνα + ∇′
νGµα −∇′

αGµν

)
, (2.36)

which has a number of useful consequences:

gαµCα;µν =
1
2
gαµ∇νgµα = −GαµC̃α;µν = −1

2
Gαµ∇′

νGµα = 0 ,

gαβgµνCα;µν
2n=4= gαβgµν∇µgνα = −∇µg

µβ

= −Gαβgµν∇′
µGνα +

1
2
Gαβ∂α(gµνGµν) ,

gαβGµνCα;µν = gαβGµν∇µgνα − 1
2
gαβ∂α(Gg)

2n=4= −GαβGµν∇′
µGνα = ∇′

µG
µβ , (2.37)

where we have used (2.29). Furthermore, we may define projectors on the tangential resp.
normal bundle of M ⊂ RD as

Pab
T = gµν∂µx

a∂νx
b , Pab

N = ηab −Pab
T . (2.38)
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Hence, by the very definition of the covariant derivative associated to gµν , we have

∇′
σ∇′

νx
a = ∇σ∇νx

a − gαβCβ;σν∂αx
a

= ∇σ∇νx
a − gαβ∂αx

a∂βx
b∇σ∇νxb

= Pab
N ∇σ∇νxb . (2.39)

This allows to relate the curvature tensors6 associated to Gµν resp. gµν :

Rρσνµ[g] = ∇′
σ∇′

µx
a∇′

ρ∇′
νxa −∇′

σ∇′
νx

a∇′
µ∇′

ρxa

= Pab
N ∇σ∇µxa∇ρ∇νxb −Pab

N ∇σ∇νxa∇µ∇ρxb

= (Gg)ηµRρσνη [G] + ∇σCµ;ρν −∇ρCµ;σν − Cα;σµCβ;ρνg
αβ + Cα;σνCβ;µρg

αβ ,

Rρν [g] = Rρν [G] + gσµ∇σCµ;ρν − gσµ∇ρCµ;σν − gσµCα;σµCβ;ρνg
αβ + gσµCα;σνCβ;µρg

αβ ,
(2.40)

using (2.38) and (2.32). The last terms can be evaluated using

gαβCα;σνCβ;µρg
ρνgσµ = −3

4
gρν∇νg

βµ∇ρgµβ − 1
2
gρµ∇βg

ρν∇νg
βµ , (2.41a)

gαβCα;σµg
σµCβ;ρνg

ρν 2n=4= gβν∇αg
αβ∇ρg

ρν , (2.41b)

GαβCα;σνCβ;µρG
ρνGσµ 2n=4= 4∂ν(e−ση)∂ν(e−ση) + 2∂α(e−ση)∇µg

µα

−3
4
∇νg

βµ∇νgµβ − 1
2
Gµβ∇αg

µρ∇ρg
αβ , (2.41c)

gσµ∇σCµ;ρν − gσµ∇ρCµ;σν =
1
2
gσµ∇σ(∇ρgµν + ∇νgρµ −∇µgρν) − 1

2
gσµ∇ρ∇νgσµ

=
1
2

(
−∇ρ∇µhµν −Rρβ[g]hβαgαν + (ρ↔ ν)

)

+
1
2
�ghρν +Rαρβν [g]hαβ + O(h2) , (2.41d)

as derived in Appendix A. Hence to leading order in hµν = Gµν − gµν , we have

Rρν [g] = Rρν [G] − 1
2

(
∇ρ∇µhµν +Rρβ [g]hβαgαν + (ρ↔ ν)

)
+

1
2
�ghρν +Rαρβν [g]hαβ

+ O(h2),

R[g] = Rρν [G]gρν −∇ν∇µhµν + O(h2) ,

R[G] = Rρν [g]Gρν + ∇ν∇µhµν + O(h2) . (2.42)

2.4 Cartesian tensors

Now consider the following expressions, which play an important role in the following:

Hab =
1
2
[[Xa,Xc], [Xb,Xc]]+ ∼ −eσGµν∂µx

a∂νx
b ,

H = Habηab = [Xc,Xd][Xc,Xd] ∼ −eσGµνgµν = −4η(x) . (2.43)

6cp. also [15].
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The matrix “energy-momentum tensor” is then defined by [13]

T ab = Hab − 1
4
ηabH ∼ ηηab − eσGµν∂µx

a∂νx
b . (2.44)

It is instructive to consider the projectors defined in Eqn. (2.38) acting on these expressions
in the semi-classical limit, i.e. (PTH)ab ∼ Hab and (PNT )ab ∼ ηPab

N . In the special case of
gµν = Gµν , the semi-classical limit of the energy-momentum tensor becomes truly related
to the projectors:

T ab ∼ eσPab
N , and Hab ∼ −eσPab

T . (2.45)

Moreover, then

T ab�Xa�Xb −
1
2
T ab�Hab ∼ e3σR , (2.46)

as shown7 in [1]. However, there are several similar matrix actions which for gµν = Gµν

reduce to the same semi-classical form. It turns out that for general gµν 6= Gµν , which we
study in the present paper, the left-hand side of (2.46) is no longer intrinsic, i.e. it depends
also on the embedding M ⊂ RD. This makes the derivation of the equations of motion
more difficult. However, we will identify a slightly modified matrix action which is intrinsic
for general geometries in the semi-classical limit.

Before we continue, let us add a brief remark concerning Hab in 2n = 4 dimensions: The
4D identity (2.18) implies

(H3)ad − 1
2
H(H2)ad + e2σHad ∼ −e2σ(Gg)µρ (eσ(GgG)ρν − 2ηGρν + eσgρν) ∂µx

a∂νx
d

2n=4∼ 0 . (2.47)

This means that e−σHab has 3 eigenvalues {0, α2, α−2} with e−ση = 1
2(α2 + α−2) and

H ∼ −4η (cf. Section 2.2 and Ref. [14]). Hence the last relation essentially characterizes
the 4-dimensional nature of M4, and it also encodes the reality structure of θµν at the
matrix level because it is non-linear.

Semi-classical limit of the tangential conservation law. The following useful results
for various Poisson brackets are essentially obtained in [14]: Since Hab is a scalar field on
M ⊂ RD, we have8

{xa,H
ab} = −θµν∂µxa∇ν(eσGαβ∂αx

a∂βx
b)

= −eσGαβ
(
∂νσgµαθ

µν∂βx
b + θµν∇νgµα∂βx

b + gµαθ
µν∇ν∂βx

b
)

= −Gαβθµν∇ν(eσgµα)∂βx
b . (2.48)

This is again tensorial, and can be written in a number of different ways:

{xa,H
ab} = −eσGαβ∇ν(θµνgµα)∂βx

b

= −eσGαβ∇µ(eσθ−1
µα)∂βx

b

= (∂αη − eσ∇ρgρα − 2η∂ασ) θβα∂βx
b

= (eσ�Gx
a∂αx

a + ∂αη) θαβ∂βx
b (2.49)

7The derivation given in [1] for
R

d4x
√

g e2σR also applies without the integral resp. trace.
8Notice, that we use the same symbols Hab and T ab for their respective semi-classical limits whenever it

is clear from context what is meant.
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using the identity (2.21) and

θνµ∂µη = eσ∇µ(Gµµ′
gµ′ν′θν′ν) + eσθνα∇ρgρα + 2ηθνµ∂µσ (2.50)

which follows from the Jacobi identity [14]. Together with (2.31a), we obtain

{xa, T
ab} = eσ (�Gxa∂αx

a) θαβ∂βx
b (2.51)

which also follows directly from the matrix identity (2.53). For Yang-Mills matrix models,
the tangential conservation law [Xa, T

ab] = 0 holds in fact at the matrix level [13] as a
consequence of the symmetry Xa → Xa + ca1. However, higher order terms in the matrix
model as considered below may modify this relation. Note also that for 4-dimensional
branes, (2.31b) implies

{xa, T
ab} 2n=4= −eσ∇µg

µν Gναθ
αβ∂βx

b , (2.52)

so that the tangential conservation law is equivalent to ∇µg
µν = 0.

