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Abstract. We derive a generic weak lensing equation and apply it for the study of
images produced by tidal charged brane black holes. We discuss the similarities and
point out the differences with respect to the Schwarzschild black hole weak lensing,
to both first and second order accuracy, when either the mass or the tidal charge
dominates. In the case of mass dominated weak lensing, we analyze the position
of the images, the magnification factors and the flux ratio, as compared to the
Schwarzschild lensing. The most striking modification appears in the flux ratio. When
the tidal charge represents the dominating lensing effect, the number and orientation
of the images with respect to the optical axis resembles the lensing properties of a
Schwarzschild geometry, where the sign associated with the mass is opposite to that
for the tidal charge. Finally it is found that the brightness of images as a function of
image separation in the case of tidal charged black holes obeys a power-law relation
significantly different from that for Schwarzschild black holes. This might provide a
means for determining the underlying spacetime structure.
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1. Introduction

Gravitational lensing has become a useful tool in measuring certain properties of

gravitational fields ever since the beginnings of general relativity. While the initial

observations of gravitational lensing were used to verify the theoretical predictions of

general relativity, it has now been employed to study the large scale structure of the

Universe, to determine behaviour of compact stellar objects and to search for dark

matter candidates. In what follows we propose the idea that gravitational lensing might

also be used to determine which among various gravitational theories is correct. It is

already well known that the predictions of bending angles computed from Newtonian

gravity compared to those obtained from Einstein’s gravity differ by a factor of two.

Therefore using gravitational lensing a means for exploring the differences between

competing gravitational theories may well provide a technique that can be employed

to determine the dimensionality of spacetime, or the coupling of matter and fields to

the gravitational field or even to distinguishing among different formulations of gravity

theories.

In general the path taken by photons in a gravitational field provide a number of

different effects that can be measured using current state of the art telescopes. The first

and most obvious one is the production of multiple images and the relative separation

of those images. Secondly gravitational lensing can produce a change in brightness of

the images depending on how much bending a group of initially parallel rays undergoes.

Finally if the source or lensing object has a time dependency, the changes in arrival times

of light signals can provide a very accurate measurement of some spacetime properties.

In this paper, we discuss the formation of images (i.e. their location and brightness)

for some black holes that are predicted to exist in 5-dimensional brane-world theories.

By computing the bending angles and image brightness changes that can occur due

to the passage of photons past the objects described by black hole solutions of the

theory, we should be able to determine enough of the properties of the lensing object to

distinguish a general relativistic black hole from that predicted by an alternative theory.

Brane-world models have standard-model matter confined to a 3+1 dimensional

hypersurface, and gravity acting in a higher-dimensional non-compact space-time. Such

models have attracted much attention in recent years, both as candidate theories meant

to solve the hierarchy problem and predicting modified cosmological evolution [1].

Higher codimension branes were considered in connection with conical singularities [2],

[3]. For a codimension-one brane-world, matter is generated on the brane by the junction

conditions though the brane representing a discontinuity in the extrinsic curvature [4]-

[7]. Although the early expectation to replace dark energy was not met, codimension-

one brane-worlds still can produce alternative explanations for dark matter [8]-[10].

Therefore the study of localized matter configurations, in particular black hole solutions

admitted in brane-world theories became important.

Analytic black hole solutions include six-dimensional locally Schwarzschild solutions

[11]; static five-dimensional black holes localized on the brane, with the horizon decaying
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in the extra dimension and generated by energy condition violating shells [12], [13]; and

black holes with a radiating component in the extra dimension [14]. Numerically small

brane black holes (compared to the five-dimensional curvature) were shown to exist as

five-dimensional Schwarzschild solutions [15] in asymptotically five-dimensional Anti de

Sitter space-time.

The four-dimensional Schwarzschild metric can be also extended into the fifth

dimension as a black string [16], which due to the Gregory-Laflamme instability [17] can

pinch off, leading to a black cigar metric [18] (although under very mild assumptions,

classical event horizons will not pinch off [19]). Gravity wave perturbations of such a

black-string brane-world were computed in Ref. [20].

The perturbative analysis of the gravitational field of a spherically symmetric source

in the weak field limit in the original Randall-Sundrum setup (Schwarzschild black

hole on a brane embedded in Anti de Sitter five-dimensional space-time) has shown

corrections to the Schwarzschild potential scaling as r−3 [21], [22] and [23]. However if

the Schwarzschild black hole is embedded in another higher-dimensional space-time, this

scaling would not apply [24]. Both weak [25], [26] and strong [27] gravitational lensing

of various brane black holes were discussed, the topic being reviewed in Ref. [28].

The effective Einstein equation on the codimension-one brane admits a spherically

symmetric vacuum solution characterized by two parameters: the mass m and a tidal

charge q, the latter arising from the Weyl curvature of the 5-dimensional space-time in

which the brane is embedded [29]:

ds2 = − f (r) dt2 + f−1 (r) dr2 + r2
(
dθ2 + sin2 θdϕ2

)
,

f = 1 − 2m

r
+

q

r2
. (1)

For q ≤ m2 this represents a black hole with horizons given by r± = m ± (m2 − q)
1/2

.

For q < 0 only r+ is positive, therefore there is only one horizon. For q = 0 the line

element describes the Schwarzschild metric and for 0 < q ≤ m2 it is formally identical to

the general relativistic Reissner-Nordström electro-vacuum solution with electric charge

Q = q1/2. In the limit q = m2 the metric becomes extremal, such that the two horizons

coincide. For q > m2 there is no horizon at all. The metric is singular at r = 0,

thus it describes a naked singularity. It should be noted that a negative tidal charge

strengthens gravity (the horizon is outside the Schwarzschild radius 2m), such that

q < 0 contributes to the localization of gravity on the brane. A positive tidal charge

weakens gravity, both horizons lying below the Schwarzschild radius for 0 < q ≤ m2,

and obstructing the apparition of a horizon at all for q > m2.

