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1. Introduction

Half supersymmetric solutions of gauged N = 2, D = 5 supergravity for which at least

one of the Killing spinors generates a timelike Killing vector, were recently considered

in [3, 4]. The solutions found fall into six classes. In all cases, the spacetime metrics are

represented by

ds2 = f 4(dt+ Ω)2 − f−2ds2
B (1)

where ds2
B is the four dimensional base manifold. The Killing vector ∂/∂t is a symmetry

of the full solution, f is a t-independent function and Ω is a t-independent 1-form on

the base manifold B. In addition to the metric, the solutions are also specified by scalar

fields XI and Abelian gauge field strengths F I. A summary of these solutions is given

in the Appendix.

The starting point in the analysis of [3] is the construction of Killing spinors as

differential forms [5, 6, 7]. Gauge symmetries are then employed in order to simplify

the spinor as much as possible; this approach was originally used to analyse higher

dimensional supergravity solutions in [8, 9, 10, 11]. The conditions for the solutions

to admit one time-like Killing spinor ‡ are then obtained. Such conditions restrict the

base manifold B to be Kähler. The half supersymmetric solutions are then analysed

by substituting the conditions for the existence of one time-like Killing spinor into the

generic Killing spinor equations. We remark that all backgrounds preserving half of the

supersymmetry automatically solve all of the equations of motion, provided the gauge

fields satisfy the Bianchi identity. This is not the case for solutions preserving only

1/4 of the supersymmetry. Furthermore, the Killing spinor equations, when expressed

in terms of Dirac spinors, are linear over C. This implies that the allowed fractions

of preserved supersymmetries are 1/4, 1/2, 3/4 or 1. A great amount of work has

been devoted recently to classify and study all these solutions (see [12]-[21]). The only

maximally supersymmetric solution is AdS5 with vanishing gauge field strengths and

constant scalars.

In this paper we consider black hole solutions of N = 2, D = 5 gauged supergravity

coupled to an arbitrary number of Abelian vector multiplets. We will assume that

our black holes are supersymmetric and asymptotically AdS5 with a single connected

horizon. The reasoning given in [22] implies that such solutions have a time-like Killing

spinor. Therefore these solutions must at least preserve 1/4 of the supersymmetry.

In addition, we assume that the solutions exhibit enhancement of supersymmetry in

the near horizon limit. As it has been shown that 3/4 supersymmetric solutions are

locally AdS5 with vanishing gauge field strengths, we shall therefore concentrate on

half-supersymmetric solutions classified in [3] and further simplified in [4] and we make

extensive use of the results of these papers.

In our analysis, we shall assume that the scalar fields XI are smooth in some

neighbourhood of the horizon, and that all of the Spin(4, 1) and U(1) -invariant bilinears

‡ We refer to time-like Killing spinors as those spinors that generate time-like Killing vectors as
bilinears.
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constructed from the spinors are regular at the horizon. The Killing vectors constructed

from the Killing spinors can be timelike or null.

If the bulk black hole geometry admits a Killing spinor, then the event horizon

should be preserved by the corresponding Killing vector, which must therefore be

tangential to the horizon at the horizon, and so has to become null at the horizon.

So the event horizon is a Killing horizon of this Killing vector. However, not all of

the spinors associated with the near-horizon geometry can be extended to give spinors

in the bulk geometry away from the horizon, though we shall assume that at least

two of the four spinors in the near horizon geometry generate a Killing vector which

corresponds to the timelike Killing vector in the bulk, for which the event horizon is a

Killing horizon. In particular, this means that in general, the Killing vectors associated

with the additional spinors in the near-horizon geometry do not have to preserve the

horizon, as these spinors do not generate isometries of the bulk geometry. However, in

the analysis presented here, we shall assume that all of the Killing vectors obtained as

Killing spinor bilinears become null at the horizon. Using these constraints, we obtain

necessary conditions for the half supersymmetric solutions of [3] to describe regular near

horizon geometries. It is found that the constraints are incompatible with five of the

six classes of solution found in [3], and hence these classes cannot describe near horizon

geometries. The remaining class of solution, described in section 6 provides four possible

near horizon geometries. Two of these solutions, given in (76) and (93) have already

been found in [1, 2]. The other two solutions are given in (88) and (100).

Our work is organised as follows. In section 2, we study the regularity of gauge

invariant spinor bilinears. This immediately excludes two classes of solutions of [3] as

horizon geometries. In sections 3, 4, 5 we investigate the constraints that the existence

of a horizon imposes on three other classes of solutions in [3], and prove that these

solutions cannot contain regular horizons. In section 6, the remaining class of solutions

is analysed, and four types of possible near horizon geometry are constructed. In section

7, we analyse some aspects of the causal structure of the two solutions found in section

6 which were not obtained in the classification in [1, 2]. In section 8 we present our

conclusions.

2. Spinorial Regularity

We follow the notation of [3] and denote the Killing spinors by complexified forms on

R2. In particular,

ε1 = f, ε2 = fe12,

η1 = λ+ µpep + σe12, η2 = −σ∗ − εij(µ
i)∗ej + λ∗e12. (2)

The horizon H corresponds to the hypersurface f = 0. Let B be the Spin(4, 1) invariant

inner product on spinors given in [19]. We shall impose a “spinorial regularity” condition

on the solutions. The spinor components transform under gauge transformations and

thus cannot individually be taken to be regular at the horizon. We shall require that
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all gauge invariant spinor bilinears are regular at the horizon.

In particular, this implies that B(ε1, ε2), B(η1, η2), B(ε1, η2)−B(ε2, η1), B(ε1, η1) +

B(ε2, η2) are regular. Moreover, observe that these scalars are both Spin(4, 1) invariant

due to the Spin(4, 1) invariance of B, and also U(1) invariant; where we recall that

under U(1) transformations, symplectic Majorana Killing spinors η1, η2 transform as

η1 → cos θη1 − sin θη2,

η2 → sin θη1 + cos θη2 (3)

where θ ∈ R, so that η1 + iη2 → eiθ(η1 + iη2).

Observe also that B(ε1 + iε2, η1 + iη2)B(ε1 − iε2, η1 − iη2) is Spin(4, 1) × U(1)

invariant. Evaluating these scalars in the basis used in [3], we observe that f 2,

|λ|2 + |σ|2 − |µ1|2 − |µ2|2, f(λ + λ∗), f(σ + σ∗) and f 2((λ − λ∗)2 + (σ − σ∗)2) must

be regular at the horizon. Hence f 2(|λ|2 + |σ|2) and f 2(|µ1|2 + |µ2|2) must also be

regular at the horizon.

