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1. Introduction

Over the last 15 years there has been tremendous progress in understanding the entropy

of extremal black holes in string theory. While the matching of the microscopic entropy

[1] and the macroscopic entropy [2] of BPS black holes triggered the ongoing interest

in the subject, it has been appreciated more recently that many features of BPS black

holes also apply to non-BPS extremal black holes, and, hence, do not rely critically on

supersymmetry [3, 4]. In contrast, progress on non-extremal solutions has been less

impressive. Higher-dimensional non-extremal black hole and black brane solution have

been known for some time, as well as non-extremal solutions of compactified supergravity

theories [5, 6, 7, 8, 9, 10]. More recently, it has been observed that various non-extremal

solutions can be obtained by reducing the equations of motion to first order equations

[11, 12, 13, 14, 15, 16, 17]. Treating near-extremal black holes as composites of branes

and antibranes accounts for the entropy to leading order, and allows to derive Hawking

radiation, including greybody factors [18, 19, 20, 21, 22].

In this article we develop an approach to non-extremal black solutions which

is applicable when the matter sector has a structure analogous to the one of five-

dimensional vector multiplets. Our main focus is to get a systematic understanding

of how extremal solutions can be made non-extremal, and which features survive this

deformation. Much of the success in the study of extremal black holes is due to the

good understanding of how they arise as solutions of (super-)gravity in the presence of

a generic matter sector. Here ‘generic’ means that the matter sector is as general as

allowed by the symmetries underlying the action. The attractor mechanism [2, 23, 24]

does not only guarantee that the near-horizon solution, and, hence, the entropy is

completely determined by the charges,‡ but also allows to find global black hole solutions

in terms of harmonic functions. While solutions cannot always be found in completely

explicit form, the field equations can be reduced to a coupled system of algebraic

equations, sometimes called ‘generalized stabilization equations’, which express the

solution in terms of harmonic functions [26, 27]. The organization of the solution in

terms of charges and harmonic functions reflects that from a higher-dimensional (ten-

or eleven-dimensional) point of view, black holes are composites of branes and other

string or M-theory solitons. This provides the link between black hole thermodynamics

and microscopic properties.

One well-known feature of black hole and black brane solutions in various

dimensions is that non-extremal solutions differ from extremal ones by the presence of

one additional harmonic function, which parametrizes the deviation from extremality.

We will review this for the five-dimensional version of the Reissner-Nordstrom solution

below. This feature does not only occur for solutions which carry a single type of

charge, and thus have a single type of stringy constituent, but also for more complicated

solutions, which are multiply charged and can be interpreted as composites of various

‡ Non-BPS attractors have been studied extensively during the past years, see for example [25] for a
review.
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different types of branes. We interpret this as evidence that the deformation of extremal

into non-extremal solutions is ‘universal’, in the sense that it is largely blind to details

of the matter sector. Establishing and understanding this for a class of actions which

contains, but is not restricted to, five-dimensional vector multiplets is likely to enhance

our understanding of non-extremal black holes considerably. In this article we develop

an approach based on dimensional reduction over time, harmonic maps and generalized

special geometry. Let us explain these key ingredients and compare them to other

approaches taken in the literature.

Dimensional reduction over time, and, for spherically symmetric solutions,

dimensional reduction to a one-dimensional problem involving only the radial variable,

is a powerful solution generating technique.§ It has been applied to Kaluza-Klein

black holes [29] and brane-type solutions [30], while in [31] dimensional reduction was

used to obtain the black hole attractor equations from the field equations rather than

using Killing spinors. More recently, this method has been applied frequently in the

study of extremal non-BPS black holes, and, to some extent, non-extremal black holes

[32, 33, 34, 35, 17, 36, 37, 38], and to other brane-type solutions [39]. However, we

believe that this method is still under-appreciated, and can become even more powerful

if the underlying geometry is fully employed. Dimensional reduction reduces the field

equations to the equations of a harmonic map, possibly modified by a potential, from

the (reduced) space-time into a scalar target space which encodes all fields contributing

to the solution. For static, spherically symmetric solutions one obtains the equation for

a geodesic curve in the target space, possibly modified by a potential. The geometry of

the reduced space-time reflects the ansatz imposed on the unreduced one. In particular,

extremal solutions correspond to flat reduced geometries.‖ We will see later that

in the non-extremal case the geometry is the time-reduced version of the simplest

charged non-extremal solution, the Reissner-Nordstrom solution, independently of the

matter content. The geometry of the scalar target space encodes the dynamics of the

fields entering into the solution. For supergravity theories the relevant geometries are

symmetric spaces for N > 2, and various ‘special geometries’ for N = 2 supersymmetry.

The latter need not be symmetric or even homogeneous spaces, but are characterized

by the existence of a potential for the scalar metric. As has become clear recently,

there is a more general class of scalar geometries, which might be called ‘generalized

special geometries’, which correspond to non-supersymmetric theories, and allow the

construction of solutions which share the key features of the solutions of supersymmetric

theories [41]. In particular, if one replaces the special real geometry of five-dimensional

vector multiplets [42] by the ‘generalized special real geometry’ introduced in [41],

then the attractor equations still have the same form discovered in [43, 44] for five-

dimensional supergravity, and extremal multi-centered solutions can be obtained in

terms of harmonic functions.

In this article we apply this type of approach to the construction of non-extremal

§ We refer to [28] for a review.
‖ When including Taub-NUT charge, one has to consider more general Ricci-flat geometries [40].
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solutions. We restrict ourselves to static, spherically symmetric solutions for simplicity.

As in [41] we impose that the scalar geometry of the underlying theory, before

dimensional reduction, is ‘generalized special real’, and for concreteness we start

from five dimensions. This is natural, because generalized special real geometry is

a generalization of the special real geometry of five-dimensional vector multiplets. As

supersymmetry does not play a role, our results could easily be adapted to any dimension

d ≥ 4 by adjusting numerical parameters.¶ One limitation which we need to mention is

that we only obtain black hole solutions with electric charges. While this is no restriction

in d > 4, in d = 4 charged black holes can carry both electric and magnetic charge.

There is no problem in principle with applying temporal reduction to a four-dimensional

theory, but, as is well known from the c-map [45], the isometry group of the resulting

scalar manifold is more complicated. Instead of the abelian groups occurring in this

paper one obtains solvable Lie groups (of Heisenberg group type). This appears to be

a technical rather than conceptual complication, and we have decided to consider the

simpler case of abelian isometry groups in this paper, while dyonic solutions are left to

future work.

As in [41] our strategy is to simplify the equations of motion until the solution can

be expressed in terms of harmonic functions. This is similar in spirit to the way the

‘generalized stabilization equations’ are derived in the framework of the superconformal

calculus [27]. An alternative approach is to reduce the equations of motion to first order

form, leading to gradient flow equations [12, 32, 33, 15, 16, 17]. This approach mimics

the Killing spinor equations of BPS solutions, with the central charge being replaced

by a ‘fake superpotential’ which drives the flow. In our approach the re-writing of the

field equations in first order form is sidestepped, so that we obtain the solution directly.

For the extremal case it was explained in [41] how to obtain the flow equations starting

from the harmonic map equation. We expect that this relation can be generalized to

cover the results obtained for non-extremal solutions in this paper, but leave a detailed

investigation to future work.

Many of the results obtained in the literature are based on the assumption that

the scalar target is a symmetric space and exploit the relation to integrability and

the Hamilton-Jacobi formalism [34, 35, 17, 36, 37, 38]. Our approach attempts to be

less restrictive and only requires the scalar metric to have a potential. Thus roughly

speaking we try to work in the analogue of an ‘N = 2 framework’ (special geometry,

prepotentials) rather than an ‘N > 2 framework’ (symmetric spaces, integrability).

While the explicit non-extremal solutions obtained in this paper happen to correspond to

symmetric targets, we argue that the structures which we discover hold more generally,

and that the method we are developing is general and flexible enough to deal with target

manifolds which are not symmetric spaces. This is supported by the previous observation

that extremal multi-centered solutions can be constructed easily for the whole class of

¶ The formulae we use for dimensional reduction contain parameters whose values depend on the
number of space-time dimensions. We felt that it was too cumbersome to include this dependence
throughout.
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models based on generalized special real geometry [41]. Of course, symmetric spaces

provide an important and interesting class, and the relation between our approach and

the one based on integrability should be clarified in the future.

This paper is organised as follows. In Section 2 we first review the five-dimensional

version of the Reissner-Nordstrom solution. Then we perform the reduction of a five-

dimensional action based on generalized special real geometry, first with respect to time,

then, assuming spherical symmetry, to a one-dimensional effective theory of the radial

degrees of freedom. We make some observations which are very helpful in the following:

the geometry obtained after reduction over time is, when assuming spherical symmetry,

the time-reduced five-dimensional Reissner-Nordstrom metric, irrespective of the matter

content. We also identify two useful radial coordinates: the affine curve parameter τ ,

which is only defined outside the outer horizon, and the isotropic radial coordinate

ρ, which allows us to extend solutions up to the inner horizon. After reviewing the

relevant background material about generalized special real geometry, we analyze and

simplify the remaining equations of motion. We identify a subclass of models, dubbed

‘diagonal’, where solutions can be obtained in closed form. Finding explicit solutions

for more general models is left to future work. In Section 3 we lift our solutions to

five dimensions and investigate their properties. For diagonal models we obtain non-

extremal solutions, valid up to the inner horizon, where all scalar fields are non-constant.