Observations on light deflection could in principle constrain both the lensing black

hole parameters and the underlying gravitational theory. The lensing properties of a

Schwarzschild geometry were thoroughly investigated in Refs. [30], [31]. Recently in

Ref. [32] the deflection angle of light rays passing near the tidal-charged brane black

hole was computed up to the second order in the perturbation theory. The Hamiltonian

method gave identical results to the previously employed Lagrangian method [33]. The
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light deflection was derived in terms of the small parameters ε := m/b and η := q/b2.

Here b is the impact parameter, defined as the distance of the lensing object to the

straight line trajectory, which would occur in the absence of the lensing object. The

deflection angle to second order accuracy is

δ = 4ε − 3

4
πη +

15

4
πε2 − 16εη +

105

64
πη2 . (2)

A first confrontation with Solar System measurements in Refs. [32], [34] led to

constraints on q and on the brane tension λ.

Further exploring the consequences of the result (2), in the present paper we study

the formation of images and their magnification factors in the tidal charged black hole

geometry, focusing on the similarities and differences with the purely general relativistic

case.

In the case of weak lensing where the latter black hole solutions differ from standard

general relativistic black holes, we are able to develop a perturbative computation of

the bending angles and image brightnesses that can be expected when the black hole

masses produce the dominant effect. However the restriction to objects with weak tidal

charge (compared to mass) is not necessary. As long as the impact parameter or distance

of closest approach for the light ray remains large compared to a natural length scale

associated with the tidal charge, the weak field limit is maintained and tidally charged

black hole light bending effects can also be computed.

In Section 2 we study the weak lensing under quite generic circumstances. We

derive a lens equation for weak lensing, which will allow for a study of the lensing and

image formation to second order accuracy in the chosen small parameters. This lens

equation is more generic than, and reduces to, the Virbhadra-Ellis equation [31]-[35]

in a properly defined approximation. We give the explicit form of both lens equations

applied to the tidal charged black hole in the Appendix, in order to see at which order

the differences arise.

In Section 3 we employ the deflection angle (2) in our lens equation and obtain an

approximate equation for weak lensing of the tidal charged black hole in a form of a cubic

polynomial. For later comparison we also review here the lensing by Schwarzschild black

holes, which arises in our formalism to first order when the mass parameter dominates

over the tidal charge parameter.

In Section 4 we discuss the corrections in the location of the images and

magnification factors, by including the contributions quadratic in the mass parameter

and linear in the tidal charge parameter. This analysis leads to results that are similar

to the general relativistic Reissner-Nordström black hole lensing, some of them discussed

in Ref. [36]. Despite q being similar to the square of the electric charge of the Reissner-

Nordström black hole, the case of a negative tidal charge is without counterpart in

general relativity.

Section 5 contains the analysis of the case, where the tidal charge dominates over

the mass, by keeping only the first order tidal charge contribution. We determine the

image locations and the magnification factors. In Section 6 we discuss the second order
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corrections to the above case, by including contributions linear in the mass and quadratic

in the tidal charge.

We summarize our findings in the Concluding Remarks. Our choice of units is given

by G = 1 = c.

2. The lens equation

In the lensing geometry the line connecting the lensing object (L) and the observer (O)

defines the optical axis. Relative to this axis the source location (S) makes an angle

β = L̂OS from the optical axis, chosen positive by convention (such that S is always

located “above” the optical axis, see Fig 1). Due to the lensing effect however the source

appears shifted away, and this is called the image (I). The angle θ = ̂IOL indicates

the image position and it can be either positive (for images above the optical axis) or

negative (for images below the optical axis). Let us denote s =sgn θ, such that |θ| = sθ.

Finally, the deflection angle δ = ŜAI characterizes the change in the direction of light

due to the lensing object. We follow the convention that δ > 0 whenever the light is bent

towards the optical axis and δ < 0 otherwise, cf. Ref [31]. Projecting the points S and I

onto the optical axis (OL) defines the distances |LN | or Dls from the lensing object and

|ON | or Ds from the observer. The observer-lensing object distance is Dl = Ds − Dls.

From Fig 1 the angle ÂSI = π/2 + |θ| − δ. Then the sine theorem applied in the

triangle ASI reads

NI − sNS

sin δ
=

OI − OA

cos (δ − |θ|) . (3)

(We have taken into account the particularities of the configurations indicated on Fig

1 by including the sign s, whenever necessary.) By multiplying the equation (3) with

sin δ cos (δ − |θ|) /OI we obtain
(

NI

OI
− s

NS

OI

)
cos (δ − |θ|) =

(
1 − OA

OI

)
sin δ . (4)

We rewrite the left hand side by expressing sin |θ| , cos θ and tanβ from the triangles

ONI and ONS. In the second term on the right hand side we rewrite OI = Ds cos θ.

We note that the point A where the trajectory is bent is defined such that ÔAL =

ŜAL = (π − δ) /2. Then ÔLA = π/2 + |θ| + δ/2, and the sine theorem for the triangle

LAO gives

OA

cos
(

δ
2
− |θ|

) =
Dl

cos δ
2

, (5)

such that Eq. (4) becomes

0 =
2Dl

Ds
cos

(
δ

2
− |θ|

)
cos |θ| sin δ

2

+ cos (δ − |θ|) (sin |θ| − s cos |θ| tan β) − sin δ . (6)
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Figure 1. Schematic representation of typical lensing configurations. The light
emitted from the source S, is deflected by the lensing object L such that the observer
at O will see the image I . The angles β and θ represent the angles spanned by the real
and apparent directions of the source with the line connecting the observer and the
lensing object. The light is bent towards the optical axis, while it passes above (a) or
below (c) the lensing object. Case (b) refers to a repulsive interaction, which will also
be encountered in this paper as a limiting sub-case. On the figures we represent the
(positive) length of the arcs, expressed as β, |θ| = sθ, +δ for (a), (c) and −δ for (b).
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We would like to stress that this is an exact lens equation in the weak lensing

approximation, as it was obtained exclusively by trigonometric considerations, and no

power series expansions of trigonometric functions were applied.‡ We will employ Eq.