Furthermore, recall that the spinors ε1, ε2, η1, η2 generate two globally well-defined

Killing vectors with components B(ε1, γµε2) and B(η1, γµη2). These Killing vectors have

norms f 4 and (|λ|2+|σ|2−|µ1|2−|µ2|2)2 respectively; so they are therefore either timelike

or null. We assume that the Killing vector spinor bilinear generated by ε1, ε2 extends to

give an isometry of the bulk geometry, which must preserve the horizon. Hence

f → 0 (4)

at the horizon. We shall further assume that the Killing vector associated with η1, η2

also becomes null at the horizon, so

|λ|2 + |σ|2 − |µ1|2 − |µ2|2 → 0, (5)

at the horizon as well. We remark that both these limits must hold, as a consequence

of the reasoning set out in [22], if one assumes that not only the near-horizon geometry,

but also the black hole bulk geometry preserves half the supersymmetry.

Next, recall from [3] that on defining the real vector field K on the Kähler base B

by

Kp = if 2µp, K p̄ = −if 2(µp)∗ (6)

one has

K2 = 2KpK
p = 2f 4(|µ1|2 + |µ2|2) = 2f 2.f 2(|µ1|2 + |µ2|2). (7)

Hence K2 → 0 as f → 0.

These conditions can be used to immediately exclude solutions of type (4), because

they have f = 1, and also solutions of type (6) are excluded, because for these solutions

it has been shown that K2 is a non-zero constant (see the Appendix). Hence it remains

to examine solutions of type (1), (2), (3) and (5).
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3. Near-Horizon Analysis of Type (1) Solutions

For these solutions, we first recall some useful relations presented in [3]. The v co-

ordinate is related to K2 via [3]

v =
K2

√
2c

(8)

and hence, at the horizon, v → 0. Furthermore, cosY and sin Y are defined in terms of

the spinor components via

cosY =
Re (σ2 + (λ∗)2)

|λ|2 + |σ|2 , sin Y =
Im (σ2 + (λ∗)2)

|λ|2 + |σ|2 (9)

with λ, σ constrained via

Im (λσ) = 0. (10)

To proceed, it is convenient to define Ξ by

H2 = c2v2f−6 + Ξ (11)

where H2 is defined in [3] as

H2 = f−2K2(|λ|2 + |σ|2) . (12)

Note also that

∂Ξ

∂v
= −θ cosY,

∂Ξ

∂u
= −θH2v sin2 Y. (13)

These conditions are obtained by using (A.12) to compute dH, and then using (A.11)

and (A.12) to compute df , using the conditions on XI implied by (A.11) together with

the identity XIdXI = 0 which follows from the constraints of Very Special geometry.

Next observe that

Ξ = 2f 2(|µ1|2 + |µ2|2)(|λ|2 + |σ|2 − |µ1|2 − |µ2|2) (14)

and hence Ξ is regular, and Ξ → 0 at the horizon. There are then two possible cases,

according as to whether the constant θ is zero or nonzero.

3.1. Solutions with θ 6= 0

In the first case θ 6= 0. Then (A.11) together with (11) can be used to rewrite the

conditions on the scalars as

f−2XI = −χ
c

(
Ξ

θv
+ 1

)
VI +

qI
v

(15)

for constant qI . This expression implies, on contracting with XI and using the condition

XIX
I = 1 obtained from the Very Special geometry of the scalar manifold, that

f−2(1 +

√
2χ

θ
VIX

I(|λ|2 + |σ|2 − |µ1|2 − |µ2|2)) =
(qI
v
− χ

c
VI

)
XI . (16)
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This implies that at the horizon

vf−2 → h (17)

where h is a regular function.

Furthermore, one also finds that

vf−2

(
XI +

√
2χ

θ
(|λ|2 + |σ|2 − |µ1|2 − |µ2|2)VI

)
= −χ

c
vVI + qI (18)

so that if XIhor denotes the restriction of XI to the horizon,

hXIhor = qI . (19)

If h = 0 at any point of the horizon then qI = 0 for all I. In this case

XI = −χ
c
f 2(1 +

Ξ

θv
)VI . (20)

Then from the constraints of the very special geometry,

f 2

(
θ−1 Ξ

v
+ 1

)
= δ (21)

for constant δ. However, note that f 2Ξv−1 → 0 at the horizon, and so δ = 0. This

implies that

Ξ = −θv. (22)

But then ∂Ξ
∂u

= 0, which implies that sinY = 0; however for this class of solutions,

sinY 6= 0 (see the Appendix, also the original derivation of the solutions in [3]) . Hence

h 6= 0 on the horizon, and we can write

XIhor = h−1qI (23)

on the horizon. The constraints of very special geometry force h to be constant at the

horizon, and hence without loss of generality, we can set h = 1 on the horizon, so that

XIhor = qI . (24)

Next consider vH2, note that one can write

vH2 =
2
√

2

c
f 2(|λ|2 + |σ|2)(f 2(|µ1|2 + |µ2|2))2 (25)

hence vH2 is regular at the horizon. Furthermore,

vH2 = Ξv + c2v3f−6 → c2 (26)

at the horizon. In addition,

cosY − 1 =
c√
2

(
f 2(σ − σ∗)2 + f 2(λ− λ∗)2

vH2.f 4v−2

)
(27)

so it follows that cosY is also globally well-defined and regular in some neighbourhood

of the horizon.

To proceed, recall that we have shown that the scalars XI should be constant on

the horizon. However, we are assuming that the half-supersymmetric solution we are
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investigating is already the near-horizon limit of some black hole (or ring) solution, so

taking the near horizon limit of the scalars twice will not alter them, i.e. we must take

XI = qI for our solution. This implies that

−χ
c
f 2(

Ξ

θv
+ 1)VI + (f 2v−1 − 1)qI = 0. (28)

If f 2v−1 = 0 everywhere then Ξ = −θv and again ∂Ξ
∂u

= 0 implies that sinY = 0,

in contradiction with our assumption that sinY 6= 0. Hence, there is a (non-zero) real

constant δ such that qI = δVI, and so

−χ
c
f 2(

Ξ

θv
+ 1) + δ(f 2v−1 − 1) = 0. (29)

Note that XIVI = δ−1.

It is convenient to rewrite (13) using the expression

Ξ = −θv +
δcθ

χ
(1 − f−2v) (30)

to give

∂F

∂v
=

χ

δc
(cos Y − 1),

∂F

∂u
=

χ

δc
sin2 Y (c2F 3 − θv2 +

δcθ

χ
v(1 − F )), (31)

and
∂Y

∂v
= − sinY

(c2F 3 − θv2 + δcθ
χ
v(1 − F ))

(3χcδ−1F 2 − θv),

∂Y

∂u
= sinY (2χcδ−1F 2 + θv +

δcθ

χ
(F − 1))

+ sinY cosY (3χcδ−1F 2 − θv),

(32)

where we have set F = vf−2. F is regular in the near-horizon geometry and F → 1 at

the horizon.

