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One of the most challenging questions in fluid dynamics is whether the incompressible threedimensional (3D) Navier-Stokes equations can develop a finite-time singularity from smooth and bounded initial data. It is well-known that global regularity of the incompressible Navier-Stokes equations is still wide open even in the axisymmetric case with general non-trivial swirl, although this case appeared more tractable than the full three-dimensional problem due to special features. In this paper, we prove that the blowup of the solutions of the 3D Navier-Stokes equations in the axisymmetric case with general non-trivial swirl can not occur at the time T if the scale-invariant quantity inf

sufficiently small, where Γ = ru θ . To get our result, we use some results of recent works on the stabilizing effect of the convection term in the 3D incompressible Navier-Stokes equations and the interaction between the swirling velocity and the angular vorticity fields. We show also that our regularity criterion is less restrictive than those involved in the recent papers.

Introduction

The study of the incompressible Navier-Stokes in three space dimensions has a long history. For a long time ago, a global weak solution u ∈ L ∞ (0, ∞; L 2 (R 3 )) 3 and ∇v ∈ L 2 (R 3 ×(0, ∞)) 3 to the Navier-Stokes equations ( 2)-(3) was built by Leray [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF]. In particular, Leray introduced a notion of weak solutions for the Navier-Stokes equation, and proved that, for every given v 0 ∈ L 2 (R 3 ) 3 , there exists a global weak solution u ∈ L ∞ ([0, +∞[; L 2 (R 3 )) 3 ∩ L 2 ([0, ∞[; Ḣ1 (R 3 )) 3 . Hopf has proved the existence of a global weak solution in the general case R d , d ≥ 2, [START_REF] Hopf | Über die Anfangwertaufgabe für die hydrohynamischen Grundgleichungen[END_REF]. Several ways are known to construct weak solution ( [START_REF] Galdi | Monotonic decreasing and asymptotic behaviour of the kinetic energy for weak solutions of the Navier-Stokes equations in exterior domains[END_REF][START_REF] Heywood | The Navier-Stokes equations, on the existence, regularity and decay of solutions[END_REF][START_REF] Galdi | An introduction to the Navier-Stokes Initial-Boundary Value Problem[END_REF]), but the regularity and the uniqueness of this weak solution remained yet open in the general case, till now in spite of great efforts made (see [START_REF] Furioli | Unicité dans L 3 (R 3 ) et d'autres espaces fonctionnels limites pour Navier-Stokes[END_REF][START_REF] Giga | Weak and Strong Solutions of the Navier-Stokes Initial Value Problem[END_REF][START_REF] Monniaux | Unicité dans L d des solutions du système de Navier-Stokes : cas des domaines lipschitziens[END_REF][START_REF] Lions | Sur la régularité et l'unicité des solutions turbulentes des équations de Navier-Stokes[END_REF][START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF][START_REF] Serrin | On the interior regularity of weak solutions of the Navier-Stokes equations[END_REF][START_REF] Wahl | Regularity of weak solutions of the Navier-Stokes equations[END_REF][START_REF] Giga | Weak and Strong Solutions of the Navier-Stokes Initial Value Problem[END_REF][START_REF] Iskauriaza | L 3,∞ -solutions of Navier-Stokes equations and backward uniqueness[END_REF][START_REF] Serrin | The initial value problem for the Navier-Stokes equations, Nonlinear problems[END_REF][START_REF] Sohr | The Navier-Stokes Equations. An Elementary Functional Analytic Approach, Birkhaüser Advanced Texts[END_REF][START_REF] Beirão | A new regularity class for the Navier-Stokes equations in R n[END_REF][START_REF] Constantin | Direction of Vorticity and the Problem of Global Regularity for the Navier-Stokes Equations[END_REF][START_REF] He | Regularity for solutions to the Navier-Stokes equations with one velocity component regular[END_REF]). In two dimensions, the existence of classical solutions has been known for a long time ago (see [START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Flows (2nd edition)[END_REF][START_REF] Lions | Un théorème d'existence et d'unicité dans les équations de Navier-Stokes en dimension 2[END_REF][START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires[END_REF][START_REF] Temam | Navier-Stokes Equations[END_REF]). Thus a natural question, namely what can be said about the 3D axisymmetric flow, appears. Axisymmetric flow is an important subject in fluid dynamics and has become standard textbook material as a starting point of theoretical study for complicated flow patterns. Although the number of independent spatial variables is reduced by symmetry, some of the essential features and complexities of generic 3D flows remain. For example, when the swirling velocity is nonzero, there is a vorticity stretching term present. The first results in the existence of classical solutions were obtained in the late sixties for 3D axisymmetric flow without swirl (see [START_REF] Ladyzhenskaya | On the unique global solvability of the Cauchy problem for the Navier-Stokes equations in the presence of the axial symmetry[END_REF], [START_REF] Uchovskii | Axially symmetric flows of an ideal and viscous fluid in the whole space (in Russian[END_REF]) and later also in [START_REF] Leonardi | On axially symmetric flows in R 3[END_REF]. In the case of 3D axisymmetric flow with swirl, the question of finite time blow-up of solutions remained a challenging open problem in spite of tremendous efforts made (see [START_REF] Chae | On the regularity of the axisymmetric solutions of the Navier-Stokes equations[END_REF][START_REF] Neustupa | Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component[END_REF][START_REF] Neustupa | An interior regularity criterion for an axially symmetric suitable weak solution to the Navier-Stokes equations[END_REF][START_REF] Chen | Lower Bound on the Blow-up Rate of the Axisymmetric Navier-Stokes Equations[END_REF][START_REF] Chen | Lower bound on th blow-up rate of the axisymmetric Navier-Stokes equations II[END_REF][START_REF] Hou | Dynamic Stability of the 3D Axi-symmetric Navier-Stokes Equations with Swirl[END_REF][START_REF] Seregin | On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations[END_REF][START_REF] Hou | Global Regularity of the 3D Axi-symmetric Navier-Stokes Equations with Anisotropic Data[END_REF][START_REF] Lei | Structure of solutions of 3D Axi-symmetric Navier-Stokes Equations near Maximal Points[END_REF][START_REF] Gallagher | Existence et unicité pour le système de Navier-Stokes axisymétrique[END_REF][START_REF] Lei | A Liouville Theorem for the Axially-symmetric Navier-Stokes Equations[END_REF][START_REF] Koch | Liouville theorems for the Navier-Stokes equations and applications[END_REF]). In several recent papers ( [START_REF] Hou | On the Stabilizing Effect of Convection in 3D Incompressible Flow[END_REF][START_REF] Hou | On the Partial Regularity of a 3D Model of the Navier-Stokes Equations[END_REF][START_REF] Hou | Dynamic Stability of the 3D Axi-symmetric Navier-Stokes Equations with Swirl[END_REF][START_REF] Hou | Global Regularity of the 3D Axi-symmetric Navier-Stokes Equations with Anisotropic Data[END_REF]), two systems of equations are proposed in order to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. By exploiting the special structure of the nonlinearity of the equations, the authors prove the global regularity of the three-dimensional Navier-Stokes equations for a family of initial data. Furthermore, in more recent activities, regularity results for axi-symmetric solutions of the 3D Navier-Stokes are obtained under the assumption that some scale-invariant quantities remain finite (but not necessarly small). Indeed in [START_REF] Chen | Lower bound on th blow-up rate of the axisymmetric Navier-Stokes equations II[END_REF][START_REF] Chen | Lower Bound on the Blow-up Rate of the Axisymmetric Navier-Stokes Equations[END_REF] it was proven that suitable axially symmetric solutions bounded by Cr -1+ǫ (t 0t) -ǫ 2 with 0 ≤ ǫ ≤ 1 are smooth at time t 0 , here r is the distance from a point x to the z-axis. Similar results were also obtained in [START_REF] Lei | Structure of solutions of 3D Axi-symmetric Navier-Stokes Equations near Maximal Points[END_REF][START_REF] Lei | A Liouville Theorem for the Axially-symmetric Navier-Stokes Equations[END_REF] and a local version in [START_REF] Seregin | On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations[END_REF].