(6) to derive the approximate lensing equation to the accuracy required by our approach.

Before doing so, we comment that in the particular configuration of O, L and S

being aligned (such that β = 0) the above equation reduces to

0 = Dl sin |θ| + Dls sin(|θ| − δ) , (7)

the solution of which gives the angle for the formation of the Einstein ring:

|θ| = arctan
Dls sin δ

Dl + Dls cos δ
. (8)

The usefulness of this expression is however limited, as δ is not an observable quantity.

Secondly, we discuss the limit in which an approximate lens equation, one that is

frequently employed in the literature, arises. For this, we need to assume LA ⊥ ON

(see Fig. 1 of Ref. [30]), which introduces an error of order of the angle of deviation

from perpendicularity, which is θ − δ/2. Then to first order in ε := δ − 2 |θ| the lens

equation (6) becomes

0 = tan |θ| − s tanβ − Dls

Ds

tan |θ| − Dls

Ds

tan (δ − |θ|)

+ ε tan |θ|
(
s tanβ +

Dls

Ds

tan |θ|
)

+ O
(
ε2
)

. (9)

The expansion in ε of the term tan (δ − |θ|) contains the linear contribution ε/ cos2 |θ|.
To linear order in ε, the last term can be approximated by replacing β with its zeroth

order expression: s tanβ = tan |θ| − 2 (Dls/Ds) tan |θ|, obtaining ε (Dl/Ds) tan2 |θ|. For

small |θ|, this last contribution can be safely dropped as compared to ε/ cos2 |θ|. The

terms to keep are

0 = tan |θ| − tan (sβ) − Dls

Ds
[tan |θ| + tan (δ − |θ|)] . (10)

With a change in notation where |θ| → θV E, sβ → βV E which corresponds to the

change in the convention of which angles are defined to be positive (specifically β ≥ 0

in our approach and θV E ≥ 0 in Refs. [31]-[35]), the equation (10) is known as the

Virbhadra-Ellis lens equation. From the way it arises in our formalism, we can tell that

this equation is valid for small angles |θ| and to first order accuracy in δ − 2 |θ|. This

quantity vanishes if S, L and O are collinear (β = 0) and L is midway between S and

O. It is therefore expected, that the predictions of the more exact lens equation (6) will

differ from the predictions of Eq. (10) in asymmetric setups of S and O with respect to

L.

Since we are interested in possibly higher order contributions, characterizing the

lensing by tidal charged brane black holes and naked singularities with tidal charge, we

need to improve the level of approximation employed in Eq. (10). Therefore we start our

‡ A more general lens equation is also known for generic curved space-times [37].



Image formation in weak gravitational lensing by tidal charged black holes 8

investigations on the brane-world lensing process from the lens equation derived here,

Eq. (6) and we will employ a higher order expansion than the one leading to Eq. (10).

We have also adopted the convention β > 0 as this will turn useful in the discussion of

the second-order effects.

The lens equation (6) presented here is obtained solely from the geometry of the

paths taken by both the deflected and undeflected light rays. It relates the angles θ, β

and δ to each other through the relations among the trigonometric functions of those

angles. The lens equation in this form does not care whether the lensing carried out by

an optical instrument or a gravitational lens.

When the bending is due to gravitational effects, the deflection angle δ

(characterizing the strength of the bending) can be derived from the null geodesic

equations. For weak lensing, the deflection angle can be computed using a set of

expansion parameters that characterize the geometry of the black hole spacetime. In the

cases studied in this paper we use the mass and tidal charge divided by a characteristic

length scale. The lens equation can then be applied along with an expression for the

bending angle δ to obtain the image locations θ given a source position β.

The issue that arises is to ensure that the accuracy of the lens equation matches

the level of accuracy of the approximation in the deflection angle. If the lens equation

is accurate only to linear order in the angles and the deflection angle is good to third

order in the expansion parameters, then there is a loss of accuracy in the former that

no longer makes it suitable for higher order computations. If this is not properly taken

into account, errors will arise. On the other hand two different expressions for the lens

equations can lead to indistinguishable results if they agree to within the same order of

approximation.

3. Second order lens equation in the mass and tidal charge

In order to find the position of the images, first the expansion (2) of the deflection angle

δ should be inserted in the lens equation (6), secondly the approximations following

from the weak lensing approach are carried out. An inconvenience in proceeding this

way is that the impact parameter b = Dl sin |θ| entering in the definitions of the small

parameters ε and η depends on θ. Therefore we introduce the alternative set of small

parameters

ε̄ =
m

L
, η̄ =

q

L2
, (11)

with L = DsDl/Dls. A series expansion of Eq. (6) accurate to second order in both

small parameters gives

0 = L0 + ε̄L10 + η̄L01 + ε̄2L20 + ε̄η̄L11 + η̄2L02 . (12)

Here

L0 = cos2 θ (tan |θ| − s tanβ) ,

L10 = − 4 cos |θ|
(
s

L

Dl

tan β + cot |θ|
)

,
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L01 =
3π

4

L

Dl

cot |θ|
(
s

L

Dl

tanβ + cot |θ|
)

,

L20 =
L

4Dl

cot |θ|
[
s

L

Dl

tan β (32 cot |θ| − 15π) − 32 − 15π cot |θ|
]

,

L11 = − L2

D2
l

cos |θ|
sin2 |θ|

[
s

L

Dl
tan β (3π cot |θ| − 16) − 3π − 16 cot |θ|

]
,

L02 =
3π

64

L3

D3
l

cos |θ|
sin3 |θ|

[
s

L

Dl
tanβ (6π cot |θ| − 35) − 6π − 35 cot |θ|

]
. (13)

The zeroth order contribution L0 shows that without the black hole (m = 0 = q) there

is no deflection, θ = β.