Exact matrix identities. The above semi-classical conservation law (2.51) can also be
obtained from the following matrix identities:

[Xa,H
ab] =

1
2

(
[�Xc, [Xb,Xc]]+ +

1
2
[Xb,H]

)
,

[Xa, T
ab] =

1
2
[�Xc, [Xb,Xc]]+ . (2.53)

3 Extensions of the matrix model action

We now want to consider more general terms in the matrix model, which in general have
the form

SP [X] = Tr(Xa1 . . . Xal)Pa1 ...al
, (3.1)

where Pa1 ...al
is an invariant tensor of SO(D) (resp. SO(1,D − 1) etc. in the case of

Minkowski signature). Imposing also translational invariance Xa → Xa + ca1, only terms
built out of commutators are admissible. We will organize such polynomial terms in the ma-
trix model according to the power ` of matrices Xa, as well as the number d of commutators.
It is clear that translational invariance implies d ≥ `/2, and that k = d − `/2 corresponds
to the number of derivatives of geometrical tensors such as θµν in the semi-classical limit.
It is thus natural to consider an expansion in k as well as `.

3.1 Matrix operators

Before diving into the possible extensions to the matrix model action, we collect some basic
“building blocks” for which we derive the following semi-classical results:

Lemma 1 For any matrices Φ ∼ φ(x), Ψ ∼ ψ(x), we have

ηab[Xa,Φ][Xb,Ψ] ∼ −eσGµν∂µφ∂νψ , (3.2a)
�Φ ≡ [Xa, [Xa,Φ]] ∼ −{xb, {xc, φ}}ηbc = −eσ�Gφ , (3.2b)

11



Hab[Xa,Φ][Xb,Ψ] ∼ e2σ(GgG)µν∂µφ∂νψ , (3.2c)
Hab[Xa, [Xb,Φ]] ∼ e2σ(GgG)βη∇β∂ηφ+ eσ∂βe

σ(GgG)ηβ∂ηφ

+
1
4
e2σ(∂ρ(Gg) − (Gg)∂ρσ)Gηρ∂ηφ

g=G∼ e2σ�Gφ . (3.2d)

In particular, for 2n = 4-dimensional branes, we have

(Hab − 1
2
Hηab)[Xa,Φ][Xb,Ψ] ∼ −e2σgµν∂µφ∂νψ , (3.2e)

[Xa,
(
Hab − 1

2
Hηab

)
[Xb,Φ]] ∼ −e2σ(�gφ+ gµν∂µσ∂νφ) . (3.2f)

Proof. Relations (3.2a) and (3.2b) are by now well-known [14], and (3.2c) can be com-
puted straightforwardly as

Hab[Xa,Φ][Xb,Ψ] ∼ eσGµν∂µx
a∂νx

bθαβ∂αxa∂βφθ
α′β′

∂α′xb∂β′ψ

= e2σ(GgG)µν∂µφ∂νψ . (3.3)

Now (3.2d) can be shown either by a direct computation which is given in Appendix B.1,
or more elegantly by considering the following bilinear form

Tr
(
Φ1H

ab[Xa, [Xb,Φ2]]
)

= Tr
(
−[Xa,H

ab][Xb,Φ2]Φ1 −Hab[Xb,Φ2][Xa,Φ1]
)

(3.4)

for any matrices Φi ∼ φi(x). The first term vanishes for self-dual θ (up to O(h2), resp. is
easy to evaluate), and reads

Tr
(
[Xa,H

ab][Xb,Φ2]Φ1

)
∼ −

∫
d4x

(2π)2
√
Ge−σφ1(eσ�Gx

c∂αxc + ∂αη)θαβ∂βx
bθµν∂µxb∂νφ2

=
∫

d4x

(2π)2
√
Geσφ1

(
∇βgβα − 1

4
∂α(gG) +

1
4
∂ασ(gG)

)
Gαν∂νφ2 , (3.5)

using (2.49) and (2.31a). The second term of (3.4) can be computed using (3.2c) yielding

Tr
(
Hab[Xb,Φ2][Xa,Φ1]

)
∼

∫
d4x

(2π)2
√
Geσ(GgG)µν∂µφ2∂νφ1

= −
∫

d4x

(2π)2
√
Gφ1 (eσ∇νσ(GgG)µν∂µφ2 + eσ∇ρgρηG

µη∂µφ2 + eσ(GgG)µν∇ν∂µφ2) .

(3.6)

Hence

Tr
(
Φ1H

ab[Xa, [Xb,Φ2]]
)

= Tr
(
− [Xa,H

ab][Xb,Φ2]Φ1 −Hab[Xb,Φ2][Xa,Φ1]
)

∼
∫

d4x

(2π)2
√
Geσφ1

(1
4

(∂α(gG) − ∂ασ(gG))Gαν∂νφ2

+∇νσ(GgG)µν∂µφ2 + (GgG)µν∇ν∂µφ2

)
, (3.7)
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which implies (3.2d) since φ1 is arbitrary. Further simplification of this formula can be
achieved in 2n = 4 dimensions, where (3.2e) follows directly from (3.2c) using the 4D
identity (2.18). Hence in particular

(2π)2Tr
(
Φ2[Xa, (Hab − 1

2
Hηab)[Xb,Φ1]]

)
= −(2π)2Tr

(
(Hab − 1

2
Hηab)[Xa,Φ2][Xb,Φ1]

)

∼
∫
d4x

√
g eσgµν∂µφ2∂νφ1

= −
∫
d4x

√
g gµνφ2∇′

µ(eσ∂νφ1) , (3.8)

which for arbitrary φ2 implies (3.2f).

Finally, we also note the following identity which will be useful below:

Hab[Xa, [Xb,Φ]] = [Xa,H
ab[Xb,Φ]] − [Xa,H

ab][Xb,Φ]
∼ eσ (2η�Gφ− eσgµν∇µ∂νφ+ 2Gµν∂νη∂µφ−∇ν(eσgµν)∂µφ)
− eσ(eσ�Gx

c∂αxc + ∂αη)Gαν∂νφ

= e2σ
(
2e−ση�Gφ− gµν∇ν∂µφ+ (e−σGµν∂νη − gµν∇νσ)∂µφ

)
. (3.9)

3.2 Potential terms k = 0

For k = 0, consider first the following terms

Tr
(
− 1

4
H

)`
∼

∫
d4x

(2π)2
√
Ge−ση` , for ` ∈ N . (3.10)

For ` = 1, we recover the basic Yang-Mills matrix model

SY M = −1
4

TrH ∼
∫

d4x

(2π)2
√
G e−ση . (3.11)

Now recall that (2.16)

e−ση =
1
2
(α2 + α−2) ≥ 1 , (3.12)

which assumes its minimum e−ση = 1 if and only if α = ±1, i.e. for gµν = Gµν . This means
that for fixed embedding, the minimum of the action SY M is achieved9 if α = ±1, i.e. if
θµν is self-dual w.r.t. gµν . Curvature terms as discussed below may lead to small deviations
from self-duality,

Gµν = gµν + hµν , (3.13)

however the potential is expected to dominate as long as the curvature is “small”. This
is an important mechanism, which justifies to focus on geometries where Gµν ≈ gµν . The
deviations from (anti-)self-duality will be studied in more detail in Section 4; e.g. it will
also be shown that e−ση = 1 + O(h2).

Thus assuming G ≈ g, the above potential terms for ` > 1 amount to

Tr
(
− 1

4
H

)`
∼

∫
d4x

(2π)2
√
Ge(`−1)σ (e−ση)`

g≈G
≈

∫
d4x

(2π)2
√
Ge(`−1)σ . (3.14)

9This is certainly true in the Euclidean case, and in the Minkowski case provided we adopt complexified
θµν as discussed in Section 2.2 and Ref. [14].
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Then these terms essentially determine a potential

Spot =
∑

`

a`TrH` g≈G
≈

∫
d4x

(2π)2
√
GV (σ) , (3.15)

for eσ . This is very interesting: if V (σ) has a non-trivial minimum, it will dynamically
determine the vacuum expectation value of eσ and hence the scale of non-commutativity.
Thus eσ will be essentially constant, simplifying considerably some of the considerations
below. This is also important in order to preserve the equivalence principle, at least approx-
imately, because the effective metric for fermions and scalars a priori differ by a conformal
factor ∼ eσ/3 [16, 17]. There are other terms with k = 0 of type Tr(HabHbcH

ca) etc. For
g ≈ G, they essentially reduce to the same potential terms as above due to the projector
property 4Habηbb′H

b′c = HHac which holds for gµν = Gµν , assuming 2n = 4. However this
type of terms also depends on the dimension of M ⊂ RD, and might help to single out
4-dimensional branes. This should be investigated elsewhere. (In fact, gµν = Gµν is only
possible for 2n = 4, which alone would single out 4-dimensional branes.)