The equations (31) and (32) imply that

∂F

∂v2
(c2F 3 − θv2 +

δcθ

χ
v(1 − F )) = (−2

∂F

∂v
− δc

χ
(
∂F

∂v
)2)(3χcδ−1F 2 − θv)

(33)

which can be integrated to give

∂F

∂v
(c2F 3 − θv2 +

δcθ

χ
v(1 − F )) − δcθ

χ
(F − 1

2
F 2) + 2χcδ−1F 3 = G(u)

(34)

for some function G(u). Acting on this expression with ∂
∂u

we find that G must be

constant. Set G = k.

We therefore find

∂F

∂v
=

(k + δcθ
χ

(F − 1
2
F 2) − 2χcδ−1F 3)

(c2F 3 − θv2 + δcθ
χ
v(1 − F ))

(35)
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and note further that (31) also implies that

∂F

∂u
=

(4cχ2F 3 − 2δ2cθ(F − 1
2
F 2) − 2kχδ)

4χ2δ(−c2χF 3 + θχv2 − δcθv(1 − F ))

× (−2δ2c2θ(F − 1

2
F 2) + 4χδcθv(F − 1) + 4θχ2v2 − 2ckχδ). (36)

One can use (36) to change co-ordinates from (u, v) to (F, v) and hence obtain an

explicit expression for the metric. Setting F = 1 + y we find

ds2 =
v2

(1 + y)2
dt′2 − 1

χc(1 + y)2

(
2c2χ(1 + y)3 − θχv2 − δcθvy

)
dt′dφ

+
1

χ2(1 + y)2

(
(4cχ2v + 2δc2χy)(1 + y)3 − (δ2cθ + 2kχδ)v

)
dt′dw

−
δ
(
2kχ+ δcθ

)(
4cχ2(1 + y)3 − δ2cθ − 2kχδ

)

4χ4(1 + y)2
dw2

+
θ

2cχ3(1 + y)2

(
− (δ2cθ + 2kδχ)(δcy + χv)

+ (2χ2c2δy + 4χ3cv)(1 + y)3
)
dφdw

+
(1 + y)

c2δ2θ(y2 − 1) − 2ckχδ + 4χθv(δcy + χv)

(
4χ2dv2 + 4δcχdvdy

)

+
4χcδ2(1 + y)

(
c2χ(1 + y)3 − θχv2 − δcθvy

)

(c2δ2θ(y2 − 1) − 2ckχδ + 4χθv(δcy + χv))

× 1

(4cχ2(1 + y)3 − 2kχδ + δ2cθ(y2 − 1))
dy2

+
θ2(χv + δcy)2

4χ2c2(1 + y)2
dφ2 (37)

Next consider the Killing vector ∂
∂t′ −

1
2c

∂
∂φ

. It is straightforward to show that the

norm of this vector tends to 1 as v → 0 and y → 1, so the Killing vector is timelike at

the horizon; this then implies that this geometry cannot contain an event horizon.

3.1.1. Solutions with θ = 0 For solutions with θ = 0, Ξ is constant. However, the

requirement that Ξ → 0 at the horizon fixes Ξ = 0 everywhere, and hence H2 = c2v2f−6.

It is then straightforward to integrate up equations (A.12) and (A.13) (setting θ = 0),

to find

v−3f 6 = δ(1 + cosY ) (38)

for constant δ > 0. Next note that

cosY + 1 =
1√
2c
v−1f 2(f 2(λ+ λ∗)2 + f 2(σ + σ∗)2) (39)
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which implies that
√

2cδ−1v−2f 4 = f 2(λ+ λ∗)2 + f 2(σ + σ∗)2 (40)

and hence v−2f 4 is regular (and in particular bounded above) in some neighbourhood

of the horizon.

Next recall that

vf−2 =

√
2

c
f 2(|µ1|2 + |µ2|2) (41)

which is also regular at the horizon. In order for v−2f 4 to be regular, vf−2 cannot

vanish at any point of the horizon. Hence v−1f 2 is also regular in some neighbourhood

of the horizon. Therefore, from (39), cos Y is also regular in some neighbourhood of the

horizon.

It is also straightforward to show that from the constraints given in the Appendix

that (
∂

∂v
+
δ

c2
∂

∂u

)
(vf−2XI) = 0. (42)

Defining

y = v − c2

δ
u, z = v +

c2

δ
u, (43)

we observe that vf−2 and XI depend only on y and not z. The remaining content of

(A.15) can be then written as

d

dy
(FXI) = −χ

c
VI(2 − δ−1F−3) (44)

where F = vf−2. Observe that this equation implies that

XI =

(
XĨ

VĨ

)
VI +

qI
VĨF

. (45)

This equation, together with the constraints of the very special geometry, can be used

to fix the function
XĨ

VĨ
in terms of F , and hence XI in terms of F . It remains to compute

the spacetime metric: we find

ds2 =
v2

F 2
dt′2 − 2cFdt′(dφ+ [ − cF

χ
(
XĨ

VĨ
) + v(−2 + δ−1F−3)]dw)

− c2

δ
F (2 − δ−1F−3)dw2 − 2δF

c2
dv2 − 2δF

cχVIXI
dvdF

− δF

(χVIXI)2(2 − δ−1F−3)
dF 2. (46)

Now consider the Killing vector ∂
∂t
− 1

2
∂
∂φ

. This has norm v2F−2 + cF which tends

to cF on the horizon. However, by the definition of the co-ordinate v in terms of K2

in (8), it follows that cF is positive everywhere on the horizon, so this Killing vector is

timelike on the horizon. Again, this implies that this geometry cannot contain an event

horizon.
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4. Near Horizon Analysis of Type (2) Solutions

For these solutions, the co-ordinate v is again related to K2 via

v =
K2

√
2c

(47)

so v → 0 at the horizon. The scalars satisfy

XI = f 2

(
−2χ

c
VI +

ρI
K2

)
(48)

for constants ρI . Suppose that ρI = 0 for all I. Then XI = −2χ
c
f 2VI . The constraints of

very special geometry imply that f 2 must be constant. However, f 2 → 0 at the horizon,

so f = 0 everywhere, in contradiction to our initial assumption. Hence, as not all ρI are

vanishing, and the scalars are regular in some neighbourhood of the horizon, it follows

that f2

K2 must also be regular in some neighbourhood of the horizon. Furthermore,

K2

f 2
= 2f 2(|µ1|2 + |µ2|2) (49)

which is also regular. It follows that both f2

K2 and K2

f2 are regular, and non-vanishing in

some neighbourhood of the horizon.