Without the tidal charge and to first order in ε̄ we obtain the standard Schwarzschild

lensing as

0 = cos |θ|
[
cos |θ| (tan |θ| − s tanβ) − 4ε̄

(
cot |θ| + s

L

Dl
tan β

)]
. (14)

From the lensing geometry (see Fig 1, with the remark that the involved distances are

large and the deflection is relevant only for the trajectories crossing nearby the lensing

object) we can safely conclude, that β = O (θ). Assuming that ε̄ = O (θ2) (we will see

that in our approach this condition is necessary for weak lensing), to leading order we

obtain

0 = θ2 − βθ − 4ε̄ ≡ S , (15)

with the known solutions

θ1,2 =
β ±

√
β2 + 16ε̄

2
. (16)

The position of the images is represented on Fig 2. With perfect alignment of the

source, lensing object and observer along the optical axis we get the angular radius of

the Einstein ring θE = 2ε̄1/2. This verifies the correctness of our assumption on the

order of ε̄.

For a hypothetical negative lensing mass there are still two images [38], provided

the discriminant stays non-negative, thus for β2 − 16 |ε̄| ≥ 0. This time however both

images have a positive θ. At equality the two images coincide.

For a lens with axial symmetry the magnification factor (the ratio of the solid angle

subtended by the image divided by the solid angle subtended by the source) is given by

[39], [40]

µ =

∣∣∣∣∣
θ

β

dθ

dβ

∣∣∣∣∣ , (17)

where both θ and β are small angles. For a Schwarzschild lens, we substitute the images

(16) and obtain

µ1,2 =
1

4


 1

β

√
β2 + 4θ2

E +
β√

β2 + 4θ2
E

± 2


 . (18)
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Figure 2. (Colour online.) When the mass dominates over the tidal charge in the
lensing, the images arise as in the Schwarzschild case. (a) The position θ (in units
β) of the images for Schwarzschild black holes is characterized by the parameter ε̄ (in
units β2), β > 0 indicating the real position of the source. For positive mass (ε̄ > 0)
there are two images, situated above and below the optical axis. For negative mass
(ε̄ < 0) both images lie above the optical axis. The images coincide for ε̄ = −β2/16.
For each β, the negative masses with ε̄ < −β2/16 do not allow for any image. (b) θ as
function of ε̄ and β. With decreasing β, the images shrink accordingly. At β = 0, the
angle θ represents the angular radius of the Einstein ring (therefore the β = 0 section
of the surface is symmetric with respect to θ = 0).
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When β → 0

µ1,2 =
θE

2β
± 1

2
+

3β

8θE
+ O

(
β2
)

,

µ1

µ2
= 1 +

2β

θE
+

2β2

θ2
E

+ O
(
β3
)

,

θ1,2 = ± θE +
β

2
± β2

8θE
+ O

(
β3
)

, (19)

thus the magnification factors diverge, while their ratio (the flux ratio) µ1/µ2 goes to

unity. So far we have reproduced known results.

In what follows, we will discuss two novel applications:

A) The case when the tidal charge contributes to second order, thus O (η̄) < O (ε̄).

This case will be discussed to second order accuracy. (For positive tidal charge, with

the replacement q → Q2 we recover Reissner-Nordström lensing.)

B) The case when the tidal charge dominates, thus O (ε̄) < O (η̄). Here for

simplicity first we go only to first order in η̄, this being formally equivalent to dropping

all ε̄ terms. Subsequently, we will analyze the second order corrections.

In what follows, the black hole parameters will be related to O (θ) by assumptions

well justified case-by-case. Equivalently, we will investigate the weak lensing properties

of tidal charged black holes in the corresponding ranges of its parameters.

4. Mass dominated weak lensing to second order

Under the assumptions A) of Section 3 the terms ε̄η̄ and η̄2 can be dropped from the lens

equation (12). By taking as before ε̄ = O (θ2), then η̄ ≤ O (ε̄2) = O (θ4) and keeping

only the first and second order terms we obtain

0 =
S
θ

+ sγ
η̄ − 5ε̄2

θ2
, (20)

or

0 = θ3 − βθ2 − 4ε̄θ + sγ
(
η̄ − 5ε̄2

)
. (21)

where we have introduced the notation

γ =
3π

4

L

Dl
> 2.35 . (22)

With η̄ = O
(
θ≥4

)
, the last term of Eq. (21) represents a perturbation of the

Schwarzschild lensing. We look for solutions therefore in the form

θ̃ = θ1,2 [1 + T (β, γ, s, ε̄, η̄)] ,

with T θ1,2 a correction to the Schwarzschild images located at θ1,2. The solutions are

T1,2 =
sγ (η̄ − 5ε̄2)

θ1,2

(
−3θ2

1,2 + 2βθ1,2 + 4ε̄
) . (23)
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We have employed that at θ1,2 the sign s = ±1. There are two images, located at

θ̃1,2 = θ1,2 ∓A1,2 (24)

A1,2 ≡ − sθ1,2T1,2 =
γ (η̄ − 5ε̄2)

βθ1,2 + 8ε̄
. (25)

The second form of the expressions A1,2 eliminates the quadratic term in θ1,2 appearing

in Eq. (23) by using Eq. (15). By employing in the first form of A1,2 the explicit

expressions for θ1,2, and introducing the variables x± = θ̃1,2/θE, x±
0 = θ1,2/θE, y = β/θE,

also the notation dRN = γ (5ε̄ − η̄/ε̄) /4θE we recover§ Eq. (21) of Ref. [36], derived

for Reissner-Nordström black holes. Our result however also covers the negative tidal

charge case, which has no analogue in general relativity.

At perfect alignment β = 0, the second order accuracy Einstein ring appears, as

θ̃E = θE − γ

8

(
η̄

ε̄
− 5ε̄

)
. (26)

The second order correction to the Schwarzschild images and Einstein ring computed

here are of relative order O (θ), compared to the respective first order expressions, as

expected.