We can summarize these observations as follows: In the case of near-flat geometries the
potential terms with k = 0 are expected to dominate, leading to gµν ≈ Gµν and eσ ≈
const. Additional terms with k > 0 involving more commutators typically correspond to
curvature contributions as shown below, and may lead to small deviations from g = G.
In fact, it turns out that σ = const. is incompatible with self-dual θµν resp. g = G for
general geometries10. Nevertheless, the presence of a potential V (σ) should ensure that σ is
constant to a very good approximation, even in the presence of curvature. This is important
because eσ determines e.g. the gauge coupling constant. It also suggests that the symplectic
structure obtained in [6] based on self-duality will be modified near the horizon, such that
eσ ≈ const. is preserved. This should be studied in more detail elsewhere.

3.3 O(X6) terms

For the sake of systematics we start our discussion of k > 0 terms with the O(X6), although
the O(X10) turn out to be much more appealing. As shown in [1], there are only two
independent terms of order X6, given by

S6 = Tr
(
α�Xa�Xa +

β

2
[Xc, [Xa,Xb]][Xc, [Xa,Xb]]

)
. (3.16)

In the general case gµν 6= Gµν , it seems that the easiest way to evaluate them is in terms of
R[g] (also allowing us to compare with the one-loop results in [17]). We start our derivation
by considering

�Xa ∼ −θµν∂µx
b∇′

ν

(
θαβ∂αxb∂βx

a
)

= −
(
eσGνβ∇′

ν∂βx
a + eσθ−1

αρG
νρ∇′

νθ
αβ∂βx

a
)

= −eσ
(
Gµν∇′

µ∇′
νx

a −Gµρ∇′
νx

aθσν∇′
µθ

−1
σρ

)
, (3.17)

since ∂µx
b∇′

ν∂αxb = 0. It follows that

�Xa�Xa ∼ e2σ
(
GµνGαβ∇′

µ∇′
νx

a∇′
α∇′

βxa + eσGµρGατGσε∇′
µθ

−1
σρ ∇′

αθ
−1
ετ

)

= eσ
(
eσGµνGαβ∇′

µ∇′
νx

a∇′
α∇′

βxa + gρτ∇′
µG

µρ∇′
αG

ατ
)
, (3.18)

10For example, such a self-dual θµν was determined for the Schwarzschild geometry in [6], and it turns out
that eσ 6= const.
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using (2.22) for the second term (which is manifestly order O(h2)). The second part of S6

is derived in Appendix B.2, and using the 4D identity (2.18) we find

S6 ∼ (α+ β)
∫

d4x

(2π)2
√
g eσGµνGρσ∇′

µ∇′
νx

a∇′
ρ∇′

σxa

+ β

∫
d4x

(2π)2
√
g eσ

[
2e−σθµν θ̂ρσR[g]µρνσ −GµνGρσR[g]µρνσ − (GgG)µνR[g]µν

+
(

3
4
(Gg)Gµν − gµν

)
∂µσ∂νσ

]

+ α

∫
d4x

(2π)2
√
g∇′

µG
µρ∇′

α(Gg)αρ

+ β

∫
d4x

(2π)2
√
g eσ

[
1
2

(
3
2
Gµν∇′

µ(Gg) −∇′
µG

µν(Gg)
)
∂νσ + gνρ∇′

νθ
−1
τρ θ

τµ∂µσ

−∇′
µ(Gg)νσG

ρσ∇′
νθ

−1
τρ θ

τµ −∇′
µ(Gg)ρσθ

−1
ρτ ∇′

νG
τµθνσ

+
1
2
eσGτµ∇′

µG
ρρ′θ−1

νρ′θ
−1
σρ ∇′

τG
νσ

]
(3.19)

where
θ̂µν := Gµµ′

gµ′ηθ
ην (3.20)

is an anti-symmetric tensor. This is manifestly tensorial for α = −β. Using Eqn. (2.39) the
first line of S6 in the semi-classical limit Eqn. (3.19) can also be written as

α+ β

(2π)2

∫
d4x

√
g eσPab

N �Gxa�Gxb . (3.21)

The action (3.19) simplifies considerably in the self-dual case gµν = Gµν , reducing to the
one previously computed in Ref. [1]. Furthermore, the terms surviving that limit are of
the same type as those induced at one loop when coupling fermions to the matrix model,
as was found in Ref. [17]. The leading order deviations from the self-dual case may be
studied by expanding the above action around Gµν = gµν + hµν : To order O(h) the action
S6 semi-classically reads

S6 ∼ α+ β

(2π)2

∫
d4x

√
g eσ

(
�gx

a − 2hµν∇′
µ∇′

νx
a
)
�gxa

+
β

(2π)2

∫
d4x

√
g eσ

[
2e−σθµν

(
θρσ − hραgαβθ

βσ
)
R[g]µρνσ − 2R[g] + 4hµνR[g]µν

+ 2∂µσ∂
µσ − 3hµν∂µσ∂νσ + 2∇′

µh
µν∂νσ − 3

4
∂ν(hg)∂νσ

+ gνρ∇′
νθ

−1
τρ θ

τµ∂µσ + ∇′
µh

νρ∇′
νθ

−1
τρ θ

τµ

]

+ O(h2) . (3.22)

As explained in Section 4, hµν can be parametrized in terms of the deviation of the symplectic
structure around its self-dual version, i.e. θ−1

µν = θ̄−1
µν +Fµν where θ̄−1

µν is self-dual with respect
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to gµν . Then the above action can be simplified further by considering terms only up to
order O(F ). This implies that (hg) = O(F 2) can be dropped, and gνρ∇′

νθ
−1
τρ = gνρ∇′

νFτρ =
O(∂h). The same type of matrix model terms have also been considered on 2-dimensional
branes in [18], where S6 for α+β = 0 reduces essentially to an integral over the Ricci scalar.

We also note that

Rµνρσ [g]θµνθρσ = Wµνρσ[g]θµνθρσ − 2eσRµρ[g]Gµρ +
1
3
eσR[g](Gg) (3.23)

where [15]

Wµνρσ := Rµνρσ − 1
2
(gµρRσν − gµσRρν − gνρRσµ + gνσRρµ) +

1
6
(Rgµρgσν −Rgµσgρν)

(3.24)

is the Weyl tensor on the 4 dimensional submanifold M4. In the case of (anti-)self-dual θ
we have g = G, and

Rµνρσ[g]θµνθρσ = Wµνρσ [g]θµνθρσ − 2
3
eσR[g] . (3.25)

This is interesting for the following reason: As discussed below, it may be appropriate to
average over the moduli space of Poisson structures θµν , which essentially consists of (anti-)
self-dual 2-forms with fixed determinant. This averaging over the asymptotic orientations
leads to Wµνρσ[g]〈θµνθρσ〉 = 0 since 〈θµνθρσ〉 is Lorentz-invariant for (A)SD θ, so that the
term Rµνρσ [g]θµνθρσ essentially reduces to the Ricci scalar.

3.4 O(X10) terms

We now consider O(X10) terms with k > 0 (i.e. ignoring contributions to the potential as
discussed above in Section 3.2). We are especially interested in a combination of terms which
semi-classically more or less leads to the Einstein-Hilbert action. For gµν 6= Gµν , the answer
is not as simple as Eqn. (2.46) derived in Ref. [1]. As a starting point, we hence consider
the term Hab�Hab which previously has been shown to be the “central piece” leading to
the Ricci-scalar in the semi-classical limit (i.e. the additional matrix terms were needed to
make it intrinsic). The corresponding derivation is given in Appendix B.3. It reveals that
the following combination of terms depend only on the intrinsic geometry through Gµν , gµν

and eσ , independent of the embedding M4 ⊂ RD:

Hab�Hab + 2�XcHab[Xa, [Xb,Xc]]

∼ −e3σ
(
(GgGg)e−σ�Ge

σ + 8e−2σ(∂αη∂
αη − η∂αη∂

ασ) − 3
2
∇νg

µβ∇νgµβ + 2∇µgµβ∇αg
αβ

+ (Gg)Rµη [G](GgG)µη − 2R[G] − 2∇µ′(Gµµ′
gµβ∇αg

αβ) −Gµβ∇αg
µρ∇ρg

αβ

+ 2∇βg
αβe−σ∂αη − 4e−ση∇µg

µα∂ασ + 2gµνGµα∇βg
αβ∂νσ

)
. (3.26)

The second term in the first line is needed in order to cancel extrinsic terms, and in the
self-dual limit it semi-classically coincides with its counter part of Ref. [1] (resp. the first
term of Eqn. (2.46)).