In [START_REF] Lei | Criticality of the axially symmetric Navier-Stokes equations[END_REF] it was proven that there exists a constant C > 1 such that if there exists R ∈ [0, 1 2 ] such that sup

t∈[0,T [ Γ(t)1 {r≤R} L ∞ ≤ C 1 | ln R| -2
then the solutions of the 3D Navier-Stokes equations in the axisymmetric case with general non-trivial swirl and a viscosity ν of one can not blow up at the time T , where Γ(x, t) = ru θ (r, t), here u θ is the swirl component of u and

r = |x ′ | with x ′ ∈ R 2 such that x ≡ (x ′ , z) ∈ R 3 .
Later in [START_REF] Wei | Regularity criterion to the axially symmetric Navier-Stokes equations[END_REF], the previous result have been improved in the sense that if there exists R ∈ [0, 1 2 ] such that sup

t∈[0,T [ Γ(t)1 {r≤R} L ∞ ≤ C 1 | ln R| -3 2
then the solutions of the 3D Navier-Stokes equations in the axisymmetric case with general non-trivial swirl and a viscosity ν of one can not blow up at the time T . In this paper, from our Theorem 5.1, we obtain that the blowup of the solutions of the 3D Navier-Stokes equations in the axisymmetric case with general non-trivial swirl and a viscosity ν of one can not occur at the time T if the scale-invariant quantity inf

R>0 sup t∈[0,T [ Γ(t)1 {r≤R} L ∞ is
smaller than a certain absolute constant. We draw attention to the fact that our regularity criterion is less restrictive than those involved in [START_REF] Chen | Lower Bound on the Blow-up Rate of the Axisymmetric Navier-Stokes Equations[END_REF][START_REF] Chen | Lower bound on th blow-up rate of the axisymmetric Navier-Stokes equations II[END_REF][START_REF] Lei | Structure of solutions of 3D Axi-symmetric Navier-Stokes Equations near Maximal Points[END_REF][START_REF] Lei | A Liouville Theorem for the Axially-symmetric Navier-Stokes Equations[END_REF][START_REF] Seregin | On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations[END_REF], indeed under their assumptions we infer that Γ(x, t) is Hölder continuous at (r, t) ≡ (0, T ) uniformly (see section 5 in [START_REF] Chen | Lower bound on th blow-up rate of the axisymmetric Navier-Stokes equations II[END_REF], Theorem 3.1 in [START_REF] Chen | Lower Bound on the Blow-up Rate of the Axisymmetric Navier-Stokes Equations[END_REF], see also Theorem 1.1 for [START_REF] Lei | A Liouville Theorem for the Axially-symmetric Navier-Stokes Equations[END_REF]). Then, for any ǫ > 0, we infer that there exists

t ǫ ∈ [0, T [ and R ǫ > 0 such that for all t ∈ [t ǫ , T [ and 0 < R ≤ R ε , (Γ(t) -Γ(t ǫ ))1 {r≤R} L ∞ ≤ ǫ 2 and by setting Rǫ = ǫ 2(1 + u L ∞ (R 3 ×[0,tǫ]) )
we get that for all t ∈ [0, t ǫ ] and for all 0

< R ≤ Rǫ , Γ(t)1 {r≤R} L ∞ ≤ Rǫ u(t) L ∞ ≤ ǫ 2 .
Then by taking Rǫ = min{R ǫ , Rǫ }, we infer that for all t ∈ [0, T [, Γ(t)1 {r≤ Rǫ} L ∞ ≤ ǫ and then we infer that for any ǫ > 0, inf

R>0 sup t∈[0,T [ Γ(t)1 {r≤R} L ∞ ≤ ǫ which means that inf R>0 sup t∈[0,T [ Γ(t)1 {r≤R} L ∞ = 0.
Then, we conclude that the regularity criteria involved in [START_REF] Chen | Lower Bound on the Blow-up Rate of the Axisymmetric Navier-Stokes Equations[END_REF][START_REF] Chen | Lower bound on th blow-up rate of the axisymmetric Navier-Stokes equations II[END_REF][START_REF] Lei | Structure of solutions of 3D Axi-symmetric Navier-Stokes Equations near Maximal Points[END_REF][START_REF] Lei | A Liouville Theorem for the Axially-symmetric Navier-Stokes Equations[END_REF][START_REF] Seregin | On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations[END_REF] imply that inf

R>0 sup t∈[0,T [ Γ(t)1 {r≤R} L ∞ =
0 which prove that their regularity criteria are more restrictive than our criterion. We draw also attention to the fact that our regularity criterion is less restrictive than those involved in [START_REF] Lei | Criticality of the axially symmetric Navier-Stokes equations[END_REF][START_REF] Wei | Regularity criterion to the axially symmetric Navier-Stokes equations[END_REF] since to get non blowup of the solutions, we require only that there exists R > 0 such that sup

t∈[0,T [ Γ(t)1 {r≤R} L ∞ ≤ γ 0 where γ 0 > 0 is an absolute constant.
Moreover, our criterion is bounded by Γ 0 L ∞ thanks to [START_REF] He | Regularity for solutions to the Navier-Stokes equations with one velocity component regular[END_REF], this feature eases the numerical detection of potential blowup of the solutions.