4.1. Magnification factors

In this subsection we compute the corrections to the Schwarzschild magnification (18).

For this we employ the second expression (24) in Eq. (17) and obtain

µ̃1,2 = µ1,2

(
1 ∓ A1,2

θ1,2

8ε̄ ± βA1,2

8ε̄ + βθ1,2

)
± θ1,2

β

A1,2 (θ1,2 ∓A1,2)

βθ1,2 + 8ε̄
. (27)

For O (β) ≈ O (θ) to leading order in θ and employing ε̄ = θ2
E/4 we are left with

µ̃1,2 = µ1,2

(
1 ∓ 2θ2

EA1,2

(2θ2
E + βθ1,2) θ1,2

)
±

A1,2θ
2
1,2

β (2θ2
E + βθ1,2)

. (28)

We show in Fig 3 the image separations, the magnifications of the two images

and their ratio for both the perturbed and Schwarzschild cases for the case where

γ (η̄ − 5ε̄2) = 10−1θ3
E. This figure is an analogue of Fig. 2.4. of Ref. [41].

The image separation slightly decreases in the perturbed case, with a difference

independent of β between the tidal charged and the Schwarzschild black holes.

The primary image magnification is negligibly affected, while the changes in the

magnification of the secondary image are more significant and lead to a lessening of

its brightness. This effect can be expected from the fact that the bending angle for the

secondary image is greater than that for the primary, and therefore creates a greater

sensitivity to changes in the the geometry. Finally, the differences in the magnification

ratios (µ̃1/µ̃2) for the two black holes are most apparent as β increases: the magnification

ratio is significantly larger in the perturbed case. From an observational point of view

such a measure should provide the best means to distinguish between the two black hole

geometries.

§ Without the index 1 on the left hand side of the respective equation, which is a typo.
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Figure 3. (Colour online.) The image separations, the magnifications of the two
images and their ratio as functions of β/θE for the perturbed case (solid lines)
as compared to the Schwarzschild case (dashed lines) for the parameter values
γ
(
η̄ − 5ε̄2

)
= 10−1θ3

E . From top to bottom at β/θE = 0.8 they are the flux ratio
µ̃1/µ̃2, the image separation (̃θ1 − θ̃2)/θE , the magnification of the primary image µ̃1

and finally the magnification of the secondary image µ̃2. The largest effect can be seen
on the flux ratios.

We have checked that in the situation where η̄ − 5ε̄2 < 0, the changes with respect

to the Schwarzschild black hole lensing will be reversed. The image separation and the

secondary image magnification increase, while the magnification ratio decreases.

5. Tidal charge dominated weak lensing to first order

Under the assumptions B) of Section 3 the lens equation (12) reduces to

0 = cos2 θ (tan |θ| − s tanβ) + η̄
3π

4

L

Dl

cot |θ|
(
cot |θ| + s

L

Dl

tanβ
)

. (29)

The expansion in θ and β to leading order yields (assuming η̄ = O (θ3), which turns out

to be the weak lensing condition for the tidal charge dominated black hole):

0 = θ3 − βθ2 + sγη̄ . (30)

Here again, without tidal charge there is no deflection (β = θ).

The tidal charge causes a small deflection, which will be discussed in what follows.

In the process we need to identify real roots of the third rank polynomial and give them

in manifestly real form. We proceed as follows. The discriminant of the third rank

polynomial on the right hand side of Eq. (30) is

∆ = sη̄γ

(
−β3

27
+

sη̄γ

4

)
. (31)
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There is one real root when ∆ > 0. This situation occurs when either sη̄ < 0 or

sη̄ > 4β3/27γ. Otherwise, when 0 < sη̄ ≤ 4β3/27γ there are three real roots (two of

them being equal, when the equality holds). The case sη̄ = 0 would mean no deflection,

thus it is excluded (we assume non-collinearity, β 6= 0). We discuss the individual cases

as follows:

Case sη̄ < 0. The polynomial (30) has one real root θη1, which is an image only if

it obeys sgn θη1 ≡ s = −sgn η̄. The real root (obtained by the Cardano formula)

θη1 =
β

3
+

2β

3
cosh ω1 > β , (32)

is positive, thus s = 1. Here we have introduced the notation

ωs =
1

3
arc cosh

(
s − 27

2

γη̄

β3

)
. (33)

This image arises due to a negative tidal charge, which has the same type of lensing

effect as the mass would have in the Schwarzschild case (Fig 1.a).

We will identify the second image θη2, which forms below the optical axis, by

analyzing the remaining two cases. Both these cases obey sη̄ > 0, thus sgn θη2 = s =sgn

η̄. They include images formed below the optical axes (s = −1) only for negative tidal

charges (Fig 1.b); and above the optical axis (s = 1) only for positive tidal charges (which

generate a repulsive, scattering effect, see Fig 1.c). As there are two sign changes in the

polynomial (30), from the generic theory of polynomials we expect an even number of

positive roots. We discuss these two cases in what follows.

Case sη̄ > 4β3/27γ. The polynomial (30) has one real root θη2. The Cardano

formula gives a negative root,

θη2 =
β

3
− 2β

3
cosh ω−1 ≤ −β

3
, (34)

therefore s = −1 holds. This is the second image due to a negative tidal charge.

Case 0 < sη̄ ≤ 4β3/27γ. The polynomial (30) has three real roots, one negative

θ
′

η2 =
β

3
+

2β

3
cos ϕ−1 ∈

β

3
[−1, 0) , (35)

(cos ϕ−1 ∈ [−1,−1/2)) and two positive

θ
′′

η2 =
β

3
+

2β

3
cos

(
ϕ1 +

2π

3

)
∈ (0, β) . (36)

θ
′′

η1 =
β

3
+

2β

3
cos

(
ϕ1 −

2π

3

)
∈ (0, β) . (37)

Here we have introduced the notation

ϕs =
1

3
arccos

(
1 − 27

2
s
γη̄

β3

)
+

2π

3
. (38)

We remark, that θ
′′
η2 < θ

′′
η1 on the whole range, with the exception of η̄ = 4β3/27γ,

where θ
′′
η1 = θ

′′
η2 = 2β/3.