In order to make the following results more transparent, we keep only terms of order
O(h) and drop higher-order terms in h. This is justified by the observation in Section 3.2
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that the Yang-Mills action SY M is quadratic in h, and therefore suppresses the deviation
from self-duality. Then the above result yields

Tr(Hab�Hab + 2�XcHab[Xa, [Xb,Xc]])

∼ −
∫

d4x

(2π)2
√
Ge2σ

(
4Rµη [G](GgG)µη − 2R[G] + 4e−σ�Ge

σ + 4∇βg
αβ∂ασ

)
+ O(∂h2) .

(3.27)

Using the intrinsic terms (3.30a), (3.30b), we also obtain the following forms

SR := Tr(
1
2
T ab�Hab + �XcHab[Xa, [Xb,Xc]])

∼ −
∫

d4x

(2π)2
√
Ge2σ

(
3R[G] − 2Rµη [G]gµη + 2∇βg

αβ∂ασ
)

+ O(∂h2) , (3.28a)

S̃R := Tr(
1
2
Hab(�Hab − [Xa, [Xb,H]]) + �XcHab[Xa, [Xb,Xc]])

∼ −
∫

d4x

(2π)2
√
Ge2σ

(
3R[G] − 2Rµη [G]gµη

)
+ O(∂h2) , (3.28b)

noting that η = eσ + O(h2) as well as

2Rµη [G](GgG)µη −R[G] = (4ε−ση − 1)R[G] − 2Rµη [G]gµη

= 3R[G] − 2Rµη [G]gµη + O(h2p2) . (3.29)

Here p2 stands for the curvature scale of the gravitational field R[G], and we will assume
that O(h2p2) = O(∂h2). For G = g, we recover the result obtained in [1], and the “local”
formula (2.46) follows from (3.26).

Additional O(X10) terms. Consider the following terms, whose semi-classical limit is
obtained easily from our previous results (2.43), (2.49) and (2.31b):

[Xa,Hab][Xb,H] ∼ 4eσ(eσ∇αg
βα∂βη −Gαβ∂αη∂βη)

= 4e3σ(∇αh
βα∂βσ −Gαβ∂ασ∂βσ) + O(h2) , (3.30a)

[Xa,H][Xa,H] ∼ −16eσ Gµν∂µη∂νη

= −16e3σ Gµν∂µσ∂νσ + O(h2) . (3.30b)

There are additional O(X10) terms which are of order O(h2), which we will not discuss in
this paper. These include

Hab�Xa�Xb = −e3σGµν∇αg
αµ∇βg

βν = O(∂h2) , (3.31a)

[Xa,H
ab][Xc,Hbc] ∼ −e2σ

(
�Gx

a∂αxa + e−σ∂αη
)
θαβ∂βx

b
(
�Gx

c∂δxc + e−σ∂δη
)
θδγ∂γxb

= e3σ
(
−Gαβ∇γg

αγ∇κg
βκ + 2e−σ∇αg

βα∂βη − e−2σGαβ∂αη∂βη
)

= O(∂h2) . (3.31b)

The trace of the last term can in fact be written in a number of different ways,

Tr
(
[Xa,Hab][Xc,Hbc]

)
= −Tr

(
Hab[Xa, [Xc,Hbc]]

)

= Tr
(
Hab[Xc, [Hbc,Xa]]

)
+ Tr

(
Hab[Hbc, [Xa,Xc]]]

)

= Tr
(
[Xc,Hab][Xa,Hbc]

)
+ Tr

(
[Hab,Hbc][Xa,Xc]

)
. (3.32)
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Extrinsic terms. The O(X10) terms above have been tailored to be tensorial, i.e. such
that they only depend on the intrinsic geometry of M in the semi-classical limit. There are
of course also terms which depend on the “extrinsic curvature” i.e. on the embedding of
M ⊂ RD. The prototype of such a term is given by

�Xa�Xa ∼ e2σ�Gx
a�Gxa , (3.33)

cf. (3.16), or similarly

Tr�Xa[Xb, (Hbc −
1
2
ηbcH)[Xc,Xa]] ∼

∫
d4x

(2π)2
√
g eσ�Gx

a(�gxa + gµν∂µσ∂νxa)

=
∫

d4x

(2π)2
√
g eσ

(
�Gx

a�gxa − gµνGνα∇βg
αβ∂µσ

)
,

H�Xa�Xb ∼ −4e2ση�Gx
a�Gxa . (3.34)

For gµν ∼ Gµν , these terms essentially coincide, and single out harmonic embeddings
�Gx

a = 0 as vacuum geometries. In general, such terms should be expected to arise upon
quantization, and their physical significance must be investigated. It seems plausible that
they become important at cosmological scales where the intrinsic curvature is small, leading
to long-distance modifications of gravity somewhat along the lines of the “harmonic” solu-
tions given in [19, 20]. Such long-distance modifications are very interesting in view of the
major puzzles in cosmology, notably in the context of dark energy and dark matter.

On the other hand, the term �Gx
a�Gxa might also serve as a UV cutoff for perturbation

theory, since it behaves as (p2)2 on R4
θ, where p denotes the momentum scale.

4 Gravitational action and degrees of freedom

Now consider the matrix model action combining (2.1) with curvature terms such as (3.28),
which in the semi-classical limit become

S̃R ∼ −
∫

d4x

(2π)2
√
Ge2σ(3R[G] − 2Rµη [G]gµη) + O(∂h2)

= −
∫

d4x

(2π)2
√
g e2σ(R[g] − 3Rµν [g]hµν + ∇′ν∇′µhµν) + O(∂h2) , (4.1a)

Ssimple = S̃R +
1
2
Tr[Xa, Tab][Xb,H]

∼ −
∫

d4x

(2π)2
√
g e2σ(R[g] − 3Rµν [g]hµν ) + O(∂h2) , (4.1b)

using (2.42) where
Gµν = gµν + hµν (4.2)

and therefore Gµν = gµν − hµν + O(h2). The term ∇′ν∇′µhµν can be eliminated by sub-
tracting suitable terms of type (3.30a), (3.30b) from the action. We will therefore drop it
and consider Ssimple in order to simplify the presentation. For the same reason the possible
additional contributions from S6 (3.22) will also be omitted here. We will furthermore drop
all terms of order O(∂h2), however we keep the O(h2) e.g. in the Yang-Mills terms and the
potential terms, which are expected to be important for weak gravity. This will be justified
below, and ensures a well-defined and compact moduli space of vacuum solutions for θµν .
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Because these actions are tensorial (i.e. independent of the embedding M4 ⊂ RD), the
semi-classical equations of motion are obtained simply by varying the independent geomet-
rical degrees of freedom encoded in gµν and θµν. To understand these degrees of freedom,
note that in a given “coordinate patch”, the embedding metric gµν = ηµν + ∂µφ

i∂νφ
jηij is

determined by the scalar fields φi(x). The Poisson tensor θµν can be parametrized as

θ−1
µν = θ̄−1

µν + Fµν (4.3)

where θ̄−1
µν is self-dual11 with respect to gµν , and Fµν = ∂µAν −∂νAµ. Thus the independent

degrees of freedom are given by the embedding φi and Fµν resp. Aµ.
In principle, one could now derive the equations of motion resulting from (4.1) as well

as from the other possible terms such as S6, Eqn. (3.22). This is straightforward as long
as only “intrinsic” terms are considered, which depend on gµν and θµν . The variation of
the fundamental degrees of freedom can be separated into variations δφ of the embedding
leading to

δφgµν = δφiφjηij + φiδφjηij , (4.4)

and the variation δA of the Poisson tensor given by

δAFµν = ∂µδAν − ∂νδAµ . (4.5)

We postpone this straightforward but tedious task to future work, and only draw some
generic and qualitative conclusions below. In the presence of terms which also depend on
the embedding resp. extrinsic curvature such as �Gx

a�Gx
a, the action would lead to higher-

order equations of motion in the embedding φi. In particular, this leads to the “harmonic
branch” as discussed in [20], whose physical relevance requires further study. It may suffice
here to say that such extrinsic terms may lead to very interesting cosmological solutions
[19], while the viability for solar system gravity is not clear.