The solutions are given in terms of harmonic functions, with one particular function

encoding the non-extremality. Extremal solutions are related to non-extremal solutions

with the same charges by dressing them in a specific way with the additional harmonic

function. In a particular parametrization the expressions for the five-dimensional scalars

are identical to the extremal case and solve the same generalized stabilization equations.

While there is no attractor or fixed point behaviour in the proper sense, the values of

the scalars on the outer and inner horizon are obtained from the fixed point values by

specific substitutions, which replace charges by ‘dressed’ charges. Then we turn to a

particular diagonal model, the five-dimensional STU-model, which can be obtained (as

a subsector) by compactification of type-IIB string theory on T 4 × S1. We show how

our solution is related to the D5–D1 system, and thus establish the relation between

our charge parameters and the microscopic charges corresponding to D-branes. Then

we turn to the universal solution, which exists in all our models, and show that all

five-dimensional scalars are constant, while the metric is the five-dimensional Reissner-

Nordstrom metric. Following this we briefly comment on ‘block-diagonal’ models, where

the scalar manifold is a product. In this case we obtain solutions where some, but not

all scalars can be non-constant. In Section 4 we discuss our results and give an outlook

on future research.



Non-extremal black holes, harmonic functions, and attractor equations 6

2. Dimensional reduction and instanton solutions

2.1. Review of the five-dimensional Reissner-Nordstrom black hole

Some clues how non-extremal, static, spherically symmetric solutions should be

approached within the setting of dimensional reduction, harmonic maps, and generalized

special geometry can be taken from the five-dimensional version of the Reissner-

Nordstrom solution. One standard form of the line element is [5, 6]

ds2
(5) = −

(r2 − r2
+)(r2 − r2

−)

r4
dt2 +

[
(r2 − r2

+)(r2 − r2
−)

r4

]−1

dr2 + r2dΩ2
(3) .

In this coordinate system the singularity is located at the origin, r = 0, whereas r− > 0 is

the inner horizon (Cauchy horizon) and r+ > r− is the outer horizon (event horizon). In

the extremal limit both horizons coincide, r+ = r−. Deviations from extremality can be

parametrized by the non-extremality parameter c = 1
2
(r2

+−r2
−) ≥ 0. For the construction

of black hole and black brane solutions one often prefers isotropic coordinates, in which

the spatial part of the metric is conformally flat. For the five-dimensional Reissner-

Nordstrom solution this is achieved by introducing the new radial coordinate ρ, where

ρ2 = r2 − r2
− ,

This coordinate system is centered at the inner horizon, which is at ρ = 0, while the

outer horizon is at ρ2 = 2c. In isotropic coordinates the line element takes the form

ds2
(5) = −W

H2
dt2 + H

[
W−1dρ2 + ρ2dΩ2

(3)

]
, (1)

which is parametrized in terms of two harmonic functions+

H = 1 +
q

ρ2
, W = 1 − 2c

ρ2
.

The parameter q, which is the electric charge carried by the black hole∗ is related to r−
by q := r2

−. We prefer to parametrize black holes solutions by the electric charge q and

the non-extremality parameter c instead of the positions r± of the horizons.

Two interesting limits can be obtained by switching off either of these ‘charges’.

Setting q = 0 we obtain a five-dimensional version of the Schwarzschild solution, while

setting c = 0 makes the solution extremal. Thus deforming the solution away from

extremality amounts to ‘switching on’ an additional harmonic function in the line

element. Experience with supersymmetric solitons in various dimensions suggests that

this is a generic feature.

+ Here and in the following ‘harmonic function’ refers to a function which is harmonic in the coordinates
transverse to the worldline of the black holes (i.e., the four spatial coordinates), with respect to the
standard, ‘flat’ Laplacian.
∗ Actually, q is the modulus of the electric charge. Observe that q cannot be negative, as this would
introduce additional singularities in the line element. Note that since the energy momentum tensor is
quadratic in the Maxwell field strength, the Einstein equations do not ‘see’ the sign of the charge. For
convenience, we will refer to q as the electric charge.
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If we perform a dimensional reduction with respect to time, then the four-

dimensional (Einstein frame) metric ds2
(4) is related to the five-dimensional (Einstein

frame) metric by

ds2
(5) = −e2σ̃dt2 + e−σ̃ds2

(4) . (2)

For the five-dimensional Reissner-Nordstrom solution the Kaluza-Klein scalar σ̃ is given

by

e2σ̃ =
W

H2
.

The extremal limit (W = 1) has the particular feature that the reduced line element ds2
(4)

is flat. As we will see in more detail below, constructing extremal black hole solutions

therefore amounts to constructing a harmonic map from a flat manifold (reduced space-

time) into a scalar target space, which in Einstein-Maxwell theory accommodates the

Kaluza-Klein scalar and the electro-static potential. The solution corresponds to a null

geodesic curve in the scalar target space. Once we consider non-extremal solutions,

where W 6= 1, the reduced space-time metric ds2
(4) is no longer flat, and the geodesic

curve in the scalar target space is no longer null. Our main strategy is to disentangle

the non-extremal deformation, which is encoded in the additional harmonic function W ,

from the degrees of freedom already present in the extremal case.

2.2. Dimensional reduction

We begin by considering a five-dimensional action of scalars and abelian gauge fields

coupled to gravity.

Ŝ =
1

8πG
(5)
N

∫
d5x̂
√

|ĝ|
[

R̂

2
− 3

4
aIJ(h)∂µ̂hI∂µ̂hJ − 1

4
aIJ(h)F̂ I

µ̂ν̂F̂
Jµ̂ν̂ + . . .

]
,(3)

where I = 1, . . . , n and F̂ I
µ̂ν̂ = ∂µ̂ÂI

ν̂ − ∂ν̂ÂI
µ̂.

The dots represent further terms like Chern-Simons and fermionic terms, which

could be present, but do not contribute to backgrounds which are static and purely

electric. The truncation of five-dimensional supergravity coupled to n − 1 vector

multiplets to such a background has the above form, with a ‘special real’ scalar metric

aIJ . This means that the metric has a Hesse potential V(h),

aIJ(h) = ∂I∂JV(h) ,

where the Hesse potential takes the special form V(h) = − log V̂(h), with a ‘prepotenial’

V̂(h) which is a homogeneous cubic polynomial. In addition, the scalars must satisfy

the hypersurface constraint

V̂(h) = 1 . (4)

This means that the manifold parametrized by the physical scalar fields is a hypersurface

M̂ = {V̂(h) = 1} in a Hessian manifold M with metric aIJ . The metric on the

hypersurface M̂ is the pull-back of aIJ . We will not limit ourselves to supersymmetric
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theories and allow a larger class of scalar metrics, where the prepotential V̂(h) is

a homogeneous function of arbitrary degree p. Such manifolds might be called

‘generalized special real manifolds’, as they are natural generalizations of the scalar

manifolds occurring in supersymmetric theories. The relevant properties of Hessian and

(generalized) special real manifolds will be presented in the next section.

We are only interested in five-dimensional solutions which are static and purely

electric. In order to construct these solutions we perform a time-like dimensional

reduction where we decompose the metric and gauge vectors as follows:]

ĝ =




−e2σ̃ −e2σ̃Aν

−e2σ̃Aµ e−σ̃
(
gµν − e2σ̃AµAν

)


 , ÂI =




AI
0

AI
µ + AI

0Aµ


 .

For our class of solutions the Kaluza Klein-vector Aµ vanishes and the last term in the

Lagrangian becomes

F̂ I
âb̂

F̂ Jâb̂ = −2e−2σ̃∂µmI∂µmJ ,

where we have made the identification mI = AI
0. The resulting four dimensional

Euclidean action is

S =
1

8πG
(4)
N

∫
d4x
√

|g|
[
R

2
− 3

4
∂µσ̃∂µσ̃ − 3

4
aIJ(h)∂µhI∂νhJ

+
1

2
e−2σ̃aIJ(h)∂µmI∂µmJ + · · ·

]
. (5)

As indicated we neglect terms that will not contribute to the type of solution we are

interested in. In particular, we neglect four-dimensional gauge fields, because they

descend from the magnetic components of the five-dimensional gauge fields. Following

the procedure in [41] we make the rescalings

hI = e−σ̃σI , mI = ±
√

3

2
bI , (6)

in order to write the action in the convenient form

S =
1

8πG
(4)
N

∫
d4x
√

|g|
[
R

2
− 3

4
aIJ(σ)

(
∂µσI∂µσJ − ∂µbI∂µbJ

)]
, (7)

where we have set aIJ(σ) = e−2σ̃aIJ(h) using that aIJ is homogeneous of degree −2.

Similarly, we have

V̂(σ) = epσ̃V̂(h) = epσ̃ , (8)

since the prepotential is homogeneous of degree p.