The negative root θ
′
η2 corresponds to a negative tidal charge, which is the second

image corresponding to θη1 in the range of parameters covered in this case. The positive
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roots θ
′′
η1, θ

′′
η2 correspond to a positive tidal charge, which induces a scattering (a lensing

with δ < 0).

In the η̄ → 0 limit, we expect the image at β. Indeed, ωs = 0, ϕ = 2π/3, thus

θη1 → β and θ
′
η2 → 0 for η̄ < 0 (this being in perfect analogy with the behaviour of the

Schwarzschild images θ1,2 in the ε̄ → 0 limit); while θ
′′
η2 → 0 and θ

′′
η1 → β for η̄ > 0.

5.1. Summary of the image positions

For negative tidal charge we obtained two images, θη1 appearing above the optical axis,

and (depending on the magnitude of the tidal charge) either θη2 or θ
′
η2, appearing below

the optical axis. We remark here, that by the identity cosh x = cos ix one can show

that ϕ = π − iω−1 holds, such that the two expressions can be shown to be identical,

θ
′
η2 ≡ θη2. However only one of the expressions θ

′
η2 and θη2 is manifestly real, each in its

domain of validity.

For positive tidal charge we have obtained two images θ
′′
η1, θ

′′
η2 of the type

represented on Fig 1(b). The possibility to have more then one such trajectory for

a given configuration of the source, lensing object and observer is encoded in the

fact that the deflection is stronger as we approach the black hole. This is in perfect

analogy with the scattering produced by a negative mass Schwarzschild centre (a naked

singularity), discussed in Ref. [38]. Another similarity is the existence of an upper limit

η̄max = 4β3/27γ, which is the largest value capable of producing scattered images.

The image locations for the different ranges of η̄ are presented in Fig 4.

5.2. Einstein rings formed by tidal charged lenses without mass

When β = 0, Eq. (30) becomes

0 = |θ|3 + η̄γ . (39)

This has no solution for positive tidal charge. For negative tidal charge we get the

analogue of the Einstein ring at θηE = γ1/3 |η̄|1/3 .

Due to the presence of β in the denominators, the β → 0 limit cannot be obtained

directly from the analytical expressions for θη1, θη2 and θ
′
η2. We have checked, using the

l’Hospital rule that limβ→0 θη1 = − limβ→0 θη2 = − limβ→0 θ
′
η2 = θηE.

5.3. Magnification factors

The magnification factor for each of the images discussed above, namely; θη1,2, θ′η2 and

θ
′′
η1,2, respectively are found to be

µη1,2 =
2

9

√√√√ 27θ3
ηE

27θ3
ηE ∓ 4β3

(2 coshω±1 ± 1) sinh ω±1 +
(1 ± 2 coshω±1)

2

9
,(40)

µ′
η2 =

−2

9

√√√√ −27θ3
ηE

27θ3
ηE + 4β3

(2 cos ϕ−1 + 1) sin ϕ−1 +
(1 + 2 cos ϕ−1)

2

9
, (41)
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Figure 4. (Colour online.) When the tidal charge dominates over the mass in the
lensing, there are still two images, but different from the Schwarzschild case. (a)
The position θ (in units of β) of the images for tidal charge dominated black holes
characterized by the parameter η̄. For negative tidal charge (η̄ < 0) there are two
images, situated above and below the optical axis. For positive tidal charge (η̄ > 0)
both images lie above the optical axis. The images coincide for η̄ = 4β3/27γ. For
each β, the positive tidal charges with η̄ > 4β3/27γ do not allow for any image. The
colours distinguish the images obtained as distinct analytic expressions, which however
generate a globally continuous curve. (b) θ as function of η̄ and β. With decreasing β,
the images shrink accordingly. At β = 0, the angle θ represents the angular radius of
the Einstein ring (therefore the β = 0 section of the surface is symmetric with respect
to θ = 0).
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Figure 5. (Color online.) Image separations and magnifications for a negative tidal
charge dominated black hole, as functions of β/θηE . The upper and lower solid curves
plot the primary and secondary image magnification factors, respectively; their ratio
is the dashed curve; and the dotted curve is the image separation. A color change
at 3/41/3 represents the change in functional form from θη2 (left) to θ′η2 (right).The
colours match those of Fig 4.

µ
′′

η1,2 = ± 2

9

√√√√ 27θ3
ηE

−27θ3
ηE + 4β3

[
2 cos

(
ϕ1 ∓

2π

3

)
+ 1

]
sin

(
ϕ1 ∓

2π

3

)

± 1

9

[
1 + 2 cos

(
ϕ1 ∓

2π

3

)]2
, (42)

In Fig 5 we have represented the normalized image separations in units of θηE ,

the magnification factors and the flux ratios for a negative tidal charge as function

of β/θηE. The image θη2 arises for η̄ ≤ −4β3/27γ (thus −θηE ≤ −41/3β/3), such

that β/θηE ≤ 3/41/3 = 1.8899 while the image θ′η2 for −4β3/27γ ≤ η̄ ≤ 0 (thus

−41/3β/3 ≤ −θηE ≤ 0), such that β/θηE ≥ 3/41/3. By contrast, the image θη1 arises

for any η̄ ≤ 0. Therefore we have plotted (θη1 − θη2) /θηE , µη1, µη2, and µη1/µη2 in

the range β/θηE ∈
[
0, 3/41/3

]
while

(
θη1 − θ′η2

)
/θηE, µη1, µ′

η2, and µη1/µ
′
η2 in the range

β/θηE ≥ 3/41/3.