Yang-Mills action and vacuum configurations for θµν. We can gain some important
insights even without deriving equations of motion. Let us expand the Yang-Mills term
to O(F 2), but keep only O(∂F ) resp. O(∂h) in the curvature terms due to the explicit
gravitational momentum scale. This gives

θµν = ((1 + θ̄F )−1θ̄)µν

= (θ̄ − θ̄F θ̄ + θ̄F θ̄F θ̄)µν + O(F 3)

= θ̄µν + θ̄µµ′
θ̄νν′

Fµ′ν′ + (θ̄F θ̄F θ̄)µν + O(F 3) , (4.6a)

hµν = Gµν − gµν = −eσ̄(θ̄−1gF )µν − eσ̄(Fgθ̄−1)µν − 1
2
gµν(θ̄F ) + O(F 2) , (4.6b)

gµνh
µν = 0 + O(F 2) , (4.6c)

hµνh
µν = 2(θ̄F θ̄F ) − 2eσ̄(FgFg) − (θ̄F )(θ̄F ) + O(F 3) , (4.6d)

e−σ = e−σ̄ det(1 + θ̄F )1/2

= e−σ̄(1 +
1
2
(θ̄F ) +

1
8
(θ̄F )(θ̄F ) − 1

4
(θ̄F θ̄F ) + O(F 3)) , (4.6e)

(θgθg) = −4eσ̄ + 2eσ̄(θ̄F ) + e2σ̄(gFgF ) − 2eσ̄(θ̄F θ̄F ) + O(F 3) , (4.6f)

11One could equally well consider the case of small perturbations around anti-self-dual θ̄−1
µν .

19



1
4
(Gg) = −1

4
e−σ(θgθg) = 1 +

1
4
(θ̄F θ̄F ) − 1

8
(θ̄F )(θ̄F ) − 1

4
eσ̄(gFgF ) + O(F 3)

= 1 +
1
8
hµνh

µν + O(F 3) . (4.6g)

Here we use a condensed notation where neighbouring indices are contracted and () denotes
a trace (e.g. θ̄F ≡ θ̄µνFνη and (θ̄F ) ≡ θ̄µνFνµ), as well as

eσ̄δµ
ν = −(θ̄gθ̄g)µν , ∇′µθ̄−1

µν = 0 . (4.7)

The relation (4.6c) is in fact a consequence of |G| = |g| in 4 dimensions, (4.7) holds for any
self-dual θ̄−1

µν , and σ̄ is defined through θ̄µν, so that J̄ µ
ν defines an almost-complex structure.

We will assume hµν to be small, and accordingly we will drop all terms of order O(∂F 2).
The r.h.s. of (4.6g) acquires a geometric meaning due to the relation

1
8
(F θ̄)(F θ̄) − 1

4
(F θ̄F θ̄) = Pfaff(Fµν)Pfaff(θ̄µν) , (4.8)

(cf. [2]) where

Pfaff(θ̄µν) =
1
8
εµνρη θ̄

µν θ̄ρη =
1
4

1√
|g|

θ̄µν(?g θ̄)µ
′ν′
gµµ′gνν′ = ±

√
|θ̄µν | . (4.9)

Note that Pfaff(θ̄) is positive (negative) for (anti-) self-dual θ̄µν . Then the Yang-Mills matrix
model action (2.1) in the semi-classical limit becomes12

SY M ∼
∫

d4x

(2π)2
√
g e−ση =

∫
d4x

(2π)2
√
g

(
1 +

1
8
hµνh

µν + O(F 3)
)

=
∫

d4x

(2π)2
√
g

(
1 +

1
4
eσ̄FµνFµ′ν′gµµ′

gνν′ − Pfaff(Fµν)Pfaff(θ̄µν) + O(F 3)
)

=
∫

d4x

(2π)2
√
g

(
1 +

1
8
eσ̄(F ∓ ?gF )µν(F ∓ ?gF )µ′ν′gµµ′

gνν′
+ O(F 3)

)
, (4.10)

where ?g denotes the Hodge star w.r.t. gµν , and ∓ is minus for self-dual θ̄µν and vice versa.
Recalling that any 2-form can be decomposed into self-dual (SD) and anti-selfdual (ASD)

components, we arrive at an important result: ASD fluctuations Fµν around a SD back-
ground θ̄−1

µν give a positive contribution to SY M and are hence suppressed, consistent with
(2.16). On the other hand, the SD part of Fµν does not contribute to SY M but determines
the “dilaton field” eσ. Conversely, SD fluctuations around an ASD background are sup-
pressed by SY M , while eσ encodes ASD fluctuations. This justifies to focus on geometries
with Gµν ≈ gµν , and makes clear that it is the embedding rather than the θ−1

µν which plays
the central role for the emergent gravity13.

In particular, it follows that the moduli space of vacuum configurations of SY M (for fixed
embedding) consists of 2 disjoint components Σ̄ = Σ̄+ ∪ Σ̄− given by the space of (A)SD

12It is interesting to compare this with the action for non-Abelian field strength [14], which has a somewhat
similar structure. The Abelian case has also been considered by A. Schenkel (unpublished).

13It is nevertheless interesting to recall that this subject was sparked by the observation that the U(1)
“would-be” gauge modes acquire a geometrical meaning through Gµν , leading to hµν which do give Ricci-flat
fluctuations around flat backgrounds [2, 21]. This gauge sector is given a central role in [22]. The ultimate
physical relevance of these U(1) modes is still to be understood.
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symplectic structures θ̄−1
µν w.r.t. gµν , and SY M provides a positive definite action which

suppresses fluctuations away from Σ̄. These sectors Σ̄± are disconnected, and characterized
by the sign of Pfaff(θ̄µν). Now observe that eσ defines a scalar function on Σ̄ (4.6e) which
measures the “strength” of θµν , i.e. the non-commutativity scale. Hence a potential V (eσ)
as in (3.15) with a non-trivial minimum,

V (eσ) = V0 +
1
2
M2(eσ − x0)2 + . . .

= V0 +
1
2
M2

(
eσ̄ − x0 −

1
2
eσ̄(θ̄F )

)2 + . . . , (4.11)

where V0, M and x0 are constants, will set the NC scale resp. the vacuum scale eσ ≈ const.
Then Σ becomes compact, e.g. Σ± ∼= S2 in the near-flat case. On the other hand, terms
in the gravitational action such as Rµνh

µν may lead to small deviations from (anti-)self-
duality. Moreover, eσ = const. may not be compatible with (A)SD θ−1

µν in the presence of
curvature, cf. [6]. Then (4.11) suggests (θ̄F ) ≈ 2(1−e−σ̄x0) 6= 0 if M is large, with F → 0 as
x→ ∞. Therefore the physical moduli space Σ = Σ+∪Σ− of vacua will consist of symplectic
forms θ−1

µν = θ̄−1
µν + Fµν which are small deformations of (A)SD fields, characterized (in the

asymptotically flat case) by the asymptotic orientation of θ̄−1
µν .

If the function V (eσ) has flat directions, then one can pick a vacuum with arbitrary scale
eσ̄. The kinetic term ∂µσ∂µσ would still suppress variations of σ.

We conclude that the above type of action represents a well-defined variational prob-
lem for the geometry, and leads to metrics with gµν ≈ Gµν as well as eσ ≈ const. Note
that although we focused on the case of Euclidean signature, the steps go through in the
Minkowski case provided one adopts complexified θµν as discussed above, which do admit
(anti-)self-dual configurations ?gθ = ±iθ. This provides an important simplification and
progress for the analysis of the emergent gravity theory.

Further perspectives and physical implications. One obvious class of vacuum so-
lutions of (3.28b) and (2.1) is given by Ricci-flat spaces along with an (A)SD θµν (hence
hµν = 0) such that eσ = const. The problem is that in general, Ricci-flat spaces may not
admit such (A)SD θµν such that eσ = const. This is illustrated in [6] where a self-dual θ̄−1

µν

was found with eσ 6= const.
The above analysis suggests the following strategy to find solutions for the coupled

system (gµν , θ
µν): for a given metric gµν , compute first a self-dual symplectic form θ̄−1

µν ;
this will lead to some eσ̄ which in general is not constant. Then Fµν resp. hµν should
be determined through the full equations of motion, which will take the form of modified
inhomogeneous Maxwell equations, schematically

gµµ′∇ν(eσ̄Fµ′ν) = Jµ. (4.12)

Here Jµ will depend on ∂ν Ṽ (eσ̄) and (θ̄F ), and may include matter contributions which
turn out to act as dipole sources [4]. In the presence of a suitable potential V (eσ) and/or
a kinetic term ∂µσ∂µσ, this will lead to eσ ≈ const. Since the gauge coupling as well as
the NC scale depends on eσ, this is probably essential to meet precision tests of general
relativity and the time-independence of the fine structure constant.