Note that while the scalars hI are subject to the constraint (4), the scalars σI are

unconstrained and combine the (n − 1) five-dimensional scalars with the Kaluza-Klein

scalar σ̃. The scalars σI can be interpreted as affine coordinates on an n-dimensional

] More details can be found in [46, 41].
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manifold M with Hessian metric aIJ(σ). The scalar manifold of the five-dimensional

theory is embedded into M as a homogeneous hypersurface M̂ . In addition to the

σI , the four-dimensional theory has n further scalar fields bI , which descend from the

five-dimensional gauge fields. The gauge symmetries of the five-dimensional theory

induce n-commuting isometries bI → bI + CI . The resulting 2n scalar manifold N

of the four-dimensional theory can therefore be interpreted as the tangent bundle

N = TM of M . The Hessian metric of M extends to a split-signature Riemannian

metric aIJ(σ) ⊕ (−1)aIJ(σ) on N . It is easy to see that this is a para-Kähler metric††
and that the Hesse potential of M is a para-Kähler potential for N [41].

The four-dimensional equations of motion are

1√
|g|

∂µ
(√

|g|aIJ(σ)∂µσJ
)
− 1

2
∂IaJK

(
∂µσJ∂µσK − ∂µbJ∂µbK

)
= 0 , (9)

∂µ
(√

|g|aIJ(σ)∂µbJ
)

= 0 , (10)

1

4
aIJ(σ)

(
∂µσI∂νσ

J − ∂µbI∂νb
J
)
− 1

8
aIJ(σ)gµν

(
∂γσ

I∂γσJ − ∂γb
I∂γbJ

)

=
1

6
Rµν −

1

12
Rgµν . (11)

The first two equations are the scalar equations of motion. They are equivalent to

the geometrical statement that critical points of the action with respect to variation of

(σI , bI) define a harmonic map from four-dimensional space-‘time’ (with positive definite

metric gµν) into the scalar target manifold N with metric aIJ ⊕ (−1)aIJ . The third set

of equations are Einstein’s equations. They can be simplified by taking the trace of (11)

and re-substituting the result back:

1

4
aIJ(σ)

(
∂µσI∂νσ

J − ∂µbI∂νb
J
)

=
1

6
Rµν . (12)

We now impose that the solution is spherically symmetric.‡ A general spherically

symmetric line element can be written in the form [17]

ds2
(4) = e6A(τ)dτ 2 + e2A(τ)dΩ2

(3) , (13)

where τ is a radial coordinate. The advantage of this parametrization becomes apparent

once we look at the reduced equations of motions for the scalar fields:

d

dτ

(
aIJ(σ)σ̇J

)
− 1

2
∂IaJK(σ)

(
σ̇J σ̇K − ḃJ ḃK

)
= 0 , (14)

d

dτ

(
aIJ(σ)ḃJ

)
= 0 . (15)

These are the equations for a geodesic curve on N , written in terms of the coordinates

(σI , bI). For a harmonic map defined on a one-dimensional domain the harmonic

††We refer to [58, 46] for a detailed account of para-Kähler geometry.
‡ This type of reduction is frequently used in the literature, see in particular [31, 17].
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equation and the geodesic equation coincide.§ We observe that the geodesic equation is

in affine form, which shows that the radial coordinate τ is an affine curve parameter.

Other parametrizations of the four-dimensional line element use radial coordinates which

are non-affine curve parameters. The reason for τ being an affine parameter is that the

Laplace operator for a line element of the form (13) takes the form ∆ = ∂2

∂τ2 + terms

independent of τ .

The equations (14) and (15) follow from the variation of the effective action

Seff =

∫
dτ

1

4
aIJ(σ)

(
σ̇I σ̇J − ḃI ḃJ

)
, (16)

which is the reduction of (7) in the spherically symmetric background (13).

We still have to reduce the Einstein equations (12). Since we impose spherical

symmetry on the scalar fields, the LHS of (12), which is essentially energy momentum

tensor, vanishes for all components with µ, ν 6= τ . The corresponding components of

the Ricci tensor on the RHS of (12) are proportional to Ä − 2e4A, and therefore the

Einstein equations imply

Ä − 2e4A = 0. (17)

We now consider (12) when µ = ν = τ . In this case

1

4
aIJ(σ)

(
σ̇I σ̇J − ḃI ḃJ

)
= Ȧ2 − 1

2
Ä = c2 , (18)

where c2 is a constant, which we will choose positive below. The fact that Ȧ2− 1
2
Ä must

be constant follows from (17). We can combine (17) and (18) to get

Ȧ2 = c2 + e4A . (19)

This first order equation can be solved as follows, for positive c2: Taking the square root

and multiplying by −2e−2A we find

−2Ȧe−2A = ±2
√

c2e−4A + 1 .

We can then relabel y(τ) = e−2A(τ) and hence the equation becomes ẏ = ±2
√

c2y2 + 1.

Solving this we find

y(τ) =
sinh(±2cτ + D)

c
.

To ensure y(τ) is positive we choose the positive sign and D = 0. We also observe

that a negative c2 would lead to an equation which is solved by trigonometric rather

than hyperbolic functions. The resulting solutions are periodic in the radial coordinate

and therefore not asymptotically flat. We discard them because we want to construct

five-dimensional black holes solutions.‖

§ In general, the harmonic equation is the trace of the geodesic equation and therefore a weaker
condition.
‖ If the radial coordinate is analytically continued and becomes timelike, such solutions might
correspond to cyclic cosmological solutions.
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Thus we find e−2A = 1
c
sinh(2cτ) and our line element is

ds2
(4) =

c3

sinh3(2cτ)
dτ 2 +

c

sinh(2cτ)
dΩ2

(3) . (20)

To see that this is in fact the time reduced Reissner-Nordstrom metric, we replace τ by

a new radial coordinate ρ, which is defined by

ρ2 =
ce2cτ

sinh(2cτ)
. (21)

Using this new coordinate, the line element takes the form

ds2
(4) = W− 1

2 dρ2 + W
1
2 ρ2dΩ2

(3) , (22)

where

W = 1 − 2c

ρ2
= e−4cτ . (23)

To see that this is the time reduced Reissner-Nordstrom metric, we compare the

five-dimensional Reissner-Nordstrom metric (1) to the Kaluza-Klein ansatz (2) which

relates the five-dimensional to the four-dimensional Einstein frame, and observe that

the resulting Euclidean four-dimensional line element is (22). We note that the four-

dimensional metric takes this form irrespective of the scalar sector.

From (23) it is manifest that the coordinate τ with range 0 < τ < ∞ only covers

the range of ρ where ρ2 > 2c. For 0 < ρ2 < 2c the line element (22) becomes imaginary,

but looking back at (1) we see that the five-dimensional line element obtained by lifting

is real, and that 0 < ρ2 < 2c corresponds to the region between the outer (event)

and the inner (Cauchy) horizon. In this region the coordinate t becomes space-like

while ρ becomes space-like.¶ It is not surprising that our method, which is based on

dimensional reduction over time, does a priori only give us a solution valid outside the

event horizon. However, after replacing τ by ρ the analytical continuation to 0 < ρ2 < 2c

gives the Reissner-Nordstrom solution up to the inner horizon. Since we have seen that

(22) remains unchanged when admitting a more complicated matter sector, we should

expect that a similar extension is possible in the presence of non-constant scalar fields.

We will come back to this later.

The four-dimensional Einstein equations require that the scalar fields satisfy

1

4
aIJ(σ)

(
σ̇I σ̇J − ḃI ḃJ

)
= c2 . (24)

This equation does not follow from the reduced action (16), and must be imposed as a

constraint. (It is often called the Hamiltonian constraint, because it descends from the

Einstein equations, which are constraints in the Hamiltonian formalism.) Geometrically

(24) imposes that the norm of the geodesic vector field (σI , bI) is constant, and is given

¶ To be precise, ρ can be continued analytically beyond the event horizon, while t cannot. However,
one can introduce a space-like coordinate (which is not the analytical continuation of the coordinate
t used outside the horizon), such that the line element takes the form (1) between the outer and the
inner horizon [48].
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by the parameter c which appears in the space-time metric. This equation is consistent

with (14) and (15), because τ is an affine curve parameter.+

While the four-dimensional line element is universal, in the sense that it is

independent of the scalar sector, the five-dimensional line element depends on the

solution of the scalar field equations through the Kaluza-Klein scalar σ̃, which is

determined by the four-dimensional scalars through (8). In particular, if the resulting

five-dimensional scalars are not constant, then the five-dimensional line element will be

different from the five-dimensional Reissner-Nordstrom metric.

We remark that it is very encouraging that the four-dimensional metric is

completely determined, and equal to the time-reduced Reissner Nordstrom metric,

irrespective of the matter content of the theory. This supports the idea that the

deformation of extremal into non-extremal solutions has universal features, which are

not sensitive to details of the matter sector. All features of the solution which depend

on the matter sector are encoded in the Kaluza-Klein scalar which is determined

by the four-dimensional scalar field equations. Non-extremal solutions differ from

extremal solutions through the replacement of the four-dimensional flat metric by the

time-reduced Reissner-Nordstrom metric, which is parametrized by a single additional

parameter c. Therefore it is reasonable to expect that there is a canonical one-parameter

deformation of the harmonic map corresponding to an extremal solution, which deforms

a null geodesic in N into a space-like geodesic. This deformation is induced by the

deformation of the metric on the domain of the harmonic map from a flat metric to the

time-reduced Reissner-Nordstrom metric.