As for Schwarzschild case, the image separation and the flux ratio are monotonically

increasing functions of the source angle β, while the magnification factors decrease with

increasing β, and diverge for β → 0. Also the flux ratio goes to unity as β → 0.

The most obvious difference between the tidal charge dominated spacetime and the

Schwarzschild case is that for a fixed value of the image separation, the magnification

factors are significantly increased in the former. Unfortunately a measurement of the

individual magnification factors requires a knowledge of the unlensed source brightness.
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However if the images can be resolved to obtain their angular separation and individual

brightnesses one can compare the ratio of the magnification factors as a function of

the image separation normalized to the Einstein angle for the system. This has the

advantage of not having to refer to the unlensed source brightness and normalizes the

image separation using the characteristic lensing parameters.

Figure 6 plots the logarithm of the ratio of the primary magnification to the

secondary magnification as a function of the logarithm of the image separation divided

by the Einstein angle. For image separations greater than about 2.5 times the

Einstein angle, the ratio of the magnification factors for each image obeys a power law

relationship. Since this leads to an independence of scaling, we suggest that observations

of image brightnesses and image separations should be able to distinguish easily between

the standard Schwarzschild spacetime and that governed by higher-dimensional Weyl

curvature effects that induce the tidal charge. Given that the magnification of the

secondary image produced by the Schwarzschild lens is significantly reduced, the ratio

µ1/µ2 is much larger than that for the tidally charged lens. Thus for large image

separations one has the relation:

µ1/µ2 ≈ [∆θ/θE]κ

In the case of Schwarzschild lensing κ = 6.22± .15 where as for the tidally charged black

hole lensing one obtains κη = 2.85± .25, which gives two completely different power law

behaviours.

Therefore given a large enough number of measurements of image separations

and image brightnesses (as well as a knowledge of the characteristics of the lensing

object) such a relationship should provide a very good observational signature that

might distinguish between the lensing behaviour by the two types of black holes.

In Fig 7 we have represented the image separations
(
θ
′′
η1 − θ

′′
η2

)
/ (γη̄)1/3,

magnification factors µ
′′
η1,2 and flux ratios µ

′′
η1/µ

′′
η2 for a positive tidal charge as function

of β/ (γη̄)1/3. As the allowed positive tidal charged parameter range is 0 ≤ η̄ ≤ 4β3/27γ

(thus 0 ≤ (γη̄)1/3 ≤ 41/3β/3), the range of the variable x = β/ (γη̄)1/3 is restricted to

x ≥ 3/41/3. This is very similar to the negative mass Schwarzschild lensing, also shown

on Fig 7.

6. Tidal charge dominated weak lensing to second order

In this section we follow the method presented in section 4 for obtaining the second

order correction to the tidal charge dominated light deflection. Thus we go to second

order in η̄. The terms ε̄2 and ε̄η̄ can be dropped from the lens equation (12), being

considered of higher order. Thus the lens equation (12) reduces to

0 = cos2 θ (tan θ − tan β) − 4ε̄ cos θ
(

4γ

3π
tan β + cot θ

)

+ γη̄ cot θ
(
s cot θ +

4γ

3π
tanβ

)
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Figure 6. (Color online.) The ratio of the magnification factor of the primary and
secondary images as function of the image separation normalized to the Einstein angle,
on log-log scale, for the tidal charge dominated black hole and Schwarzschild black hole.
The tidal charged case is distinguished by the use of the η-subscript.

− γ3

9π2
η̄2 cos θ

sin3 θ

[
4γ

3π
tan β (6π cot θ − 35s) − 6π − 35s cot θ

]
. (43)

By taking η̄ = O (θ3) in accordance with the reasoning of section 5, and a higher order

mass parameter ε̄ = O
(
θ≥4

)
, the expansion in θ and β yields

0 = θ − β +
sγη̄

θ2
+U (ε̄, η̄, s, θ) ,

U = − 35sγ3

9π2

η̄2

θ4
+ U3 , (44)

where U3 represents third order terms in θ as follows

U3 = − 2θ + β

3
(θ − β)2 − 4ε̄

θ

− 2sγη̄

3
+

4γ2β η̄

3sπ θ
− 2γ3η̄2

3π θ3
+

8 γ4βη̄2

9π2θ4
. (45)

According to our assumptions the leading order term due to the mass enters here,

therefore we need to keep all other terms of this order. Note that some of these terms

differ from the respective terms arising from the Virbhadra-Ellis lens equation (10), as

can be checked from the Appendix.

We also remark, that without mass and tidal charge there is no deflection at all

(θ = β is a solution when ε̄ = η̄ = 0), as expected.

The term U represents a perturbation of the tidal charge dominated weak lensing

discussed in the previous section, Eq. (30) and is of O
(
θ≥2

)
. We look for solutions
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Figure 7. (Color online.) Image separations and magnifications for a positive tidal
charge dominated black hole (a), as functions of β/ (γη̄)1/3. The upper and lower solid
curves plot the primary and secondary image magnification factors, respectively; their
ratio is the dashed curve; and the dotted curve is the image separation. The colours
match those of Fig 4. The negative mass Schwarzschild geometry produces similar
lensing effects (b), in terms of the independent variable β/2 (−ε̄)1/2.

therefore in the form

θ̃ = θ [1 + Tη (ε̄, η̄, s, β)] . (46)

In what follows we will show that the correction term Tη is O (θ).
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6.1. Positive η̄

We look for the corrections (Tη)± (θη)± of the images (θη)± located at (32), (34). The

solutions are

(Tη)± =
(θη)

2
± U

(
ε̄, η̄, s, (θη)±

)

2γη̄ − s (θη)
3
±

. (47)

There are two images, located at
(
θ̃η

)
±

= (θη)±

[
1 + (Tη)±

]
.

6.2. Negative η̄

We look for the corrections (Tη)1.2 (θη)1,2 of the images (θη)1,2 located at (32), (34). The

solutions are

(Tη)1.2 =
(θη)

2
1,2 U

(
ε̄, η̄, s, (θη)1,2

)

2γη̄ − s (θη)
3
1,2

. (48)

There are two images, located at
(
θ̃η

)
1,2

= (θη)1,2

[
1 + (Tη)1.2

]
.