To obtain this result, we have been able to show the following energy estimate on [0, T [:

d dt 1 3 u 1 (t) 3 3 + 1 2 ω 1 (t) 2 2 + 8 9 -C(1 + Γ(t)χ {r≤R} 2 L ∞ ) Γ(t)χ {r≤R} L ∞ ∇|u 1 (t)| 3 2 2 2 + 1 2 ∇ω 1 (t) 2 2 ≤ C Γ 0 L ∞ R 2 1 + Γ 0 2 L ∞ u 1 (t) 3 3 , (1) 
where u 1 = u θ r , ω 1 = ω θ r and Γ = ru θ . Then, the paper is organized as follows:

• In section 2, we recall some results known about the solutions of Navier-Stokes equations.

• In section 3, we introduce the 3D axisymmetric incompressible Navier-Stokes equations with some known results.

• In section 4, we recall some estimates on Γ.

• In section 5, we obtain an estimate on u 1 (t) 3 3 + ω 1 (t) 2 2 in Lemma 5.4 by showing inequality (1) and then we obtain our Theorem 5.1.

First, we give some notations. Some notations : For any m ∈ N * function ϕ defined on R m × [0, +∞[, for all t ≥ 0, we denote by ϕ(t) the function defined on R m by x -→ ϕ(x, t). For any vector x = (x 1 , x 2 , x 3 ) ∈ R i . For any axisymmetric function f defined on R 3 , for the sake of simplicity, the value f (x) with x = (x, y, z) ∈ R 3 is denoted using coordinates cylindrical, f (r, z) with r = x 2 + y 2 . For any d ≥ 1, Ω ⊂ R d , we denote by C ∞ 0 (Ω) (resp C 0 (Ω)) the space constituted by all infinitely differentiable (resp continuous) functions with compact support in Ω. For any Ω ⊂ R d , with d ≥ 1, we denote by χ Ω , the function defined on R d , by χ Ω (x) = 1 for all x ∈ Ω and 0 elsewhere. For any R > 0, we denote by χ {r≤R} (resp χ {r≥R} ) the function defined on R + × R such that for all (r, z) ∈ R + × R, χ {r≤R} (r, z) = 1 (resp χ {r≥R} (r, z) = 1) for all r ≤ R and 0 elsewhere. The symbol denotes the integral over R 3 equal using cylindrical coordinates to

∞ 0 ∞ -∞ 2π 0
... r dθ dz dr. For any q > 1, the norm in L q (R 3 ) will be denoted by • L q and also • q . We denote A B, the estimate A ≤ C B where C > 0 is an absolute constant.

Local regularity of solution of Navier-Stokes equation

In this section, we deal with the main result on local regularity of Navier-Stokes equations in its general form. Consider the Navier-Stokes equations, (

∂u ∂t + (u • ∇)u -ν∆u + ∇p = 0, ∇ • u = 0, (2) 
in which u = u(x, t) = (u 1 (x, t), u 2 (x, t), u 3 (x, t)) ∈ R 3 , p = p(x, t) ∈ R
) 3 
Without loss of generality, in what follows, we assume that ν = 1.

Assuming u 0 ∈ H m (R 3 ) for a given m ≥ 1, thanks to the results obtained in [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], Theorem 3.5 in [START_REF] Kato | Commutator Estimates and the Euler and Navier-Stokes Equations[END_REF], Lemma 5.6 [START_REF] Galdi | An introduction to the Navier-Stokes Initial-Boundary Value Problem[END_REF], Theorem 6.1 [START_REF] Giga | Weak and Strong Solutions of the Navier-Stokes Initial Value Problem[END_REF] or the results obtained in [START_REF] Heywood | The Navier-Stokes equations, on the existence, regularity and decay of solutions[END_REF], we get that there exists a time T > 0 such that there exists an unique solution u