2.3. Hessian manifolds and dual coordinates

In order to solve the remaining equations, we will use the special geometric properties

of the target manifold N = TM . Since N is completely determined by M , the essential

properties are those of the Hessian metric aIJ(σ) of M . We now collect the relevant

properties of Hessian and (generalized) special real metrics [46, 41].

A Hessian manifold (M, a,∇) is a manifold M equipped with a pseudo-Riemannian

metric a and a flat, torsion-free connection ∇, such that the third rank tensor ∇a is

completely symmetric.∗ In affine coordinates σI , where ∇I = ∂I , this is equivalent to

the statement that ∂IaJK is completely symmetric. This is the integrability condition

for the existence of a Hesse potential for the metric. Thus an equivalent local definition

in terms of affine coordinates is that the metric can be written in the form

aIJ(σ) = ∂I∂JV = VIJ , (25)

where we have introduced the notation ∂IV = VI , . . .. In affine coordinates, the

Christoffel symbols of the first kind are completely symmetric and proportional to the

third derivatives of the Hesse potential.

+ Affine curve parameters are singled out by imposing that the norm of the tangent vector is constant
along the curve. This is necessary and sufficient for the geodesic equation to take affine form.
∗ The connection ∇ is in general different from the Levi-Civita connection.
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For a (generalized) special real metric we impose in addition that the Hesse potential

V has the form

V = −1

p
log V̂(σ) , (26)

where the ‘prepotential’ V̂ is a homogeneous function of degree p:]

V̂(λσ1, . . . , λσn) = λpV̂(σ1, . . . , σn) . (27)

It was shown in [41] that Hesse potentials of this form define four-dimensional

models which can be lifted consistently to five-dimensional Einstein-Maxwell-Scalar type

theories such as (3).

Using the homogeneity of the prepotential we deduce that

V̂I(σ)σI = pV̂(σ) , (28)

and differentiation implies

V̂IJσI = (p − 1)V̂J . (29)

If we write the metric in terms of the prepotential

aIJ(σ) = VIJ = −1

p

(
V̂IJ

V̂
− V̂IV̂J

V̂2

)
, (30)

we can use (28) and (29) to deduce that

aIJσJ = −VI . (31)

It follows that contracting the coordinates with the metric we are left with unity:

aIJσIσJ = 1 . (32)

It is important to note that this is not a constraint on the coordinates σI but an identity

which follows from the particular form (26) of the Hesse potential. As is evident from

(30) the metric coefficients aIJ are homogeneous of degree −2. Thus the metric (as a

tensor) is homogeneous of degree 0. As a consequence, re-scalings σI → λσI of the affine

coordinates act as isometries on M , and also on N = TM . This additional symmetry

will be helpful in solving the equations of motion.

We now motivate the introduction of dual coordinates by first noting that the

equation of motion (14) simplifies if we can find dual coordinates σI which satisfy

σ̇I = aIJ(σ)σ̇J . (33)

For extremal black holes, where c = 0, this allows one immediately to express the

solution in terms of harmonic functions, even if no spherical symmetry is imposed [41].

If aIJ is Hessian, then dual coordinates can always be found explicitly and are given by

σI ∝ VI . From the identity (31) we see that these coordinates can be written as

σI = −aIJσJ . (34)

] For the special real metrics of five-dimensional supersymmetric theories, p = 3, and V̂ must be a
polynomial.
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The minus sign might be counter-intuitive, but one should remember that the σI

are functions (local coordinates) and not vector fields. The dual coordinates σI are

algebraic functions of the affine coordinates σI .

For example, if the prepotential is a general homogeneous polynomial V̂ =

CI1...Ipσ
I1 . . . σIp of degree p, then dual coordinates are given by

σI = −1

p

∂ICI1...Ipσ
I1 . . . σIp

CI1...Ipσ
I1 . . . σIp

. (35)

A special case of particular interest is if the prepotential is of the form V̂ = σ1 . . . σp in

which case dual coordinate are

σI = −1

p

1

σI
. (36)

While it is always possible to find explicit expressions for the dual coordinates in

terms of the affine coordinates σI , inverting this relation amounts to solving n coupled

algebraic equations, which in general cannot be done in closed form. Solving these

equations is in fact equivalent to solving the (five-dimensional) black hole attractor

equations [41].

2.4. Four-dimensional instanton solutions

We now proceed to solving the equations of motion (14), (15) and (24). Since they were

derived from the action of a Euclidean non-linear sigma model, the solutions will be

referred to as instantons. We will consider Hessian manifolds of the form (26) and we

will formulate the solutions in terms of the dual coordinates, making use of the identities

derived in the previous section.

The equations of motion (15) for the axions bI are solved by

aIJ(σ)ḃI = q̃I = const. , (37)

where q̃I are the ‘axion charges’ (or ‘instanton charges’), which are the conserved charges

corresponding to the isometries bI → bI + CI .

Now we turn our attention to (14). Using the dual coordinate σI , this becomes

σ̈I −
1

2
∂IaJK(σ)

(
σ̇J σ̇K − ḃJ ḃK

)
= 0 , (38)

and using that ∂IaJK = −aJLaKM∂Ia
LM this can be written as

σ̈I +
1

2
∂Ia

JK(σ) (σ̇J σ̇K − q̃J q̃K) = 0 , (39)

In the extremal case, where the geodesic curve on N is null,†† the second term is

absent, and the equations collapse to σ̈I = 0, which is solved by

σI(τ) = AI + BIτ .

††To be precise, the geodesic curve corresponding to an extremal solution is not only null, but satisfies
σ̇I = ±ḃI . See [46, 41] for an interpretation in terms of the para-Kähler geometry of N .
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In the extremal case the standard radial coordinate (centered at the horizon) is ρ, where

ρ2 = 1
2τ

, so that‡

σI(ρ) = AI +
2BI

ρ2
.

Thus the solution can be expressed in terms of n spherically symmetric harmonic

functions, which depend on 2n parameters. For c 6= 0 the equation (39) is more

complicated and involves the Christoffel symbols of N . To simplify the problem,

we contract (39) with σI , to obtain a single equation. This leads to an enormous

simplification, provided that we make full use of the special properties of the scalar

metric. Since the metric is homogeneous of degree −2, we have

σI∂IaJK = −2aJK .

Combining this with (34), the contracted equations reduces to

aIJσI σ̈J = 4c2 . (40)

Comparing to the Hessian identity (32) we see that this equation implies that

4c2σI = σ̈I + XI , (41)

where XI vanishes when contracted with σI , σIXI = 0. One obvious strategy is to look

for solutions where XI = 0. In this case the equations reduce to the linear equations

4c2σI = σ̈I , (42)

which are elementary to solve. We can write the general solution as

σI = AI cosh 2cτ +
1

2c
BI sinh 2cτ , (43)

where we have chosen the appropriate factors so that in the extremal limit

σI
c→0

// AI + BIτ . (44)

The solution contains 2n arbitrary constants, which is as many as we expect for the

general solution of the original equation (38). However, we have assumed without

justification that XI = 0, and therefore we still have to investigate whether (43) is

a solution, or even the general solution, of (38). Therefore we substitute (43) back into

(38). Using σ̈I = 4c2σI , together with

σI = −aIJσJ =
1

2
σK∂KaIJσJ =

1

2
∂IaJKσJσK = −1

2
∂Ia

JKσJσK ,

which combines various of the special identities satisfied by aIJ , we obtain

∂Ia
JK(4c2AJAK − BJBK + q̃J q̃K) = 0 . (45)

This equation is to be viewed as an algebraic constraint on the integration constants

AI and BI . Since we assume that the solution for σI is given by (43), the ‘Christoffel

symbols’ ∂Ia
JK are functions of the integration constants AI , BI and of the curve

‡ Affine coordinates are only unique up to affine transformations. The normalization has been chosen
for later convenience.



Non-extremal black holes, harmonic functions, and attractor equations 16

parameter τ . Thus we obtain n algebraic relations between the 3n constants AI , BI

and q̃I which have to be satisfied along the geodesic curve, i.e. for all values of the

curve parameter τ . These conditions are hard to investigate without specifying the

scalar metric aIJ explicitly. However, we will prove the following three statements in

the following sections:

(i) If the metric aIJ and the Christoffel symbols are diagonal (or can be brought

to diagonal form by a linear transformation of the affine coordinates σI), then

(43), with 2n independent constants AI , BI is the general black hole solution. In

this case the metric of the scalar manifold N is the product of n two-dimensional

metrics, and the scalars σI completely decouple from one another. In the resulting

solution all scalars σI are independent, in the sense that all mutual ratios are non-

constant, and the corresponding five-dimensional scalars are non-constant. The

Reissner-Nordstrom solution is recovered by taking the five-dimensional scalars

to be constant, which is equivalent to taking all four-dimensional scalars to be

proportional to one another.

(ii) For arbitrary aIJ there is always a solution of the form (43) depending on n + 1

independent parameters, which can be taken to be the charges q̃I and the non-

extremality parameter c. For these solutions the four-dimensional scalar fields σI

are proportional to one another, and the five-dimensional scalars are constant.