7. Concluding remarks

Using simple geometric relations we derived a generic lens equation, Eq. (6) for weak

lensing. This formula is more accurate than the Virbhadra-Ellis lens equation (as it

contains no approximations of trigonometric expressions), but reduces to it in a proper

limit (differences are to be expected in asymmetric source and observer distances with

respect to the lens).

We have applied our lens equation in the discussion of the weak lensing by tidal

charged black holes, to both first and second order accuracy in the black hole parameters,

when either the mass or the tidal charge dominates. We have carried on expansions in

the small mass and tidal charge parameters, as well as in the angles spanned by the

real and apparent positions of the sources with the optical axis. In the Appendix we

have investigated the differences between the predictions of the two lens equations. The

predictions of our lens equation (6) and of the Virbhadra-Ellis lens equation (10) coincide

in most of the cases we consider, with the notable exception of the tidal charge dominated

black hole lensing discussed to a higher accuracy in Section 6, where the Virbhadra-Ellis

lens equation would not predict (or would predict with different coefficients) some of

the higher order terms.

Although Solar System tests lead to the expected result, that light deflection by

the Sun is due to its mass, and leaves room but for a minuscule tidal charge [32],

[34], it cannot be excluded that tidal charge dominated black holes could exist on the

brane, as the tidal charge is an imprint of the Weyl curvature of the higher-dimensional

space-time, which remains unspecified for the tidal charged black hole.

In the case of mass dominated weak lensing, we found that the position of the images

is similar to the Reissner-Nordström black hole lensing, discussed in Ref. [36]. We have
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analyzed, how the image separations, the magnification factors and the flux ratios are

modified as compared to the Schwarzschild lensing by the perturbations arising from

second order mass and linear tidal charge contributions (ε̄2 and η̄, respectively). The

most striking modification appears in the ratio of the magnification factors (the flux

ratio), shown on Fig 3, which can be either increased or decreased, depending on the

sign of η̄ − 5ε̄2.

When the tidal charge dominates in the lensing behaviour, the situation is different.

The case of positive tidal charge resembles the lensing properties of a negative mass

Schwarzschild spacetime [38].

Black holes with negative tidal charge are however favoured by strengthening and

confining gravity to the brane and also by thermodynamic considerations [42]. In the

case of a dominant negative tidal charge the lensing properties are similar to those of

a positive mass Schwarzschild black hole, where the similarity is only in the number

of images lying above or below the optical axis. The actual location of the images is

different and this fact is summarized in Fig 4, which is one of the main results of this

paper.

Finally the power law dependence of the ratio of the magnification factors on the

separation of the images provides an means for observing the differences between the

Schwarzschild and tidal charged black holes. Given that the next generation of radio

telescopes will easily be able to resolve images to less than milli-arcsecond accuracy, the

different rates at which the ratio of the brightness changes should be able to provide a

significant observational signature to constrain the Weyl curvature as a substitute for

dark matter.
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Appendix A. Comparing our lens equation with the Virbhadra-Ellis lens

equation

In this Appendix we present the explicit form of our lens equation (6) and of the

Virbhadra-Ellis lens equation (10), both to fourth order in θ, adopting the minimal

assumptions ε̄ = O
(
θ≥2

)
and η̄ = O

(
θ≥3

)
, which cover all cases considered in the main

text. These particular cases can be recovered by shifting the θ-order of the parameters

ε̄ and η̄, as described at the beginning of each section, and dropping the terms, which

fall beyond the desired accuracy.

The lens equation (6) in detail reads:

0 = LHGH
0 + ε̄LHGH

10 + η̄LHGH
01 + ε̄2LHGE

20 + ε̄η̄LHGH
11 + η̄2LHGH

02 , (A.1)
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with the coefficients

LHGH
0 = (θ − β)

[
1 − (2θ + β) (θ − β)

3

]
,

LHGH
10 = − 4

θ
+

2

3

(
5 θ − 8γβ

π

)
,

LHGH
01 =

s γ

θ2
− 2sγ

3

(
1 − 2γβ

π θ

)
,

LHGE
20 = − 5sγ

θ2
− 32γ

3π θ

(
1 − 4γβ

3πθ

)
+

10sγ

3

(
1 − 2γβ

π θ

)
,

LHGH
11 =

256γ2

9π2θ3
+

16sγ2

3π θ2

(
1 − 4γβ

3πθ

)
− 128γ2

9π2θ

(
1 − 8γβ

3πθ

)
,

LHGH
02 = − 35sγ3

9π2θ4
− 2γ3

3π θ3

(
1 − 4γβ

3πθ

)
+

35sγ3

27π2θ2

(
1 − 4γβ

πθ

)
. (A.2)

The Virbhadra-Ellis lens equation (10) gives:

0 = LV E
0 + ε̄LV E

10 + η̄LV E
01 + ε̄2LV E

20 + ε̄η̄LV E
11 + η̄2LV E

02 . (A.3)

The coefficients in (A.3) are:

LV E
0 = (θ − β)

(
1 +

θ2 + β2 + θβ

3

)
,

LV E
10 = − 4

θ
− 14θ

3
,

LV E
01 =

s γ

θ2
+

4sγ

3
,

LV E
20 = − 5sγ

θ2
+

64γ

3πθ
− 20sγ

3
,

LV E
11 =

256γ2

9π2θ3
− 32sγ2

3π θ2
+

128γ2

3π2θ
,

LV E
02 = − 35sγ3

9π2θ4
+

4γ3

3π θ3
− 175sγ3

27π2θ2
. (A.4)

One can see, that all coefficients are different in the two approaches by terms, which in

the lens equations are of order O
(
θ≥3

)
. We conclude, that the two lens equations agree

only at θ2 order.
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