Moreover, we find that XI → f2

K2ρI at the horizon. This implies that f2

K2 is constant

on the horizon, without loss of generality, we can set f2

K2 = 1 on the horizon, so that

XI = ρI on the horizon. However, by assumption, XI is already in its near-horizon

limit, so we set XI = ρI . Hence we find

−2χ

c
VI = ρI

(
1

f 2
− 1

K2

)
. (50)

As not all ρI are zero, there exists a constant δ such that
1

f 2
− 1

K2
= δ (51)

so that −2χ
c
VI = δρI . If δ = 0, then VI = 0 for all I, in contradiction to the assumption

that not all VI vanish. Hence δ 6= 0. Note that

K2 =
f 2

1 − δf 2
(52)

and hence

f 2 =

√
2cv

1 +
√

2δcv
. (53)

We then obtain the spacetime metric explicitly; if θ 6= 0 then

ds2 =
2c2v2

(1 +
√

2δcv)2
dt2 −

√
2

θ
(1 +

√
2δcv)dtσ1 − 1√

2cθ
(1 +

√
2δcv)(σ1)2

− 1√
2|cθ|

(1 +
√

2δcv)((σ2)2 + (σ3)2)

−
(

1 +
√

2δcv√
2c(θv2 + 1

2
√

2c
(1 +

√
2δcv)3)

)
dv2,

(54)
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and if θ = 0,

ds2 =
2c2v2

(1 +
√

2δcv)2
dt2 + 2

√
2c3(1 +

√
2δcv)dtσ1

−
√

2c2(1 +
√

2δcv)
(
(σ2)2 + (σ3)2

)
− 2

(1 +
√

2δcv)2
dv2. (55)

In all cases, it is straightforward to see that one can choose an appropriate linear

combination of ∂
∂t

and σ1 in order to obtain a Killing vector which has a positive,

non-vanishing norm in the limit v → 0. Hence these geometries cannot contain an event

horizon.

5. Near Horizon Analysis of Type (3) Solutions

For these solutions, the co-ordinate v is again related to K2 via

v =
K2

√
2c

(56)

so v → 0 at the horizon. Also recall that the scalars XI are constant. Then the

constraint

− θ

K2
−

√
2c

K2
f−2(|λ|2 + |σ|2) + 3

√
2χf−4VIX

I +
c√
2
f−6 = 0 (57)

can be rewritten (taking without loss of generality K2 = f 2) as

−θK2 −
√

2c(|λ|2 + |σ|2 − |µ1|2 − |µ2|2) + 3
√

2χVIX
I = 0. (58)

Taking the limit of the LHS as one approaches the horizon, we obtain the constraint

VIX
I = 0 (59)

hence we note that these solutions cannot arise in the minimal gauged supergravity. It

is convenient to define

Λ = cθ − 9√
2
χ2QIJVIVJ . (60)

Then if Λ 6= 0, the metric is

ds2 = 2c2v2dt2 +

√
2c

Λ
dtσ1 +

cθ√
2Λ2

(σ1)2

− 1
1
2
−

√
2cθv2

dv2 − 1√
2|Λ|

((σ2)2 + (σ3)2) (61)

and if Λ = 0,

ds2 = 2c2v2dt2+2cdtσ1+
√

2cθ(σ1)2− 1
1
2
−

√
2cθv2

dv2−((σ2)2+(σ3)2).(62)

Again, in all cases, one can choose an appropriate linear combination of ∂
∂t

and σ1 in

order to obtain a Killing vector which has a positive, non-vanishing norm in the limit

v → 0. Hence these geometries cannot contain an event horizon.
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6. Near Horizon Analysis of Type (5) Solutions

For these solutions,

K2 =
1

%2
e
√

2%2ψ (63)

and hence ψ → −∞ at the horizon. To proceed, we must consider the cases for which

(Imλ)2 + (Im σ)2 6= 0, or Im λ = Im σ = 0 separately.

6.1. Solutions with (Im λ)2 + (Im σ)2 6= 0

To proceed with the analysis of solutions for which (Im λ)2 + (Im σ)2 6= 0, note that

there exist constants c3, c4 such that c23 + c24 = %2 6= 0, and one obtains constraints on

the spinor components [3]:

c3(λ+ λ∗) + c4(σ + σ∗) = 2%2tue
1√
2
%2ψ
, (64)

and

c4(λ+ λ∗) − c3(σ + σ∗) =
uQ

%2
e
− 1√

2
%2ψ
. (65)

It follows that

|µ1|2 + |µ2|2 − |λ|2 − |σ|2 =
1

4
e−

√
2%2ψ

[
2u−4

%2
+ u2(G2 + H2) − u2Q2

%6

]

− %2t2u2e
√

2%2ψ. (66)

Therefore

|µ1|2 + |µ2|2 − |λ|2 − |σ|2 = − ξ

4%6
u2e−

√
2%2ψ − %2t2u2e

√
2%2ψ. (67)

Next note that

K2f−2 = 2f 2(|µ1|2 + |µ2|2) =
u−2

%2
. (68)

Hence u−2 must be regular at the horizon.

Consider the constraints on the scalars:

u−2XI =
χ

%4
QVI + qI , (69)

as the left hand side of this expression is regular at the horizon, and not all of the VI
vanish, it follows that Q must also be regular at the horizon. Then from (A.33) we see

that G2 + H2 must also be regular at the horizon. Furthermore, as

c4f(λ+ λ∗) − c3f(σ + σ∗) =
1

%2
u2Q, (70)

u2Q must also be regular.

To proceed further, note that

XI = u2

(
χ

%4
QVI + qI

)
. (71)
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Then there are two possibilities. If at least one qI 6= 0, then regularity of the scalars

XI and of u2Q implies that u2 is also regular at the horizon. In the second possibility,

qI = 0 for all I. Then

XI =
χ

%4
u2QVI (72)

which together with the constraints of very special geometry, implies that u2Q is a

(non-zero) constant, and the scalars XI are also constant, with VIX
I 6= 0, and

1 =
χ

%4
u2QVIX

I . (73)

In order to obtain additional constraints on the function u, observe that

QIJF
I
µνF

Jµν = 2u2%2 + 9χ2QIJVIVJ

(
− 1

%4
Q2u6 + 4 +

1

%4
ξu6

)

− 12χVIX
IQu4 + 2u8Q2 + ξu8. (74)

This expression must be regular at the horizon, as a consequence of the Einstein

equations (together with the assumption that the scalars are regular at the horizon).

We have already shown that u−2 is regular near the horizon. Suppose then that

we are in the case for which Qu2 and the scalars XI are constant. Suppose further that

u−2 → 0 at some point of the horizon. Then there must exist a sequence of points pn
tending towards the horizon such that u(pn) → ∞ as n→ ∞. So consider (74) at these

points. The LHS must be regular at the horizon, however the RHS diverges; if ξ 6= 0

then the divergence is as u8, whereas if ξ = 0 then the divergence is as u4. In both cases

there is a contradiction. Hence u−2 is bounded below by a nonzero positive number on

the horizon. It follows that u2 is also regular near the horizon.

Finally, note that if ξ > 0 then the RHS of (66) tends to −∞ at the horizon,

whereas the LHS tends to zero. Hence we must have ξ ≤ 0.