The metric is the five-dimensional Reissner-Nordstrom metric. These solutions

are therefore non-extremal deformations of ‘double extreme’ five-dimensional black

holes, which are extremal black holes with constant (five-dimensional) scalars. This

result is not unexpected, but reassuring, because it shows us how to recover the

non-extremal Reissner-Nordstrom solution, with the slight generalization that we

have n independent gauge fields and thus n independent charges. We call this

solution, which can be found for all models, the universal solution.

(iii) If the metric and the Christoffel symbols are block diagonal, with 1 < k < n blocks,

or if they can be brought to this form by a linear transformation of the affine

coordinates σI , then we obtain solutions of the form (43) with n + k independent

integration constants. In this case only the ratios between four-dimensional scalars

which belong to the same block have to be constant, and the five-dimensional

solutions have k − 1 parameters which correspond to changing the values of the

scalars at infinity. Such block diagonal models provide intermediate cases between

the diagonal models k = n and the generic models where k = 1.

We remark that the general solution of the second order field equations of the 2n

scalar fields σI , bI depends on 4n integration constants. Due to the n commuting shift

symmetries bI → bI + CI the initial values (at τ = 0) of the bI do not carry physical

information, while the n initial velocities ḃI are equivalent to the conserved charges q̃I .

The 2n integration constants for the σI can be taken to be the initial values and initial

velocities at τ = 0, or, equivalently, the initial and final (asymptotic) values at τ = 0

and τ = ∞. In the extremal case τ = ∞ corresponds to the event horizon, and for black
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hole solutions the attractor mechanism fixes the asymptotic values of the σI in terms

of the charges q̃I [41]. This reduces the number of independent physical integration

constants to 2n: the asymptotic values of the scalars σI(τ = 0) and the charges q̃I . The

general black hole solution referred to above is the non-extremal deformation of this

solution, and depends on one additional parameter, the non-extremality parameter c.

Note that the scalar field equations admit more general solutions, both in the extremal

and in the non-extremal case, which depend on 4n integration constants, of which 3n

have physical meaning. In the extremal case it is clear that these solutions should not

lift to black hole solutions, because the attractor mechanism relates the horizon values of

the σI to the charges. As will become clear from the results of the following section, we

expect a similar result in the non-extremal case. The interpretation of the 4n-parameter

general solution to the scalar field equations is currently under investigation [68]. In the

following ‘general solution’ refers to the general black hole solution depending on the 2n

integration constants σI(τ = 0) and q̃I of the scalar equations, and the non-extremality

parameter c. For diagonal models we will present this general solution in the following

section. It takes the form (43), which is valid for XI = 0. For non-diagonal models,

solutions with XI = 0 only seem to account for a subset of solutions. The further study

of solutions for non-diagonal models is left to future work [68].

3. Dimensional Lifting and black hole solutions

We now proceed to discuss the three cases in turn.

3.1. The general solution for diagonal models

Instead of solving (45), we can impose the stronger condition

4c2AJAK − BJBK + q̃J q̃K = 0 . (46)

If we do not make assumptions on the structure of aIJ , this has to be true for all

values of J, K, in order to solve (45). This imposes severe constraints on the constants

AI , BJ , which, in general, only allows solutions where all four-dimensional scalars are

proportional to one another. This solution, which we call the universal solution, will be

discussed in the next section.

In this section we will restrict the scalar metric in such a way that we obtain the

general solution. Specifically, we assume that ∂Ia
JK = 0 for J 6= K. Such models will

be referred to as diagonal models in the following. For diagonal models (45) is already

solved if we impose (46) for J = K:

4c2A2
J − B2

J + q̃2
J = 0 . (47)

This equation can be solved explicitly for the AI , or for the BI , or for any linear

combinations thereof, in terms of the charges q̃I and of the remaining n independent

combinations of the AI and BI . In the following it is convenient to consider AI and BI

as independent parameters and to compute the resulting charges q̃I from (47):

q̃2
J = B2

J − 4c2A2
J . (48)
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In order to bring the solution to a form suitable for dimensional lifting and

interpretation as a black hole solution, we remember that the four-dimensional Euclidean

line element takes the form of the time-reduced five-dimensional Reissner-Nordstrom

metric (20), irrespective of the details of the matter sector. Therefore it is natural to

replace the radial coordinate τ , which is an affine parameter for curve in N corresponding

to the solution, by the standard radial coordinate (21):

ρ2 =
ce2cτ

sinh(2cτ)
.

Observe that in the extremal limit c → 0 we recover the relation

ρ2 =
1

2τ
. (49)

It is useful to note that

σI =
1

2e−2cτ

(
AI(1 + e−4cτ ) +

1

2c
BI(1 − e−4cτ )

)
.

As discussed earlier the non-extremal Reissner-Nordstrom solution is obtained from the

extremal one through dressing the line element by the additional harmonic function

W (ρ) = 1 − 2c

ρ2
= e−4cτ .

We now observe that

σI(ρ) =
HI(ρ)

W (ρ)1/2
,

where

HI(ρ) = AI +
BI − 2cAI

2ρ2

are harmonic functions. Since the extremal solution is given by [41]

σ
(extr)
I = HI(ρ) = AI +

qI

ρ2
,

with constants AI and qI , we see that the non-extremal solution is obtained from the

extremal one by dressing the solution by the additional factor W 1/2(ρ). In addition, the

relation between the standard radial coordinate ρ and the affine parameter τ depends

on c according to (21). The constants AI encode the values of the dual scalars infinity,

and are independent of c:

AI = σI(ρ → ∞) .

The constants BI and qI are related to one another and to the charges q̃I . In the

extremal limit they only differ by constant factors, and their relation is independent of

the AI :

c = 0 ⇒ qI =
1

2
BI = ±1

2
q̃I .

For non-extremal solutions the relations between these three sets of quantities depend

on c and on the AI according to (48) and

qI =
1

2
(BI − 2cAI) .
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Note that a relation of this form is precisely what we should expect from the extremal

limit of the general solution (44) with the change of variables (49). Given these

identifications, and using the radial coordinate ρ, the relation between the non-extremal

and extremal solution is given by

σI = HI

W 1/2 c→0
// HI = σ

(extr)
I ,

where HI(ρ) and W (ρ) are spherically symmetric harmonic functions in four dimensions.

Our solution depends on 2n+1 independent parameters: the values AI of the scalars

at infinity, the non-extremality parameter c and the instanton charges q̃I . Instead of

the charges q̃I we could use alternatively the integration constants BI or qI . So far the

charges q̃I are the most natural choice, as they have a direct physical interpretation as

the conserved charges associated with the axionic shift symmetries. In the extremal

limit, the BI and qI become proportional to the charges q̃I , but in the non-extremal

case their relation to the q̃I is a function of c and depends on the values AI of the

scalars at infinity. Below we will see that qI have a physical interpretation from the

five-dimensional point of view.

We can lift our solution to five dimensions and control the extremal limit. Since

σI = −aIJ(σ)σJ , it suggests itself to define functions HI by

σI = W 1/2HI .

Note that HIHI = σIσI = 1, and due to the scaling properties of the metric we have

HI = −aIJ(H)HJ .

While the HI are harmonic functions, the HI are not. However, since the extremal

solution is given by σ
(extr)
I = HI, the HI are the solutions for the scalars σI in the

extremal limit, σI
(extr) = HI. Thus the above rescaling allows us to write the non-

extremal solution as a rescaled version of the extremal one, both in terms of the scalars

σI and the dual scalars σI .

We now use that the four-dimensional Euclidean metric is (22)

ds2
4 = W−1/2dρ2 + W 1/2ρ2dΩ2

(3) ,

and that the four- and five-dimensional line elements are related by (2)

ds2
5 = −e2σ̃dt2 + e−σ̃ds2

4 ,

where the Kaluza-Klein scalar σ̃ is given in terms of the four-dimensional scalars by

epσ̃ = V̂(σ) = W p/2V̂(H) .

Therefore the five-dimensional line element takes the form

ds2
5 = − W V̂(H)2/pdt2 +

1

W 1/2V̂1/p(H)

(
dρ2

W 1/2
+ W 1/2ρ2dΩ2

(3)

)

= − W V̂(H)2/pdt2 +
1

V̂(H)1/p

(
dρ2

W
+ ρ2dΩ2

(3)

)
.
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We observe that the five-dimensional Reissner-Nordstrom metric is recovered if

V̂(H)1/p =
1

H ,

where H = 1 + q
ρ2 . We will see below how this arises as a particular limit of general

solution for diagonal models.

Remember that we have obtained the general solution by making the assumption

that the model is ‘diagonal’, in the sense that the Christoffel symbols ∂Ia
JK are diagonal

in J, K for all I. One class of prepotentials which leads to such models is

V̂(σ) = σ1σ2 · · ·σp .

For p = 3 we recover the five-dimensional STU model, while for p > 3 the resulting

models are not supersymmetric, but have properties similar to the STU models as far

as black hole solutions are concerned [46, 41]. The scalar manifolds N of the four-

dimensional models obtained by reduction over time are of the form

N =

(
SU(1, 1)

SO(1, 1)

)p

.