∈ C([0, T [; H m (R 3 )) 3 ∩ L 2 ([0, T [; H m+1 (R 3 
)) 3 to the Navier-Stokes Equations ( 2)-( 3). Due to the regularity of solution of Navier-Stokes equation, u ∈ C([0, T [; H m (R 3 )) 3 and thanks to the results obtained in [START_REF]Pop : Étude qualitatif des solutions des équations de Navier-Stokes en dimension 3[END_REF], [START_REF] Lions | Sur la régularité et l'unicité des solutions turbulentes des équations de Navier-Stokes[END_REF], we get the energy equality, in other words, for all t ∈ [0, T [,

u(t) 2 L 2 (R 3 ) 3 + 2 t 0 ∇u 2 L 2 (R 3 ) 3×3 = u 0 2 L 2 (R 3 ) . ( 4 
) Moreover if u ∈ C([0, T ]; H m (R 3 
)) 3 , then thanks to the results obtained in [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], Theorem 6.1 [START_REF] Galdi | An introduction to the Navier-Stokes Initial-Boundary Value Problem[END_REF], Lemma 6.2 [START_REF] Giga | Weak and Strong Solutions of the Navier-Stokes Initial Value Problem[END_REF], we infer that, lim sup

t→T ∇u(t) L 2 (R 3 ) 3×3 = +∞, (5) 
and thanks to Theorem 3.1.1 in [START_REF] Chemin | Perfect Incompressible Fluids[END_REF], we have also,

lim sup t→T ω(t) L 2 (R 3 ) 3 = +∞, (6) 
where ω = ∇ × u is the vorticity of u. Moreover up to the initial time, the solution of Navier-Stokes equation is smooth, u ∈ C ∞ (R 3 ×]0, T [) (see Theorem 3 and 4 in [START_REF] Heywood | The Navier-Stokes equations, on the existence, regularity and decay of solutions[END_REF], see also Lemma 5.6 and Theorem 5.2 in [START_REF] Galdi | An introduction to the Navier-Stokes Initial-Boundary Value Problem[END_REF]). We denote by ω 0 = ∇ × u 0 the vorticity of u 0 .

Axisymmetric flows

By an axisymmetric solution of the Navier-Stokes equations, we mean a solution of the equations of the form u(x, y, z, t) = u r (r, z, t)e r + u θ (r, z, t)e θ + u z (r, z, t)e z .

in the cylindrical coordinate system, where we used the basis

e r = ( x r , y r , 0), e θ = (- y r , x r , 0 
), e z = (0, 0, 1) and r = x 2 + y 2

In the above expression, u θ is called the swirl component of the velocity field u. For the axisymmetric solutions, we can rewrite the equations (2) as follows :

               ∂u θ ∂t + u r ∂u θ ∂r + u z ∂u θ ∂z = L u θ - u r r u θ , ∂u r ∂t + u r ∂u r ∂r + u z ∂u r ∂z = L u r + u 2 θ r + ∂ r p, ∂u z ∂t + u r ∂u z ∂r + u z ∂u z ∂z = ∆u z + ∂ z p, ∂ r (ru r ) + ∂ z (ru z ) = 0. ( 7 
)
For the axisymmetric vector field u, we can compute the vorticity ω = ∇ × u as follows,

ω = ω r e r + ω θ e θ + ω z e z ,
where ω r = -(u θ ) z , ω θ = (u r ) z -(u z ) r and ω z = 1 r (ru θ ) r . Moreover, the vorticity components satisfy :

           ∂ω θ ∂t + u r ∂ω θ ∂r + u z ∂ω θ ∂z = L ω θ + u r r ω θ - 2 r u θ ω r , ∂ω r ∂t + u r ∂ω r ∂r + u z ∂ω r ∂z = L ω r + ∂u r ∂r ω r + ∂u r ∂z ω z , ∂ω z ∂t + u r ∂ω z ∂r + u z ∂ω z ∂z = ∆ω z + ∂u z ∂z ω z + ∂u z ∂r ω r . (8) 
The operator L and ∆ is defined by :

∆ = ∂ 2 r + 1 r ∂ r + ∂ 2 z , L = ∆ - 1 r 2 . (9) 
One can derive evolution equations for (u θ , ω θ , ψ θ ) which completely determine the evolution of the three-dimensional axisymmetric Navier-Stokes equations [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF] once the initial condition is given (see e.g. [START_REF] Majda | Vorticity and Incompressible Flow[END_REF], [START_REF] Chae | On the regularity of the axisymmetric solutions of the Navier-Stokes equations[END_REF]) :