The example of the Schwarzschild geometry [6] indicates a certain tension between the
requirements eσ = const. and gµν = Gµν , since θµν is determined by solving Maxwell-like
equations with non-trivial boundary conditions. This would presumably be acceptable if
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hµν = O(R) for asymptotically flat 4-dimensional geometry, where R denotes the scale of
the gravitational curvature. In that case, the additional terms in the gravitational action
such as hµνRµν = O(R2) are suppressed at least in the case of weak gravity, leading to
nearly-Ricci-flat spaces Rµν ≈ 0 as (vacuum) solutions in agreement with general relativity.
However, this has not been shown at this point.

Even if the equations governing θµν are so rigid that hµν cannot be neglected, one
might still effectively recover an (almost)-constant eσ along with (almost)-ASD θ−1

µν e.g. by
considering branes with compact extra dimensions, such as M4 × S2 ⊂ R10. This is very
natural also to obtain non-Abelian gauge groups as required for particle physics (cf. [23]),
and will be studied elsewhere in more detail.

There is another interesting point which should be kept in mind. Once a solution for
θµν is found, the quantization of the theory requires to integrate over the fluctuations in
Fµν (recall that this would-be U(1) gauge field couples only to the gravitational sector).
However, there is in fact a moduli space Σ of solutions θµν , corresponding to different
asymptotic orientations of θµν (this is obvious in the flat case). The question then arises
whether one should also integrate over this moduli space14. In particular, this would amount
to an integration over all configurations corresponding to different asymptotics of θµν related
by Lorentz rotations. The Lorentz-violating term Wθθ (3.25) would then disappear from
the action. This issue boils down to the question whether or not there really is a non-trivial
VEV 〈θµν〉, spontaneously breaking Lorentz invariance. Note that this is not essential for
the mechanism of gravity presented here, which works also (and in fact simplifies) under
weaker assumptions such as 〈θµν〉 = 0 but 〈θµνθµ′ν′〉 6= 0.

Finally, we should perhaps comment on the cosmological constant problem, which in the
present setting amounts to explaining why V ′ = 0 implies V ≈ 0, i.e. that V ≈ 0 at its
minimum (cp. (4.11)). At this stage (in the “Einstein branch” [4]) this problem may appear
to be similar as in standard GR, but again there are additional ingredients such as extrinsic
curvature, compact extra dimensions, an additional (harmonic) branch of solutions, etc.
which may shed new light on this problem.

5 Concluding remarks

The results of this paper represent a further step in the long-term project of studying the
effective gravity theory emergent from matrix models of Yang-Mills type. One important
new insight is that the “bare” Yang-Mills term defines a positive-definite action for hµν =
Gµν − gµν , which implies that the effective metric approximately coincides with the induced
(embedding) metric. Furthermore, we studied the geometrical meaning of higher-order terms
in the matrix model for general backgrounds, identifying in particular an action which is
very similar to the Einstein-Hilbert action, taking into account Gµν ≈ gµν and eσ ≈ const.
Such terms are expected at the level of the quantum effective action, or alternatively they
can be added to the action by hand. These results are very welcome in the quest for a
realistic theory of (quantum) gravity.

We also identified some specific issues and potential problems in clarifying the physical
viability and the relation with general relativity. One issue is a certain “tension” between
self-dual θµν and eσ ≈ const, which both seem natural and desirable in view of the above
results. Once this is understood, one can proceed to reliably analyze the equations for the

14See also [10] for a related discussion in the context of non-commutative field theory.
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embedding resp. for the effective metric, which then describes gravity and its deviation from
GR.

The bottom line is that the model defines a highly non-trivial coupled system for the
embedding gµν and the Poisson structure θµν, and contains some (quantum) theory of
gravity. This complexity is of course essential for any serious candidate for a realistic theory,
but makes the identification of the “relevant” configurations and solutions non-trivial. An
additional complication is that quantum effects must be taken into account, e.g. through
higher-order terms as discussed here. Furthermore, the case of compact extra dimensions
and the implications of non-trivial extrinsic terms such as �Gx

a�Gx
a must be studied

systematically. Clearly much more work is needed before the physical viability of these
models can be reliably addressed. On the other hand, the models are sufficiently clear-cut
such that their physical content can finally be understood.
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Appendix A: Derivation of (2.41c) and (2.41d)

Consider

GαβCα;σνCβ;µρG
ρνGσµ

=
1
4
Gαβ (∇νgσα + ∇σgνα −∇αgσν) (∇µgρβ + ∇ρgµβ −∇βgρµ)GρνGσµ

=
1
2
Gαβ

(
∇νgσαG

σµ − 1
2
∇αgσνG

σµ

)
(∇µgρβ + ∇ρgµβ −∇βgρµ)Gρν

=
1
2

(
∇ν(2e−σηGβµ − gβµ) − 1

2
Gαβ∇αgσνG

σµ

)
Gρν (∇µgρβ + ∇ρgµβ −∇βgρµ)

=
(
Gβµ∂ν(e−ση) − 1

2
∇νg

βµ
)
∇νgµβ −Gαβ∇α

(
e−σηGµρ − 1

2
gµρ

)(
∇ρgµβ − 1

2
∇βgρµ

)

=
3
2
∂ν(e−ση)∂ν(Gg) − 3

4
∇νg

βµ∇νgµβ − ∂α(e−ση)∇µ(2e−σηGµα − gµα)

+
1
2
∇αg

µρ∇ρ(2e−σηδα
µ −Gµβg

αβ)

= 4∂ν(e−ση)∂ν(e−ση) − 3
4
∇νg

βµ∇νgµβ + 2∂α(e−ση)∇µg
µα − 1

2
Gµβ∇αg

µρ∇ρg
αβ (A.1)

assuming 2n = 4, where we have used (2.18).
The relation (2.41d) can be seen as follows:

gσµ∇σCµ;ρν − gσµ∇ρCµ;σν

=
1
2
gσµ∇σ(∇ρgµν + ∇νgρµ −∇µgρν) − 1

2
gσµ∇ρ∇νgσµ
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=
1
2
gσµ

(
(∇ρ∇σgµν + ∇ν∇σgρµ −∇σ∇µgρν) −∇ρ∇νgσµ

+(Rσρµ
αgαν +Rσρν

αgµα) + (Rσνρ
αgαµ +Rσνµ

αgρα)
)

=
1
2
gσµ

(
∇ρ∇σgµν + ∇ν∇σgρµ −∇σ∇µgρν −∇ρ∇νgσµ

)

+
1
2

(
gσµRσρµβ [G](Gg)βν + gσµRσνµβ [G](Gg)βρ − 2Rαρβν [G]Gαβ

)

=
1
2

(
−∇ρ∇µhµν −∇ν∇µhρµ + �ghρν + gσµ∇ρ∇νhσµ

)

+
1
2

(
−Rρβ[g]hβαgαν −Rνβ[g]hβαgαρ + 2Rαρβν [g]hαβ

)
+ O(h2) . (A.2)

Now (2.41d) follows noting that gρν∇∇hρν = 0 + O(h2) due to (4.6).

Appendix B: Semi-classical results for matrix model exten-

sions

B.1 Derivation of (3.2d)

To see (3.2d), consider

Hab[Xa, [Xb,Φ]] ∼ eσGµν∂µx
a∂νx

bθαβ∂αxa∂β(θρη∂ρxb∂ηφ)

= eσ(Gg)ναθ
αβ

(
θρηgνρ∂β∂ηφ+ ∂β(θρηgρν)∂ηφ− ∂β∂νx

bθρη∂ρxb∂ηφ
)

= e2σ(GgG)βη∂β∂ηφ+ eσ θ̂νβ∂β(eσGηρθ−1
ρν )∂ηφ

= e2σ(GgG)βη∂β∂ηφ+ eσ∂βe
σ(GgG)ηβ∂ηφ

+e2σ(Gg)βρ∂βG
ηρ∂ηφ− 1

2
e2σ θ̂νβ∂ρθ

−1
νβG

ηρ∂ηφ (B.1)

using the fact that θ̂µν is anti-symmetric, and

θ̂νβ∂βθ
−1
ρν = −θ̂νβ∂ρθ

−1
νβ − θ̂νβ∂νθ

−1
βρ

2θ̂νβ∂βθ
−1
ρν = −θ̂νβ∂ρθ

−1
νβ . (B.2)