For p = 3 we obtain the Euclidean version of the four-dimensional STU model [46, 41].

With this choice of prepotential the dual coordinates are

σI =
1

σI
.

This can be solved for the original scalars σI , so that we obtain the solution in closed

form:

σI =
W 1/2

HI
.

Therefore

V̂(σ) = W p/2(H1 · · ·Hp)
−1 ,

and the resulting five-dimensional line element is

ds2
(5) = − W

(H1 · · ·Hp)2/p
dt2 + (H1 · · ·Hp)

1/p

(
dρ2

W
+ ρ2dΩ2

)
.

The non-extremal five-dimensional Reissner-Nordstrom metric is obtained in the special

case where all the harmonic functions HI are proportional to one another:§

H1 ∝ H2 ∝ · · ·Hp ∝ H = 1 +
q

ρ2
,

so that

H1 · · ·Hp = Hp ,

and

ds2
(5) = −W

H2
dt2 + H

[
W−1dρ2 + ρ2dΩ2

(3)

]
.

§ The overall normalization of H is fixed by imposing that the five-dimensional line element approaches
the standard line element of five-dimensional Minkowski space.
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We can also find explicit expressions for the five-dimensional scalars. Remember that

(6)

hI = e−σ̃σI .

Therefore

hI = V̂(σ)−1/pσI = V̂(H)−1/pHI =
(H1 · · ·Hp)

1/p

HI
. (50)

We observe that W has cancelled out so that we obtain the same expression for the hI in

terms of harmonic functions as in the extremal case [41]. Taking all harmonic functions

to be proportional to one another amounts to taking the five-dimensional scalars to

be constant. In this case the metric takes the Reissner-Nordstrom form, as it must.

The only difference between this solution and the Reissner-Nordstrom solution of five-

dimensional Einstein Maxwell theory is that our solution is charged under an arbitrary

number n of abelian gauge fields.

Our observation that the expression for the five-dimensional scalars in terms of

harmonic functions remains the same as in the extremal case raises the question what

happens to the attractor mechanism. As we have discussed previously, the function W

changes sign at ρ2 = 2c, and the four-dimensional metric (22) becomes imaginary. For

the Reissner-Nordstrom solution, which we recover by taking all harmonic functions to

be proportional, this corresponds to crossing the outer horizon into the region where

the coordinate ρ becomes time-like. While our construction of solutions via dimensional

reduction over time is a priori only valid for ρ2 > 2c, we know that the Reissner-

Nordstrom solution is obtained by continuing the solution to 0 < ρ2 < 2c, and lifting.

Since our general solution can be viewed as deforming the Reissner-Nordstrom solution

by turning on non-constant scalar fields, we should expect that the general solution

remains valid too. To show this we need to make the assumption that V̂(H) 6= 0 for

ρ2 > 0 to exclude additional singularities of the line element. In the extremal case it is

well known that such singularities are related to scalars field running off to infinity on M̂ ,

or approaching a singular locus of M̂ [49]. This behaviour can be avoided by choosing

suitable initial conditions for the scalar fields at infinity. In particular, as long we stay

‘close enough’ to the Reissner-Nordstrom solution, no additional singularity can arise.

Then the outer and inner horizon are still encoded in W and located at ρ2 = 2c and

ρ = 0, respectively. Note that while (22) becomes imaginary at ρ2 = 2c, the resulting

five-dimensional remains real because the Kaluza Klein exponential

eσ̃ = W 1/2V̂(H)1/p

becomes imaginary, too.‖ The overall effect on the five-dimensional line element is that

ρ becomes time-like while t becomes space-like. We also observe that the solution (50)

‖ Here we regard eσ̃ as a function that becomes imaginary when continued to ρ2 < 2c. A more
systematic approach would be to replace σ̃ by a new variable. Since σ̃ is defined as the Kaluza Klein
scalar for time-like reduction, it is clear that a different variable should be introduced when the reduced
dimension becomes spacelike. However, we leave a more detailed investigation of the region between
horizons to future work.
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for the five-dimensional scalars is real (and analytical) for ρ > 0. Therefore it makes

sense to consider the limit ρ → 0, which now corresponds to the inner horizon. We find

that the scalars formally exhibit fixed point behaviour, in the sense that the solution

only depends on the charges qI , and becomes independent of the remaining constants

AI :

hI
ρ→0

// (q1···qp)1/p

qI
.

However, we need to remember that the parameters qI are different from the electric

charges q̃I . In order to get a better understanding, let us consider the interpretation of

the parameters from the five-dimensional point of view. The q̃I are, up to normalization,

the electric charges of the black hole, i.e. the Noether charges associated with the

conserved current jI|ν̂ = ∂µ̂(aIJ(h)F J
µ̂ν̂). The parameters AI are the values of the four-

dimensional dual scalars σI at infinity. In five dimensions, these degrees of freedom

reorganise themselves into n−1 scalars and one degree of freedom residing in the metric.

In our parametrization, the n scalars hI are subject to the constraint V̂(h) = 1, and the

Kaluza-Klein scalar is given by epσ̃ = V̂(σ). For a five-dimensional black hole solution

we should normalize the metric such that it approaches the five-dimensional Minkowski

metric at infinity:¶

eσ̃
ρ→∞

// 1 .

This imposes one constraint between the constants AI which reflects that there are only

n − 1 five-dimensional scalars for which we can choose asymptotic values. Thus the

five-dimensional solution only depends on 2n parameters. The additional parameter

which we gain by dimensional reduction can be interpreted as the size of the dimension

we reduce over, or, equivalently, as the ratio between the five-dimensional and four-

dimensional Newton constant, since

1

G
(4)
N

=
1

G
(5)
N

∫ 2πR

0

dt
√

|gtt| =
1

G
(5)
N

2πReσ̃(∞) .

While we can use natural units and set G
(5)
N = 1

16π
, the ratio of G

(5)
N and G

(4)
N becomes

a physical parameter once we reduce. However this parameter is irrelevant as far as

five-dimensional black holes are concerned.

The parameters qI arise as integration constants for the solution when using the

coordinate ρ. Their relation to the electric charges depends on c and the asymptotic

scalar fields through

2qI =
√

q̃2
I + 4cA2

I − 2cAI .

From the five-dimensional point of view the qI determine the asymptotics of the scalars

at the inner horizon.

Since AI (subject to one constraint), c, and qI are a set of 2n independent

parameters, one might say that we have fixed point behaviour at the inner horizon in the

¶ Changing this normalization by a constant factor amounts to rescaling the five-dimensional Newton
constant.
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sense that the scalars become independent of AI and c and are completely determined

by the qI . While this is formally correct, to understand what happens to the attractor

mechanism, one should use the same set of integration constants as in the extremal case.

Therefore it is natural to consider the AI (subject to one constraint), the electric charges

q̃I , and the non-extremality parameter c as the independent parameters of the solution.

Then it becomes clear that the asymptotic values of the scalars at the inner horizon do

not only depend on the charges, but also on their values at infinity, and on c. However,

this dependence only enters through the n ‘dressed charges’ qI = qI(q̃I , AI , c). One might

call this a ‘dressed attractor’, or ‘dressed fixed point behaviour’.+ In the extremal limit

qI and q̃I become proportional and the usual attractor behaviour is recovered.

In the extremal case the asymptotic metric at the event horizon is of Bertotti-

Robinson type, hence a product of maximally symmetric spaces and therefore an

alternative ground state. This is not the case for non-extremal black holes. We also

note that the metric at the inner horizon has a two-fold dependence on parameters other

than the charges q̃I : First it depends on c and AI through the qI , second it acquires an

additional universal dependence on c through the additional harmonic function W .

Having identified AI = σI(∞) and q̃I or qI as the physical parameters, let us

summarize the relation between the charges q̃I , which are the electrical charges as

defined by current conservation in (super-)gravity and the charges qI which govern the

asymptotics on the inner horizon,

q̃I = 2
√

q2
I + 2cqIσI(∞) ,

and the inverse relation:

qI =
1

2

√
q̃2
I + 4c2σI(∞)2 − cσI(∞) .

We now turn our attention to the outer horizon, which is located at ρ =
√

2c. On

the outer horizon the harmonic functions HI take the values

HI =
q̄I

2c
,

where the q̄I bare a striking relationship to the dressed charges qI of the inner horizon

q̄I =
1

2

√
q̃2
I + 4c2σI(∞)2 + cσI(∞) .

Inspection of the scalar fields on the outer horizon reveals the limit∗

hI
ρ→

√
2c

// (q̄1···q̄p)1/p

q̄I
.

We can interpret the q̄I as dressed charges which determine the values of the scalars

on the outer horizon. In this sense the solution exhibits similar ‘dressed attractor’

behaviour on the outer horizon as on the inner horizon. In particular, we observe

formally the same fixed point behaviour in the extremal limit. Indeed, this must be the

+ We refrain from calling this a ‘fake attractor.’
∗ For completeness we remark that a similar relation holds at radius ρ =

√
c, with q̄I replaced by the

integration constants BI .
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case as in the extremal limit the outer and inner horizons coincide. The dressed charges

on the inner and outer horizon are related to the electric charges through

q̃2
I = 4qI q̄I .