Having obtained these results, we are now in a position to write down the near-

horizon metrics in Gaussian Null co-ordinates; let ξ = −L2. For the case with L > 0,

make the following co-ordinate transformations:

r =
e
√

2%2ψ

Lu2
,

t′ = t+
1

2%4u2r
,

z′ = z − %√
2L

log(u2r). (75)

In the new co-ordinates, the metric is

ds2 = L2u8r2(dt′)2 + 2dt′dr

+ 2rdt′
[
2u−1 du

dQ
dQ− Lu6

√
2%2

(Qdφ− %−3(2%4u−6 − L2)dz′)

]
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− u4L2

2%10
(−L2 + 2%4u−6)(dz′ − Q%3

(−L2 + 2%4u−6)
dφ)2

+
u−2

(−L2 + 2%4u−6)
(Q2 + L2 − 2%4u−6)dφ2

+
1

2
u−2%−4(Q2 + L2 − 2%4u−6)−1dQ2

(76)

Although it appears that % is a free parameter of the solution, one can without loss of

generality set % = 1. To see this, make the rescalings

u = %−2û, qI = %4q̂I , Q = %8Q̂,

L = %8L̂, φ = %−2φ̂, z′ = %−7ẑ′, (77)

and then drop theˆ , one then obtains the solution with % = 1. In the case for which

the scalar manifold is symmetric, this solution has been been found in [2], it is the

“non-static” near horizon geometry with non-constant scalars. To see this, recall that

when the scalar manifold is symmetric, one has the identity

9

2
CIJKXIXJXK = 1 (78)

where

CIJK = δII
′
δJJ

′
δKK

′
CI′J ′K′ . (79)

It is then possible to construct the metrics explicitly. As mentioned previously, we

shall set % = 1 without loss of generality. To proceed, it is convenient to set

ξ3 =
9

2
CIJKVIVJVK (80)

and we assume that ξ 6= 0. Also define KI , x by

qI =
2

C2
KI , Q =

2

ξχC2
x, (81)

where C > 0 is constant. Next, define

α̂0 =
9

2
CIJNKIKJKN ,

α̂1 =
9

2ξ
CIJNKIKJVN ,

α̂2 =
9

2ξ2
CIJNKIVJVN , (82)

so that

u−6 =
1

8
C6H (83)

where

H = x3 + 3α̂2x
2 + 3α̂1x + α̂0 . (84)

Then, on defining

L =
4∆0

C4
, z′ = − 1

4
√

2∆0

C6x1, φ = −
√

2ξχx2, t′ = −v, (85)
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where ∆0 > 0 is constant, we recover the metric found in [2] §.
In the special case when L = 0, it is convenient to define R by

t = e−
√

2%2ψR (86)

and note that (66) implies that

f 2(|µ1|2 + |µ2| − |λ|2 − |σ|2) = −%2R2 (87)

so it follows that R→ 0 at the horizon. The metric in the new co-ordinates is given by

ds2 = u4(dR−
√

2%2Rdψ)2 −
√

2

%2
u4(dR−

√
2%2Rdψ)(Qdφ− 2%u−6dz)

− u−2dψ2 + (
1

2
%−4u4Q2 − u−2)dφ2 − 1

2
%−8u−2(2u−6 − %−4Q2)−1dQ2.

(88)

Again, one can rescale and set % = 1 without loss of generality; the rescalings are given

by

u = %−2û, qI = %4q̂I , Q = %8Q̂, φ = %−2φ̂,

ψ = %−2ψ̂, R = %4R̂, z = %−7ẑ, (89)

and on dropping theˆ, one obtains the solution with % = 1.

6.2. Solutions with (Im λ)2 = (Im σ)2 = 0

When Im λ = Im σ = 0, and set r = e
√

2%2ψ; one obtains

ds2 = r2

[
dt− 3χVIX

I

√
2%2r

(dφ+ β)

]2

− (dφ+ β)2 − 1

2%4r2
dr2 − ds2(M)

(90)

where the scalars XI are constant, and the constraints on ds2(M) and β are given in

the Appendix. It is convenient to define

δ =
3χ√
2%2

VIX
I . (91)

Note that in order for the metric (90) to describe an event horizon, ∂
∂φ

cannot be

timelike at the horizon; this implies that δ2 − 1 ≤ 0. Consider first the case δ2 < 1. On

defining the co-ordinates t′, φ′ by

t′ = t+

√
1 − δ2

√
2%2r

,

φ′ = φ+
δ√

2%2
√

1 − δ2
log r, (92)

§ Up to a constant shift in the x co-ordinate, which can be used to set α̂2 = 0
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one can write the metric in Gaussian null co-ordinates:

ds2 = r2(dt′)2 − 2δrdt′(dφ′ + β) +

√
2

%2
√

1 − δ2
dt′dr

+ (δ2 − 1)(dφ′ + β)2 − ds2(M). (93)

This class of solutions corresponds to the second class of “non-static” solutions

found in [2], when the scalars are constant. It is straightforward to see that the

geometries are isometric, by making the identification

t′ = −
√

2%2
√

1 − δ2v (94)

and setting

∆ =
√

2%2
√

1 − δ2, Z1 =
√

1 − δ2(dφ′ + β), β =
1√

1 − δ2
α, (95)

and noting that

∆2 + g2λ = 2%4 + 9χ2(QIJ − 2XIXJ)VIVJ =
1

2
(M)R . (96)

In the special case of δ2 = 1, it is convenient to define R by

t = δe−
√

2%2ψR (97)

and define φ′ by

φ′ = φ− R

2
. (98)

It is then straightforward to show that

f 2(|µ1|2 + |µ2| − |λ|2 − |σ|2) = −%2R2 (99)

so R → 0 at the horizon, and the metric in the new co-ordinates is

ds2 = (dR−
√

2%2Rdψ)(−2(dφ′ + β) −
√

2%2Rdψ) − dψ2 − ds2(M).(100)

7. Causal Structure

In this section, we analyse the causal structure of the two classes of possible near horizon

metric (88) and (100) which do not correspond to solutions constructed in [1, 2].

To proceed, consider causal geodesics in the spacetime given by (100) which pass

through the horizon. As ∂
∂φ′

is a Killing vector, one finds that

Ṙ−
√

2%2Rψ̇ = k1 (101)

for constant k1, where ˙= d
dτ

, and τ is the affine parameter. We assume that the geodesic

passes through the event horizon in a finite affine parameter. Then the R component

of the geodesic equation can be written as

d

dτ
( − 2(φ̇′ + β̂) −

√
2%2Rψ̇) +

√
2%2k1ψ̇

+
√

2%2ψ̇( − 2(φ̇′ + β̂) −
√

2%2Rψ̇) = 0

(102)
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where β̂ denotes the restriction of the 1-form β to the worldline of the geodesic. Hence,

−2(φ̇′ + β̂) −
√

2%2Rψ̇ = −k1 + k2e
−
√

2%2ψ (103)

for constant k2. Next, the ψ component of the geodesic equation implies

4%4R2ψ̇ + 2
√

2%2R(φ̂′ + β̂) − 2ψ̇ −
√

2%2RṘ = k3 (104)

for constant k3. Using (103) this constraint can be simplified to

−2ψ̇ −
√

2%2k2Re
−
√

2%2ψ = k3 (105)

It is straightforward to see that k3 6= 0, because k3 = 0 implies that −2ψ̇ = k3.