On the other hand, consider

(GgG)µνΓα
µν [G] =

1
2
(GgG)µν (∂µGνβ + ∂νGµβ − ∂βGµν)Gαβ

= −(Gg)µβ∂µG
αβ − 1

2
(GgG)µν∂βGµνG

αβ

= −(Gg)µβ∂µG
αβ +

1
2
(Gµν∂βgµν + 2θ̂αβ∂µθ

−1
αβ − (Gg)∂βσ)Gαβ

= −(Gg)µβ∂µG
αβ +

1
2
(
1
2
∂β(Gg) + θ̂αβ∂µθ

−1
αβ − 1

2
(Gg)∂βσ)Gαβ

using

1
2
∂µ(Gg) = Gαβ∂µgαβ + θ̂αβ∂µθ

−1
αβ − 1

2
(Gg)∂µσ . (B.3)
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Therefore we get

Hab[Xa, [Xb, φ]] ∼ e2σ(GgG)βη∂β∂ηφ+ eσ∂βe
σ(GgG)ηβ∂ηφ

−e2σ((GgG)µνΓη
µν − 1

4
∂ρ(Gg)Gηρ +

1
4
(Gg)∂ρσG

ηρ)∂ηφ

= e2σ(GgG)βη∇β∂ηφ+ eσ∂βe
σ(GgG)ηβ∂ηφ

+
1
4
e2σ(∂ρ(Gg) − (Gg)∂ρσ)Gηρ∂ηφ , (B.4)

which is indeed tensorial.

B.2 Derivation of (3.19)

We use the (constant) background metric ηab to pull down Latin indices, i.e. xa ≡ xbηab,
and consider first

1
2
[Xc, [Xa,Xb]][Xc, [Xa,Xb]] ∼

1
2
eσGνσ∇′

ν

(
θαβ∂αx

a∂βx
b
)
∇′

σ (θτε∂τxa∂εxb)

= eσGνσ

(
eσGατ∇′

ν∇′
αx

a∇′
σ∇′

τxa +
1
2
gατ gβε∇′

νθ
αβ∇′

σθ
τε

)
.

(B.5)

From the Jacobi identity

θµα∇′
αθ

νσ + θνα∇′
αθ

σµ + θσα∇′
αθ

µν = 0 , (B.6)

it follows that

∇′
ρθ

µν = (θµαθνσ − θµσθνα)∇′
αθ

−1
ρσ , (B.7)

which enables us to simplify the second term of (B.5) further:

1
2
gατ gβε∇′

νθ
αβ∇′

σθ
τε = gατ gβε∇′

νθ
αβθτµθερ∇′

µθ
−1
σρ

= θερ∇′
ν (eσ(Gg)µε )∇′

µθ
−1
σρ + eσ(Gg)ρτ∇′

νθ
τµ∇′

µθ
−1
σρ

= eσ
(
∂νσ

1
2
θ̂µρ∇′

σθ
−1
µρ +

(
∇′

ν(Gg)
µ
τ θ

τρ + (Gg)ρτ∇′
νθ

τµ
)
∇′

µθ
−1
σρ

)
,

(B.8)

where θ̂µν := (Gg)µε θεν. Hence,

(2π)2

2
Tr

(
[Xc, [Xa,Xb]][Xc, [Xa,Xb]]

)

∼
∫
d4x

√
g eσGνσ

(
Gατ∇′

ν∇′
αx

a∇′
σ∇′

τxa + ∂νσ
1
2
θ̂µρ∇′

σθ
−1
µρ

+
(
∇′

ν(Gg)
µ
τ θ

τρ + (Gg)ρτ∇′
νθ

τµ
)
∇′

µθ
−1
σρ

)

=
∫
d4x

√
g eσ

(
GνσGατ∇′

ν∇′
αx

a∇′
σ∇′

τxa +Gνσ∂νσ
1
2
θ̂µρ∇′

σθ
−1
µρ

+Gνσ∇′
ν(Gg)

µ
τ θ

τρ∇′
µθ

−1
σρ −

(
∂µσG

νσ + ∇′
µG

νσ
)
(Gg)ρτ θ

−1
σρ ∇′

νθ
τµ

−Gνσθ−1
σρ ∇′

µ(Gg)ρτ∇′
νθ

τµ −Gνσ(Gg)ρτ θ
−1
σρ ∇′

µ∇′
νθ

τµ
)
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=
∫
d4x

√
g eσ

(
GνσGατ∇′

ν∇′
αx

a∇′
σ∇′

τxa +Gνσ∂νσe
−σ∇′

ση

−Gνσθ−1
σρ ∇′

ν(Gg)
µ
τ ∇′

µθ
τρ +

(
∂µσG

νσ + ∇′
µG

νσ
)
(Gg)ρσθ

−1
τρ ∇′

νθ
τµ

−Gνσθ−1
σρ ∇′

µ(Gg)ρτ∇′
νθ

τµ − (GgG)νρθ−1
ρτ

(
[∇′

µ,∇′
ν ]θτµ + ∇′

ν(∂µσθ
τµ)

) )

=
∫
d4x

√
g eσ

(
GνσGατ∇′

ν∇′
αx

a∇′
σ∇′

τxa +
1
4
Gνµ∂νσ

(
∇′

µ(Gg) + (Gg)∂µσ
)

−Gνσθ−1
σρ

(
∇′

ν(Gg)
µ
τ ∇′

µθ
τρ + ∇′

µ(Gg)ρτ∇′
νθ

τµ
)

+ ∂µσ(GgG)νρθ−1
τρ ∇′

νθ
τµ + ∇′

µ(Gg)ναG
ραθ−1

τρ ∇′
νθ

τµ

− (GgG)νρθ−1
ρτ (R[g]νµη

τθηµ +R[g]νηθ
τη)

− (GgG)νρ
(
∇′

ν∂ρσ + ∂µσθ
−1
ρτ ∇′

νθ
τµ

) )

=
∫
d4x

√
g eσ

(
GνσGατ∇′

ν∇′
αx

a∇′
σ∇′

τxa +
1
4
Gνµ∂νσ

(
∇′

µ(Gg) + (Gg)∂µσ
)

−∇′
µ(Gg)νσ∇′

νθ
−1
τρ (Gµρθστ +Gρσθτµ) −Gνσθ−1

σρ ∇′
µ(Gg)ρτ∇′

νθ
τµ

− 2∂µσ(GgG)νρ∇′
νθ

−1
τρ θ

τµ + ∇′
ν(GgG)νρ∂ρσ + (GgG)νρ∂νσ∂ρσ

+ e−σ θ̂νβR[g]νµηβθ
ηµ − (GgG)νρR[g]νρ

)

=
∫
d4x

√
g eσ

(
GνσGατ∇′

ν∇′
αx

a∇′
σ∇′

τxa +
1
4
Gνµ∂νσ (∂µ(Gg) + (Gg)∂µσ)

−∇′
µ(Gg)νσG

ρσ∇′
νθ

−1
τρ θ

τµ −∇′
µG

ρρ′θ−1
ρ′τ∇

′
νG

τµθνσgσρ

+
1
2
eσGτµ∇′

µG
ρρ′θ−1

νρ′θ
−1
σρ ∇′

τG
νσ − 2(GgG +

1
2
g)νρ∇′

νθ
−1
τρ θ

τµ∂µσ + ∇′
ν(GgG)νρ∂ρσ

+ (GgG)νρ∂νσ∂ρσ + e−σ θ̂νβR[g]νµηβθ
ηµ − (GgG)νρR[g]νρ

)
(B.9)

using (2.18), (2.21), (2.22), and the identities ∇′
ση = 1

2 (gθg)µν∇′
σθ

µν and (Gg)µαθ−1
βµ =

−(Gg)µβθ
−1
αµ as well as

Gνσθ−1
σρ ∇′

µ(Gg)ρτ∇′
νθ

τµ = −∇′
µG

ρρ′∇′
ν(e

σθ−1
ρ′τG

τµ)Gνσθ−1
σρ

=eσ∇′
µG

ρρ′∇′
ρ′θ

−1
τν G

τµGνσθ−1
σρ + eσGτµ∇′

µG
ρρ′∇′

τθ
−1
νρ′G

νσθ−1
σρ

−∇′
µG

ρρ′θ−1
ρ′τ∇

′
ν(e

σGτµ)Gνσθ−1
σρ

= −∇′
µ(Gρρ′gσρ)∇′

ρ′θ
−1
τν G

τµθνσ + eσ
1
2
Gτµ∇′

µG
ρρ′∇′

τ (θ
−1
νρ′G

νσθ−1
σρ )