While the ‘dressed attractor’ behaviour is not attractor behaviour in the proper sense, it

demonstrates that the functional dependence of the solution on the integration constants

is not generic, but takes a restricted form. In particular, the number of independent

integration constants is reduced, as already remarked before, because the asymptotic

values of the scalars at the horizon are determined by their values at infinity, the charges,

and the non-extremality parameter. In the extremal case, the reduction in the number of

integration constants is related to the reduction of the scalar field equations to first order

flow equations [41]. The dressed attractor behaviour is consistent with the expectation

that non-extremal black hole solutions can be obtained from first order flow equations.

Since the scalar equations allow solutions depending on more integration constants,

the reduction in the number of parameters and the corresponding reduction of the field

equations to first order flow equations seems to select black hole solutions out of a larger

class of solutions. This is currently under investigation [68].

One important feature of non-extremal charged solutions is that the coordinate

ρ becomes time-like at the outer horizon. Therefore the flow becomes a flow in

time rather than in space between the outer and inner horizon. This should have

interesting implications for time-dependent solutions and in particular cosmology, since

the between horizon region of non-extremal black holes is a natural starting point for

the construction of (S-brane type) cosmological solutions [51, 52]. A related question

is whether something can be learned about the time evolution of non-extremal black

holes, which are expected to loose mass through Hawking radiation and to approach the

extremal limit.

In the context of string theory, supergravity provides the macroscopic (= long

wavelength = low energy) description of black holes. For some types of black holes

string theory provides a microscopic description of black holes in terms of strings, D-

branes, and other string solitons. While extremal black holes correspond to ground

states of brane configurations, non-extremal black holes correspond to excited states.

Since our class of solutions contains the five-dimensional STU model, which occurs as

a subsector in various string compactifications, it is natural to use these models to

investigate the microscopic interpretation of our solutions.

3.2. The STU model and IIB string theory on T 5

The five-dimensional STU model is based on the Hesse potential

V = − log(σ1σ2σ3) = − log σ1 − log σ2 − log σ3 .

It describes two vector multiplets coupled to supergravity and arises (together with

hypermultiplets which can be truncated out consistently) as the classical limit of

the compactification of the heterotic string on K3 × S1 with instanton numbers
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(12 − n, 12 + n), where n = 0, 1, 2 [53]. Furthermore, it arises as a universal subsector

in compactifications with N = 4 and N = 8 supersymmetry, in particular in type-II

compactifications on T 5, as reviewed in [47]. Let us first collect the relevant formulae:

The five-dimensional line element is given as

ds2
(5) = −e2σ̃dt2 + e−σ̃ds2

(4)

= − W

(H1H2H3)2/3
dt2 + (H1H2H3)

1/3
[
W−1dρ2 + ρ2dΩ2

(3)

]
,

and the five-dimensional scalars hI are given by

hI = e−σ̃σI =

(
HJHK

H2
I

)1/3

,

where I, J, K are pairwise distinct. The limit on the inner horizon is:

hI
ρ→0

//
(

qJqK

q2
I

)1/3

.

The same solution was found in [21, 47], using the results of [50], by compactification of

the type-IIB string theory on T 5. One particular realization is a system which carries

integer D1-brane charge Q1, integer D5-brane charge Q5 and integer momentum N along

the D1-brane. These charges can be expressed in terms of the string coupling g, the radii

R5, . . . , R9, the non-extremality parameter c and three ‘boost parameters’] α1, α5, αN

as follows:

Q1 =
V

g
c sinh(2α1) , Q5 =

1

g
c sinh(2α5) , QN =

R2V

g
c sinh(2αN) ,

where V = R5R6R7R8 and R = R9. Since the underlying brane configuration consists

of D1 branes oriented along the x9 direction within the D5 world volume, the moduli

are the radius R = R9, the volume V of the torus spanned by the other four compact

directions, and the string coupling.

In [47] the extremal limit is performed by sending c → 0, and the boost parameters

αI → ∞, while keeping the brane charges QI and the moduli g, R, V constant.

To relate this to our solutions, we note that harmonic functions in [47] take the

form

HI = 1 +
2c sinh αI

ρ2
.

Matching this with our parametrization††

HI = σI(∞) +
qI

ρ2
,

we observe that in [47] the constant terms are normalized to 1, which has the effect that

the moduli dependence is scaled into the 1
ρ2 term. To understand the relation between

] The original notation in [47] is α, γ, σ, and QN is denoted N . Also note that in comparison to [47]
r2
0 = 2c.
††We now let the indices I take values I = 1, 5, N instead of 1, 2, 3.
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the brane charges QI and our inner horizon charges qI it is sufficient to set σI(∞) = 1.

Then

qI = c sinh2(αI) ,

and using this we find:

Q1 = 2
V

g

√
qI(qI + c) , Q5 = 2

1

g

√
qI(qI + c) , QN = 2

R2V

g2

√
qI(qI + c) . (51)

Thus for fixed moduli V, R, g the charges QI and qI are proportional, up to higher order

terms in c. From the microscopic point of view it is natural to perform the extremal

limit such that the integer valued charges QI are kept fixed. Then qI and q̃I are not

constant, but the extra terms are subleading in c.

For completeness we mention that in the non-extremal case the integer valued

charges do not count the total numbers of D1 branes, D5 branes and quanta of

momentum, but the differences in the numbers of branes and anti-branes, and of left-

and right moving momenta. Non-extremal black holes can be interpreted as systems of

branes and anti-branes, and, surprisingly, the resulting formulae for mass and entropy

look like those of a non-interacting system [18, 19, 47]. It should be interesting to

investigate whether the ‘dressed attractor mechanism’ described above can shed some

light onto such systems and, possibly, onto their dynamical evolution towards the

extremal limit.

3.3. The universal solution

Let us now return to the general class of models, where we do not make any additional

assumptions about the scalar metric. We can still find a solution by imposing (46)

4c2AJAK − BJBK + q̃J q̃K = 0 ,

but in order to solve the original constraint (45) this must now hold for all values for J

and K. Already the equations where J = K fix n constants. For example we can solve

for the BJ in terms of AJ and the charges q̃I :

BJ =
√

q̃2
J + 4c2A2

J .

The remaining equations, where J 6= K, can only be solved if we take AI ∝ q̃I , which

in turn implies that BI ∝ q̃I . The possible solutions can be parametrized in the form

AJ = µq̃J , BK = q̃K

√
1 + 4c2µ2 ,

where µ is a parameter which reflects that the overall normalization of AJ , BK relative

to the charges is not fixed by the constraint.

Writing the solution in the form

σI(ρ) =
HI(ρ)

W 1/2(ρ)
, HI(ρ) = σI(∞) +

qI

ρ2
,

we find

AI = σI(∞) = µq̃I , qI =
1

2
q̃I

(√
1 + 4c2µ2 − 2cµ

)
.
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Therefore the harmonic functions HI are proportional to one another,

H1 ∝ H2 ∝ · · · ∝ Hp ∝ H = 1 +
q

ρ2
,

and the solution can be expressed in terms of two independent functions W (ρ) and

H(ρ). This implies that the metric takes the Reissner-Nordstrom form, and that the

five-dimensional scalars are constant. In the previous section we derived this for diagonal

models, but it remains valid here because we only need to use the homogeneity properties

of the scalar metric. Since all harmonic functions are proportional, we are effectively

dealing with homogeneous functions of one variable, which are determined, up to overall

normalization, by their degree.

In particular, the dual scalars σI are homogeneous functions of degree −1 of the

scalars σI . Given that the universal solution takes the form σI ∝ HW−1/2, it follows

that σI ∝ H−1W 1/2. The prepotential is homogeneous of degree p, and therefore

V̂(σ) ∝ W p/2H−p ,

which implies that the line element takes the Reissner-Nordstrom form. The five-

dimensional scalars hI are homogeneous of degree zero in the harmonic function, and

therefore must be constant if the harmonic functions are proportional.

This also clarifies the role of the parameter µ. When lifting to five dimensions we

impose the normalization condition

eσ̃(ρ) = W 1/2

V̂(H(ρ))1/p ρ→∞
// 1 .

This is a condition on the asymptotic four-dimensional scalars σI(∞) = µq̃I, which for

the universal solution are proportional to the charges. Therefore the parameter µ needs

to be used to normalize the five-dimensional metric. In the four-dimensional set-up, µ

is not fixed and encodes the relation between the five-dimensional and four-dimensional

Newton constant.

3.4. Block-diagonal models

There are intermediate cases where the Christoffel symbols ∂Ia
JK simultaneously assume

block-diagonal form, or can brought to this form, by a linear transformation. For

concreteness, suppose that the indices split into two subsets

1 ≤ J1, K1 ≤ m , m < J2, K2 ≤ n ,

such that ∂Ia
I1J2 = 0 for all I. Then we obtain a solution of (45) by imposing (46) for

J = K, J1 6= K1 and J2 6= K2, but we do not need to impose it if J and K belong to

different blocks.

The ‘diagonal’ constraints imply

BJ =
√

q̃J + 4c2A2
J .