However, this is not possible, because one must have ψ → −∞ at the horizon. Hence,

on combining (105) and (101), we obtain

ψ̈ = − 1√
2
%2k1k2e

−
√

2%2ψ. (106)

If V is the tangent vector to the geodesic, then

V 2 = −k2
1 − ψ̇2 + k1k2e

−
√

2%2ψ − |V 2
M |, (107)

where VM denotes the portion of the tangent vector pointing in the directions

corresponding to the 2-manifold M . Hence, for causal geodesics, one must have k1k2 > 0

(otherwise, one is forced to take ψ̇ = 0, in contradiction to the fact that ψ → −∞ at

the horizon). On integrating (106) we find

−ψ̇2 + k1k2e
−
√

2%2ψ = k4, (108)

for constant k4. Moreover, as

V 2 = −k2
1 + k4 − |V 2

M |, (109)

it follows that for causal geodesics, one must have k4 > 0 (otherwise, one must have

k1 = 0, again giving a contradiction). Then (105) implies that

R =
1√

2%2k2

e
√

2%2ψ( − k3 ± 2

√
k1k2e−

√
2%2ψ − k4) (110)

so, as expected, R → 0 as ψ → −∞. Finally, on integrating (108) one finds that

ψ =

√
2

%2
log
(√k1k2

k4
sin (

√
%4k4

2
(τ − τ0))

)
(111)

for constant τ0 and hence

R =
1√
2%2

k1

k2

(
− k3 sin2 (

√
%4k4

2
(τ − τ0))

± 2
√
k4 sin (

√
%4k4

2
(τ − τ0)) cos (

√
%4k4

2
(τ − τ0))

)
. (112)

The geodesic passes through the horizon when sin (
√

%4k4
2

(τ − τ0)) = 0.
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Next, consider the geodesics of the metric (88). We set % = 1 without loss of

generality. As ∂
∂φ

, ∂
∂ψ

and ∂
∂z

are Killing vectors, there are three constants k1, k2, k3

satisfying

u−2(Ṙ−
√

2Rψ̇) = k1, (113)

−
√

2Qk1u
6 + (u4Q2 − 2u−2)φ̇ = k2, (114)

−2
√

2Ru6k1 + 2Ru4(Qφ̇− 2u−6ż) − 2u−2ψ̇ = k3, (115)

and the R component of the geodesic equation can be integrated up to give

− 1√
2R

(k3 + 2u−2ψ̇) = k4e
−
√

2ψ, (116)

for constant k4. On evaluating the norm V 2 of the tangent vector to the geodesic one

finds

V 2 = − k2
1u

8 + k1k4u
2e−

√
2ψ − u−2ψ̇2

+
1

2

(k2 +
√

2k1Qu
6)2

u4Q2 − 2u−2
+

1

2
u−2 Q̇2

Q2 − 2u−6
. (117)

In addition, as the Killing vector ∂
∂φ

must be either null or spacelike on the horizon,

Q2 − 2u−6 cannot be positive at any point of the horizon. Hence, for the geodesic to be

causal, we must have k1k4 > 0 (k1k4 = 0 would force ψ̇ = 0, which is not possible, as

ψ → −∞ at the horizon).

It is then straightforward to integrate up (113) and (116) to find

R =
e
√

2ψ

√
2k4

(
− k3 ±

√
4k1k4e−

√
2ψ + k2

3 + 2
√

2k4k5

)
, (118)

for constant k5. Moreover, we also find

k1k4u
2e−

√
2ψ − u−2ψ̇2 = −1

4
u2(k2

3 + 2
√

2k4k5). (119)

Hence, by comparing with (117), it is clear that for causal geodesics, one must have

k2
3 +2

√
2k4k5 < 0. Finally, it is useful to make a change of parameter from τ to y, where

dy

dτ
= u2 , (120)

from the properties of u derived in the previous section, this change of parameter is

well-defined in some neighbourhood of the horizon. Then (119) can be rewritten as
(
dψ

dy

)2

= k1k4e
−
√

2ψ +
1

4
(k2

3 + 2
√

2k4k5), (121)

which can be integrated up. One finds that the dependence of ψ and R on y is (up to

redefinition of constants), the same as the τ -dependence of the metric (100). Finally, to

determine the behaviour of Q along the geodesic, note that
(
dQ

dy

)2

= (2V 2u−2 +
1

2
(k2

3 + 2
√

2k4k5))(Q
2 − 2u−6)

− (k2
2u

−6 + 2
√

2k1k2Q+ 4k2
1). (122)
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Suppose that the scalar manifold is symmetric. It is straightforward to show that u

cannot vanish along any timelike geodesic. This is because, if u→ 0, then Q ∼ u−2, and

the RHS of the above expression diverges as −4V 2u−8, whereas the LHS is non-negative.

The same holds for those null geodesics for which k2
3 + 2

√
2k4k5 + k2

2 > 0.

8. Conclusions

We have derived all possible half-supersymmetric regular near horizon black hole

solutions in N = 2 five-dimensional gauged supergravity, subject to the assumption that,

in the near-horizon limit, the event horizon is a Killing horizon of both Killing vectors

generated from the Killing spinors (ε1, ε2) and (η1, η2), and that all of the Killing spinor

bilinears are regular at the horizon. There are four geometries. Two of the geometries

have already been found in [1, 2]. The other two geometries are given by:

i) ds2 = (dR−
√

2%2Rdψ)(−2(dφ′+β)−
√

2%2Rdψ)−dψ2−ds2(M) ,(123)

where M is S2, R2 or H2 and

dβ =
√

2%2dvol (M) . (124)

The scalars XI are constant.

ii)

ds2 = u4(dR−
√

2Rdψ)2 −
√

2(dR−
√

2Rdψ)(Qdφ− 2u−6dz)

− u−2dψ2 + (
1

2
u4Q2 − u−2)dφ2 − 1

2
u−2(2u−6 −Q2)−1dQ2 (125)

where the non-constant scalars XI , u and Q are constrained by

u−2XI = χQVI + qI

for constants qI .

Our analysis has been entirely local, in particular, we have not assumed that

the horizon is compact. A more detailed investigation of the above solutions, taking

the compactness of the horizon into account, must be undertaken in order to fully

understand these solutions, or to rule them out. Furthermore, the enhanced local

isometries which these solutions possess appear to depend on the existence of the

additional Killing spinors. It is not clear which, if any, of these extra isometries exist

for black holes preserving only 1/4 of the supersymmetry.

Appendix A. List of Solutions

In this Appendix, we briefly summarize the formalism of N = 2, D = 5 supergravity

coupled to vector multiplets, and we also present a list of all half supersymmetric

solutions, for which at least one of the Killing spinors generates a timelike Killing vector.