−∇′
µG

ρρ′θ−1
ρ′τ∇

′
ν(e

σGτµ)Gνσθ−1
σρ − eσ

1
2
Gτµ∇′

µG
ρρ′θ−1

νρ′θ
−1
σρ ∇′

τG
νσ

=∇′
µ(Gg)νσ∇′

νθ
−1
τρ G

ρµθτσ − 1
2
Gτµ∂µ(Gg)∂τσ − eσ∇′

µG
ρρ′Gτµθ−1

ρ′τ θ
−1
σρG

νσ∂νσ

− eσ∇′
µG

ρρ′θ−1
ρ′τ∇

′
νG

τµGνσθ−1
σρ − eσ

1
2
Gτµ∇′

µG
ρρ′θ−1

νρ′θ
−1
σρ ∇′

τG
νσ

=∇′
µ(Gg)νσ∇′

νθ
−1
τρ G

ρµθτσ − gµσ′∇′
µθ

−1
σσ′θ

νσ∂νσ

− eσ∇′
µG

ρρ′θ−1
ρ′τ∇

′
νG

τµGνσθ−1
σρ − eσ

1
2
Gτµ∇′

µG
ρρ′θ−1

νρ′θ
−1
σρ ∇′

τG
νσ (B.10)

where the last step follows from

eσ∇′
µG

ρρ′Gτµθ−1
ρ′τθ

−1
σρG

νσ∂νσ = e−σ∇′
µG

ρρ′(gρ′τθ
τµ)(gσρθ

νσ)∂νσ
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= e−σ∇′
µ

(1
2
(Gg)gτσ −Gτσ

)
θτµθνσ∂νσ

= −1
2
Gµν∂µ(Gg)∂νσ + gµσ′∇′

µθ
−1
σσ′θ

νσ∂νσ

using the 4D identity (2.18), since

e−σ∇′
µGτσθ

τµθνσ∂νσ = e−σ∇′
µ(eσθ−1

ττ ′θ
−1
σσ′g

τ ′σ′
)θτµθνσ∂νσ

= ∇′
µθ

−1
ττ ′g

τ ′νθτµ∂νσ − gµσ′∇′
µθ

−1
σσ′θ

νσ∂νσ − gµν∂µσ∂νσ

= −θ−1
ττ ′g

τ ′ν∇′
µθ

τµ∂νσ − gµσ′∇′
µθ

−1
σσ′θ

νσ∂νσ − gµν∂µσ∂νσ

= −gµσ′∇′
µθ

−1
σσ′θ

νσ∂νσ (B.11)

due to (2.21). Together with the definition of the curvature tensor with respect to the
induced metric (2.34) we obtain (3.19).

B.3 Derivation of O(X10) terms

Consider first

Hab�Hab ∼ −e2σGµν∂µx
a∂νx

b�G(eσGµ′ν′
∂µ′xa∂ν′xb)

= −e2σGµν∂µx
a∂νx

b
(
�Ge

σGµ′ν′
∂µ′xa∂ν′xb + 2eσGµ′ν′�G∂µ′xa∂ν′xb

+ 4∂αeσGµ′ν′∇α∂µ′xa∂ν′xb + 2eσGµ′ν′∇α∂µ′xa∇α∂ν′xb

)

= −e3σ
(
(GgGg)e−σ�Ge

σ + 2GµνGµ′ν′
GαβCµ;αµ′Cν;βν′

+ 2(GgG)µµ′
(∂µx

a∇µ′�Gxa +Rµη(Gg)
η
µ′ + 2Cµ;αµ′∂ασ)

)

= −e3σ
(
(GgGg)e−σ�Ge

σ + 2GµνGµ′ν′
GαβCµ;αµ′Cν;βν′

+ 2(GgG)µµ′
(2Cµ;αµ′∂ασ −Gµβ∇µ′∇αg

αβ −∇µ′∂µx
a�Gxa + (Gg)ηµ′Rµη [G])

)

(B.12)

using (2.31b). The second term is elaborated in (2.41c), and using the 4D identity (2.18),
(2.37) and (2.29) we obtain

Hab�Hab ∼ −e3σ
(
(GgGg)e−σ�Ge

σ +
1
2
∂ν(Gg)∂ν (Gg) + ∂α(Gg)∇µg

µα − 3
2
∇νg

βµ∇νgµβ

+
(
(Gg)Gµµ′ − 2gµµ′)(

2Cµ;αµ′∂ασ −∇µ′∂µx
a�Gxa +Rµη(Gg)

η
µ′

)

− 2Gµµ′
gµβ∇µ′∇αg

αβ −Gµβ∇αg
µρ∇ρg

αβ
)

= −e3σ
(
(GgGg)e−σ�Ge

σ +
1
2
∂ν(Gg)∂ν(Gg) + ∂α(Gg)∇µg

µα − 3
2
∇νg

βµ∇νgµβ

−Gµβ∇αg
µρ∇ρg

αβ + (Gg)
(
∂α(Gg)∂ασ − �Gx

a�Gxa +Rµη[G](GgG)µη
)

− 2Gµµ′
gµβ∇µ′∇αg

αβ + 2gµµ′∇µ′∂µx
a�Gxa − 2R[G]

)
. (B.13)

Note that there are two terms gµµ′∇µ′∂µx
a�Gxa and �Gx

a�Gxa, which are not tensorial
but depend on the embedding of M4 ⊂ RD. They coincide in the self-dual case where
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gµν = Gµν , but in general they are independent. In order to obtain tensorial expressions,
we must cancel these terms. This can be achieved using (3.9):

Hab�Hab + 2�XcHab[Xa, [Xb,Xc]]

∼− e3σ
(
(GgGg)e−σ�Ge

σ +
1
2
∂ν(Gg)∂ν (Gg) + ∂α(Gg)∇µg

µα − 3
2
∇νg

βµ∇νgµβ − 2R[G]

−Gµβ∇αg
µρ∇ρg

αβ + (Gg)
(
∂α(Gg)∂ασ +Rµη [G](GgG)µη

)
− 2Gµµ′

gµβ∇µ′∇αg
αβ

)

− 2e3σ�Gx
c∂µx

c(e−σGµν∂νη − gµν∇νσ)

= − e3σ
(
(GgGg)e−σ�Ge

σ +
1
2
∂ν(Gg)∂ν (Gg) + ∂α(Gg)∇µg

µα − 3
2
∇νg

µβ∇νgµβ

+ (Gg)Rµη [G](GgG)µη − 2R[G] − 2∇µ′(Gµµ′
gµβ∇αg

αβ) + 2∇µgµβ∇αg
αβ

−Gµβ∇αg
µρ∇ρg

αβ + (Gg)∂α(Gg)∂ασ + 2∇βg
αβe−σ∂αη − 2gµνGµα∇βg

αβ∂νσ
)
, (B.14)

where we also used (2.31b). This is manifestly tensorial, and can be rewritten in various
ways. Under the integral, (B.14) can be simplified further using
∫
d4x

√
Ge2σ ∇ν(Gµνgµβ∇αg

αβ) =
∫
d4x

√
Ge2σ

(
2gµνGνη∇αg

αη∂µσ − 4e−ση∇αg
αβ∂νσ

)
,

so that

(2π)2Tr(Hab�Hab + 2�XcHab[Xa, [Xb,Xc]])

∼−
∫
d4x

√
Ge2σ

(
(GgGg)e−σ�Ge

σ +
1
2
∂ν(Gg)∂ν(Gg) + ∂α(Gg)∇µg

µα − 3
2
∇νg

µβ∇νgµβ

+ (Gg)Rµη [G](GgG)µη − 2R[G] + 8e−ση∇αg
αβ∂νσ + 2∇µgµβ∇αg

αβ

−Gµβ∇αg
µρ∇ρg

αβ + (Gg)∂α(Gg)∂ασ + 2∇βg
αβe−σ∂αη − 6gµνGµα∇βg

αβ∂νσ
)

= −
∫
d4x

√
Ge2σ

(
4e−σ�Ge

σ + 4Rµη[G](GgG)µη − 2R[G] + 4∇αg
αβ∂νσ + O(h2)

)
,

(B.15)

noting that (Gg) = 4 +O(h2) due to (4.6c), (GgGg) = 1
2(Gg)(Gg) − 4 and η = eσ +O(h2).
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