But since there are no ‘off-diagonal’ constraints if I and J belong to different blocks,

we obtain

AJk
= µkq̃Jk

, BJk
= q̃Jk

√
1 + 4c2µ2

k ,
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where k = 1, 2. As a result only harmonic functions belonging to the same block must

be proportional to one another:

H1 ∝ · · ·Hm ∝ H1 , Hm+1 ∝ · · ·Hn ∝ H2 ,

and the solution depends on three independent harmonic functions W,H1,H2. After

lifting to five dimensions one combination of the parameters µ1 and µ2 is fixed by

normalizing the metric at infinity. There remains one undetermined parameter which

allows to vary the value of one five-dimensional scalar field at infinity.

For models with a larger number of blocks the number of undetermined moduli

at infinity and hence of non-constant scalar fields increases. If the Christoffel symbols

decompose into k blocks, then k−1 five-dimensional scalars can be non-constant. While

k = 1 corresponds to the universal solution, where all scalars are constant, k = n

corresponds to diagonal models, where all n − 1 five-dimensional scalars can be non-

constant.

Block-diagonal Christoffel symbols with two blocks occur when the Hesse potential

takes the form

V = −1

p
log
(
V̂1(σ

1, . . . , σm)V̂2(σ
m+1, . . . , σn)

)
,

where V1 and V2 are homogeneous functions of degrees r and s, where r+s = p. A higher

number of blocks occurs when the Hesse potential factorizes into more homogeneous

factors, and the extreme case of a diagonal model occurs for complete factorization into

factors of degree one, V̂I ∝ σI .

Of course we expect that even for generic models solutions exist, where all scalars

are non-constant, because such solutions exist in the extremal limit. However the

solutions which we have constructed explicitly in this article only have a limited number

of non-constant scalar fields. Metrics where the prepotential factorizes into independent

homogeneous factors are in particular product metrics and therefore rather special. Thus

it is important to make progress by finding more general solutions for models without

block structure.

4. Conclusions and Outlook

In this paper we have demonstrated that non-extremal black hole solutions can be

obtained from extremal ones by a universal deformation which works for a class matter

couplings which generalizes those of five-dimensional vector multiplets. While the class

of models for which explicit solutions were obtained happens to be based on symmetric

spaces, the relevant features for obtaining solutions were given by the generalized special

geometry, through the existence of a potential together with homogeneity properties.

What played a crucial role, however, was the factorization of the target space into two-

dimensional spaces with simple geodesics, as is clear from the fact that the number of

explicit solutions that we could obtain is correlated with the number of blocks into which

the scalar metric can be decomposed. Therefore we expect that further progress will
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require a more detailed understanding of geodesics in generalized special real manifolds.

Since the general analysis of the field equations allows the presence of an extra term in

the contracted scalar field equation (41), which vanishes for diagonal models, this term

is likely to come into play for non-diagonal models. It is encouraging that the geometry

obtained by reducing the black hole space-time with respect to time, the time-reduced

Reissner-Nordstrom metric, is completely fixed and independent of the matter sector.

The other feature which we observed, and which works universally in diagonal models,

is that the non-extremal solution is obtained by dressing the metric and the scalar fields

by an additional harmonic function. Since this is closely related to the homogeneity

properties of the scalar manifold, which also hold for non-diagonal models, we expect

that progress can be made without assuming that the target space is a symmetric

space. The problem of solving the field equations amounts to constructing a harmonic

map from the reduced space time into the target space. For spherically symmetric

solutions this reduces to constructing geodesic curves. The difference between extremal

and non-extremal solutions is that the former correspond to null geodesics while the

later ones correspond to space-like geodesics. A further difference, which is obscured

by the reduction to the radial coordinate, but manifest as long as we only reduce over

time, is that for extremal solutions the time-reduced geometry is flat, while for non-

extremal solutions it is only conformally flat.‡ This shows how the harmonic map gets

deformed when making solutions non-extremal: the geometry of the reduced space-time

is modified by a conformal factor, which forces the geodesic to become non-null, and this

manifests itself through the dressing of the solution by an additional harmonic function.

Upon reduction to the radial coordinate the conformal factor of the reduced space-time

becomes encoded in the relation between the standard radial coordinate ρ and the affine

curve parameter τ of the geodesic. None of these observations are specific to diagonal

models, and thus we expect that the general class of models can be understood by

digging deeper into the geometry of the harmonic map.

It should also be instructive to relate our work to approaches based on first order

flow equations and integrability [32, 33, 34, 35, 17, 36, 37, 38]. Flow equations and

harmonic functions are intimately related. In [41] the reduction of the harmonic equation

to a first order equation was shown to be the result of the existence of n conserved

charges. While this was done for extremal solutions only, the argument should carry over

to the non-extremal solutions considered here, because in terms of the radial variable ρ

the solution for the five-dimensional scalar fields remains the same. The non-extremal

deformation is fully encoded in the modified relation between the radial variable ρ and

the affine parameter τ . This is interesting, because the argument given in [41] does

not require the target space to be symmetric, but only the existence of n isometries.

The approach via symmetric spaces is closely related to integrability and the Hamilton-

Jacobi formalism. The latter is used in order to identify adapted parametrizations of

the field equations. Our approach uses geometrical considerations in order to arrive

‡ Here we use that any spherically symmetric metric can be brought to isotropic form [55].
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directly at such a parametrization, given by the dual scalar fields σI and the affine

curve parameter τ . For extremal black holes this was briefly investigated in [41], and

we plan to explore this more systematically in the future.

In this paper we have restricted ourselves to static, five-dimensional black holes.

The extension to various other types of solutions should be interesting to investigate.

Since supersymmetry does not play an immediate role, the adaptation of our results

to dimensions other than four is straightforward and amounts to adjusting numerical

factors. However, by working in five dimensions we have restricted ourselves to

electric charges, while in four dimensions generic charged black holes carry both electric

and magnetic charge. Applying dimensional reduction to this case leads to a more

complicated target space geometry, with an isometry group which is solvable (of

Heisenberg group type) rather than abelian, as is well known from the c-map [45, 54].

We believe that this is best approached systematically by re-visiting and generalizing

the c-map, which we leave to future work. At the current stage we see no problem in

principle, and expect that the features we have observed will pertain.

In the context of Calabi-Yau compactifications, there is a fascinating interplay

between black hole attractors and the geometry of the moduli spaces of Calabi-Yau

threefolds [65]. Calabi-Yau attractors have been investigated in detail, see [66, 67]. For

models with a prepotential of the form V̂ = CIJKσIσJσK the scalar manifold M is a

special real manifold, and if the CIJK are the triple intersection numbers of a Calabi-

Yau threefold X, then M is the Kähler cone of X, i.e. M parametrizes the possible

choices of a Kähler form on X. The formalism developed in this paper allows to study

flows on the Kähler cone corresponding non-extremal solutions, while its extension

to four-dimensional black holes would allow to study such flows on the complexified

(and quantum-corrected) Kähler moduli space and on the moduli space of complex

structures. Moreover, one might ask whether the generalized special real geometries

corresponding to prepotentials with p 6= 3 (and other generalized forms of the known

special geometries) can be realized in Kaluza-Klein theories. This is currently under

investigation [68].

Other extensions naturally include the study of rotating solutions, the addition

of a cosmological constant, Taub-NUT charge (i.e. more complicated Ricci flat and

conformally Ricci flat time-reduced geometries), black strings and black rings, domain

walls and cosmological solutions. Of course there is already a large literature on all

these types of solutions, and dimensional reduction is often used as one of the tools.

For example, black ring solutions were constructed using reduction over time in [60].

However, we believe that dimensional reduction could play an even bigger role in

particular in handling generic matter sectors and organizing solutions, if the underlying

geometry of harmonic maps is fully exploited. Concerning cosmological solutions it is

interesting that we found solutions which extend to the inner horizon, because the Killing

vector becomes space-like between the horizons. Thus the scalar flow becomes a flow

in time between the horizons. The between-horizon geometry of charged, non-extremal

solution is a natural starting point for the construction of cosmological solutions of the
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S-brane type [51, 52]. Non-extremal black hole solutions can also be used to obtain

‘mirage-type’ cosmologies, where FRW cosmology is induced on branes moving in the

black hole background [16].

It has been observed that in cases where a reduction of the field equations to

first order flow equations takes place, there is a close relation between black holes

and other types of solutions including domain walls, instantons and cosmologies. The

frameworks proposed for capturing these relations are characterized by the key words

‘fake (super-)potentials’, ‘fake-’ or ‘pseudo-’Killing spinors and ‘fake supersymmetry’

[56, 57]. The ‘generalized special geometries’ used in this article are similar in spirit as

they also aim to extend techniques originally developed within a supersymmetric set-up

to more general non-supersymmetric situations. It should be interesting to explore the

relations between these frameworks. We note that the reduction over time introduces

‘variant real forms’ of special geometry, specifically the Euclidean special geometries

described in [58, 59, 46].§ Similar observations have been made with regard to maximal

supergravities, their toroidal reductions and the temporal T-dualization of type-II string

theories [61, 62, 63, 64]. This indicates a unifying pattern underlying (super-)gravity

solutions, branes, and their various mutual relations, which deserves further exploration.
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