For more details see [3].
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The action of N = 2, D = 5 gauged supergravity coupled to n abelian vector

multiplets is [23]

S =
1

16πG

∫ (
? ( − 5R + 2χ2V) −QIJF

I ∧ ?F J +QIJdX
I ∧ ?dXJ

−1

6
CIJKF

I ∧ F J ∧ AK
)

(A.1)

where I, J,K take values 1, . . . , n and F I = dAI . The metric has mostly negative

signature. CIJK are constants that are symmetric on IJK, χ is a non-zero constant and

the gauge field couplings QIJ are assumed to be invertible, with inverse QIJ . The XI

are scalars which are constrained via
1

6
CIJKX

IXJXK = 1 . (A.2)

We may regard the XI as being functions of n − 1 unconstrained scalars φa. It is

convenient to define

XI ≡
1

6
CIJKX

JXK (A.3)

so that the condition (A.2) becomes

XIX
I = 1 . (A.4)

In addition, the coupling QIJ depends on the scalars via

QIJ =
9

2
XIXJ −

1

2
CIJKX

K (A.5)

so in particular

QIJX
J =

3

2
XI , QIJdX

J = −3

2
dXI . (A.6)

The scalar potential can be written as

V = 9VIVJ(X
IXJ − 1

2
QIJ) (A.7)

where VI are constants which are not all zero. There are two sets of Killing spinor

equations; the gravitino Killing spinor equation is
[
∇µ +

1

8
XI(γµ

νρ − 4δµ
νγρ)F I

νρ

]
εa − χ

2
VI(X

Iγµ − 3AIµ)ε
abεb = 0 (A.8)

and the dilatino Killing spinor equation is
[(

1

4
QIJ −

3

8
XIXJ

)
F J

µνγ
µν +

3

4
γµ∇µXI

]
εa

+
3χ

2

(
XIVJX

J − VI
)
εabεb = 0 . (A.9)

It is known that for the solutions considered here, the Killing spinor equations, together

with the Bianchi identity dF I = 0 are sufficient to imply that the Einstein, gauge and

scalar field equations hold automatically.
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All half-supersymmetric solutions of this theory for which at least one of the Killing

spinor vector bilinears is timelike have been classified in [3]. The spacetime metric is

written as a fibration over a Kähler 4-manifold with metric

ds2 = f 4(dt+ Ω)2 − f−2ds2
B (A.10)

where ds2
B is a Kähler 4-manifold, ∂

∂t
is a Killing vector which is a symmetry of the full

solution, f is the t-independent function which appears in the definition of the Killing

spinors (2), and Ω is a t-independent 1-form on the Kähler base B. It was shown in [3]

that there are six classes of solution.

Appendix A.1. Solutions of Type (1)

These solutions fall into two classes, according as to whether a constant of integration

θ is zero or non-zero. The co-ordinates on the base space are φ, w, u, v. If θ 6= 0, then

the solution is

ds2
B = H2(dφ+ (v cosY + θ−1(H2 − c2v2f−6))dw)2

+ H−2dv2 +H2v2 sin2 Y (dw2 + du2),

Ω = − 1

2cv
(H2 + c2v2f−6)dφ

− (
1

2cθv
(H4 − c4v4f−12) +

1

c
(H2 cosY +

θv

2
))dw,

F I = d(f 2XI(dt− 1

2cv
(H2 − c2v2f−6)dφ

− (
1

2cvθ
(H2 − c2v2f−6)2 +

H2

c
cos Y +

θv

2c
+ cv2f−6)dw)),

XI = f 2

(
qI
v

+
χ

c

(
c2v

f 6θ
− H2

θv
− 1

)
VI

)
, (A.11)

for constant c 6= 0 and constants qI , where Y,H are functions of u, v (sinY 6= 0)

satisfying the constraints

∂H2

∂u
= H2v sin2 Y

(
3
χcvVIX

I

f 4
− θ

)
,

∂H2

∂v
= − cv

f 4

(
3χVIX

I +
c

f 2

)
+ cosY (3

χcvVIX
I

f 4
− θ), (A.12)

and

∂Y

∂u
= sinY

(
−H2 + 3

χcv2VIX
I

f 4
+
c2v2

f 6

)
+
v

2
sin 2Y

(
3
χcvVIX

I

f 4
− θ

)
,

∂Y

∂v
= − 1

H2
sin Y

(
3
χcvVIX

I

f 4
− θ

)
. (A.13)

If θ = 0, then the solution is given by

ds2
B = H2(dφ+ (v(cosY − 1) − c

χ
X)dw)2

+ H−2dv2 +H2v2 sin2 Y (dw2 + du2),
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Ω = − 1

2cv
(H2 + c2v2f−6)dφ

+ (
1

2cv
(H2 + c2v2f−6)(v +

c

χ
X) − H2

c
cos Y )dw,

F I = d(f 2XI(dt− 1

2cv
(H2 − c2v2f−6)dφ

+ (
1

2cv
(H2 − c2v2f−6)(v +

c

χ
X) − H2

c
cosY − cv2f−6)dw)),

vf−2XI = XVI + qI , (A.14)

for constants c, qI (c 6= 0, qĨ = 0, VĨ 6= 0 and X = vf−2XĨ

VĨ
for some fixed Ĩ). Y,H are

functions of u, v (sin Y 6= 0) satisfying the constraints (A.12) and (A.13) with θ = 0. X

is also a function of u and v, and satisfies

∂X

∂v
=
χ

c
(cosY − 1),

∂X

∂u
=
χ

c
H2v sin2 Y . (A.15)

Appendix A.2. Solutions of Type (2)

One can choose a co-ordinate v on B together with three v-independent 1-forms σi

(i = 1, 2, 3) on B orthogonal to ∂
∂v

. There are constants c, θ (c 6= 0) and the solution

takes one of three types according as cθ is negative, zero or positive. If θ 6= 0 then

ds2
B =

1

θv + c2v2f−6
dv2 +

v

θ2
(θ+ c2vf−6)(σ1)2 +

v

|θ|((σ
2)2 + (σ3)2),(A.16)

and if θ = 0,

ds2
B =

1

c2v2f−6
dv2 + 4c8f−6v2(σ1)2 + 2c3v((σ2)2 + (σ3)2). (A.17)

The 1-forms σi satisfy
dσi = −1

2
εijkσ

j ∧ σk : if cθ > 0

dσ1 = σ2 ∧ σ3, dσ2 = σ1 ∧ σ3, dσ3 = −σ1 ∧ σ2 : if cθ < 0

dσ1 = σ2 ∧ σ3, dσ2 = dσ3 = 0 : if cθ = 0

If θ 6= 0 then

Ω = −cv
θ
f−6σ1, (A.18)

whereas if θ = 0 then

Ω = 2c4vf−6σ1. (A.19)

In all cases, the scalars f and XI are constrained by

XI =
f 2

c
(−2χVI +

ρI√
2v

) (A.20)

for constants ρI and

F I = d(f 2XIdt). (A.21)
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Appendix A.3. Solutions of Type (3)

One can again choose a co-ordinate v on B together with three v-independent 1-forms

σi (i = 1, 2, 3) on B, orthogonal to ∂
∂v

. For these solutions, the scalars XI are constant,

and it is convenient to define

Λ = cθ + 9
√

2χ2(XIXJ − 1

2
QIJ)VIVJ (A.22)

for constants c, θ (c 6= 0). The scalar f is given by

f 2 =
√

2cv. (A.23)

The solution takes one of three types according as the constant Λ is negative, zero or

positive. If Λ 6= 0 then

ds2
B =

1(
1

2
√

2cv
− θv + 3χ

c
VIXI

)dv2 +
c2

Λ2

(
1

2
√

2cv
− θv +

3χ

c
VIX

I

)
(σ1)2

+
cv

|Λ|
(
(σ2)2 + (σ3)2

)
, (A.24)

and if Λ = 0,

ds2
B =

1

( 1
2
√

2cv
− θv + 3χ

c
VIXI)

dv2 + 2c2(
1

2
√

2cv
− θv +

3χ

c
VIX

I)(σ1)2

+
√

2cv((σ2)2 + (σ3)2), (A.25)

The 1-forms σi satisfy
dσi = −1

2
εijkσ

j ∧ σk : if Λ > 0

dσ1 = σ2 ∧ σ3, dσ2 = σ1 ∧ σ3, dσ3 = −σ1 ∧ σ2 : if Λ < 0

dσ1 = σ2 ∧ σ3, dσ2 = dσ3 = 0 : if Λ = 0

If Λ 6= 0 then

Ω =
1

Λcv2
(

1

2
√

2
+

3χv

2
VIX

I)σ1,

F I = d

(√
2cvXIdt +

3χ√
2Λ

(QIJ −XIXJ)VJσ
1

)
, (A.26)

whereas if Λ = 0, then

Ω =

√
2

cv2
(

1

2
√

2
+

3χv

2
VIX

I)σ1,

F I = d
(√

2cvXIdt+ 3χ(QIJ −XIXJ)VJσ
1
)
. (A.27)

Appendix A.4. Solutions of Type (4)

For the fourth class of solution, the scalars XI are constant (VIX
I 6= 0), and

f = 1. (A.28)

The Kähler base metric is the product of two 2-manifolds

ds2
B = ds2(M1) + ds2(M2) (A.29)
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where M1 is H2 with Ricci scalar R = −18χ2(VIX
I)2, and M2 is H2, R2 or S2 with Ricci

scalar R = 18χ2(QIJ −XIXJ)VIVJ .

In addition, we have

dΩ = 3χVIX
Idvol (M1), F I = 3χ(XIXJ −QIJ)VJdvol (M2) (A.30)

where dvol (M1), dvol (M2) are the volume forms of M1, M2.

Appendix A.5. Solutions of Type (5)

For the fifth class of solutions, there are two types of solution according as (Im λ)2 +

(Im σ)2 6= 0, or Im λ = Im σ = 0. Then if (Im λ)2 + (Im σ)2 6= 0, the co-ordinates on

the base are φ, z, ψ,Q (to be distinguished from the gauge coupling QIJ), and

ds2
B = e

√
2%ψ
[
(dφ− Q

%3
dz)2 + dψ2 + (2u−6%−2 − %−6(Q2 − ξ))dz2

+
1

2(2u−6%8 − %4(Q2 − ξ))
dQ2

]
,

u−2XI =
χ

%4
QVI + qI ,

Ω = − 1√
2%2

e−
√

2%2ψ(Qdφ− 1

%3
(ξ + 2%2u−6)dz),

F I = d
(
u2e

√
2%2ψXI(dt+ Ω)

)

+ 3
√

2χ%−5u−2VI(X
IXJ − 1

2
QIJ)dz ∧ dQ,

f = e
%2
√

2
ψ
u, (A.31)

for constants qI , ξ, % 6= 0. It should be noted that the function u is defined as a function

of Q by the second condition in this expression, on using the condition XIX
I = 1

obtained from the Very Special geometry of the scalar manifold.

It is also convenient to define

G =
2i

u
e

%2
√

2
ψ
Im λ, H =

2i

u
e

%2
√

2
ψ
Im σ, (A.32)

then H and G are related to Q by

Q2 = ξ + %6(
2u−6

%2
+ G2 + H2). (A.33)

If, however, Im λ = Im σ = 0, then the solutions have constant XI, and

ds2
B = e

√
2%2ψ((dφ+ β)2 + dψ2 + ds2(M)), dβ =

√
2%2dvol (M)

(M)R = 4%4 − 36χ2(XIXJ − 1

2
QIJ)VIVJ ,

Ω = − 3χVIX
I e

−
√

2%2ψ

√
2%2

(dφ+ β),

F I = d
(
e
√

2%2ψXI(dt+ Ω)
)

+ 6χ(XIXJ − 1

2
QIJ)VJdvol (M),

f = e
%2
√

2
ψ
, (A.34)
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where % is a non-zero constant. M is a 2-manifold which is either S2, R2 or H2.

Appendix A.6. Solutions of Type (6)

For the sixth class of solutions, there are two types of solution according as (Im λ)2 +

(Im σ)2 6= 0, or Im λ = Im σ = 0. Then if (Im λ)2 + (Im σ)2 6= 0, the co-ordinates on

the base are φ, ψ, y, z and

f−2XI = XVI + qI , where X satisfies
1

4χ

dX

dy
− 1

2
f−6 =

ξ√
2χ
X,

ds2
B = dφ2 + dψ2 + 2

√
2

(
1

2
f−6 +

ξ√
2χ
X

)
(dy2 + dz2),

dΩ = ξdφ ∧ dψ + d

(
(
√

2f−6 +
ξ√
2χ
X)dz

)
,

F I = d
(
f 2XI(dt+ Ω) −

√
2f−4XIdz

)
. (A.35)

for constants ξ, qI. In this solution, the vector field K is given by

K =
∂

∂φ
(A.36)

and hence K2 = 1.

If, however, Im λ = Im σ = 0, the scalars XI are constant, and

f = 1. (A.37)

Then

ds2
B = dφ2 + dψ2 + ds2(M), (A.38)

where M is a 2-manifold which is either S2, R2 or H2 according as the Ricci scalar

(M)R = −36χ2(XIXJ − 1

2
QIJ)VIVJ (A.39)

is positive, zero, or negative. In addition, one has

dΩ = − 3χVIX
I(dvol (M) + dφ ∧ dψ),

F I = − 3χXIXJVJdφ ∧ dψ + 3χ(XIXJ −QIJ)VJdvol (M). (A.40)

Again, for this solution

K =
∂

∂φ
(A.41)

and hence K2 = 1.
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