         ∂u θ ∂t + u r ∂u θ ∂r + u z ∂u θ ∂z = L u θ - u r r u θ , ∂ω θ ∂t + u r ∂ω θ ∂r + u z ∂ω θ ∂z = L ω θ + 1 r ∂u 2 θ ∂z + u r r ω θ , -L ψ θ = ω θ (10) 
where u r and u z can be expressed in terms of the angular component of the stream function ψ θ as follows :

u r = - ∂ψ θ ∂z , u z = 1 r ∂(rψ θ ) ∂r . ( 11 
)
We note that the incompressibility condition implies that,

∂ r (ru r ) + ∂ z (ru z ) = 0. (12) 
In [START_REF] Liu | Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation[END_REF], there are shown the equivalence between the systems of equations ( 2) and ( 10)-( 12), to mention their main result, we introduce some spaces with the same notations as in [START_REF] Liu | Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation[END_REF].

Denote by C k s the axisymmetric divergence free subspace of C k vector fields :

C k s (R 3 , R 3 ) = {u ∈ C k (R 3 , R 3 )| ∂ θ u z = ∂ θ u r = ∂ θ u θ = 0, ∇ • u = 0}
. Thanks to Lemma 2 (see also Lemma 2 ′ ) in [START_REF] Liu | Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation[END_REF], we have,

C k s (R 3 , R 3 ) = {ue θ + ∇ × (ψe θ )| u ∈ C k s (R + × R), ψ ∈ C k+1 s (R + × R)}, where C k s (R + × R) is the function space defined by, C k s (R + × R) = {f (r, z) ∈ C k (R + × R)| ∂ 2j r f (0 + , z) = 0, 0 ≤ 2j ≤ k}.
We can now define the Sobolev spaces for axisymmetric solenoidal vector fields :

Ḣ1 s (R + × R) = Completion of C 1 s (R + × R) ∩ C 0 (R + × R) with respect to • Ḣ1 (R + ×R) H k s (R + × R) = Completion of C k s (R + × R) ∩ C 0 (R + × R) with respect to • H k (R + ×R)
, where C 0 denotes the space of compactly supported functions. As mentionned in [START_REF] Hou | Global Regularity of the 3D Axi-symmetric Navier-Stokes Equations with Anisotropic Data[END_REF] and proved in [START_REF] Liu | Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation[END_REF], any smooth solution of the 3D axisymmetric Navier-Stokes equations must satisfy the following compatibility condition at r = 0 :

u θ (0, z, t) = ψ θ (0, z, t) = ω θ (0, z, t) = 0. ( 13 
)
More precisely, we have the following result, thanks to Lemma 8, Theorem 4 and Corollary 3 in [START_REF] Liu | Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation[END_REF],

Theorem 3.1. If u 0 ∈ H k (R 3 ) 3 is an axisymmetric solenoidal vector field with k ≥ 1, then there exists u 0,θ ∈ H k s (R + × R), ψ 0,θ ∈ Ḣ1 s (R + × R) with L ψ 0,θ ∈ H k-1 s (R + × R
) such that u 0 = u 0,θ e θ + ∇ × (ψ 0,θ e θ ) and there exists a time T > 0 such that u = u θ e θ + ∇ × (ψ θ e θ ) corresponds to the unique strong solution to the Navier-Stokes equations (2) in the class C([0, T [; H k (R 3 ) 3 ) where (u θ , ψ θ , ω θ ) is solution to (10)- [START_REF] Giga | Weak and Strong Solutions of the Navier-Stokes Initial Value Problem[END_REF] for the initial data (u 0,θ , ψ 0,θ , -L ψ 0,θ ) and satisfies,

ψ θ ∈ C([0, T [; H k+1 s (R + × R)), u θ ∈ C([0, T [; H k s (R + × R)), ω θ ∈ C(0, T [; H k-1 s (R + × R)).

Estimates for axisymmetric solution

In this section, we recall some estimates on the quantity Γ = ru θ . For this, it is assumed that u 0 ∈ H m is a axisymmetric solenoidal vector field, with m ≥ 2, then Theorem 3.1 holds and there exists a time T > 0 such that there exists an unique strong solution u to the Navier-Stokes equations (2) which belongs to C([0, T [;

H m (R 3 ))∩L 2 ([0, T [; H m+1 (R 3 )) with m ≥ 2 (see Section 2).
A special feature of the axisymmetric Navier-Stokes equations is that the quantity Γ = ru θ satisfies an parabolic equation on ]0, T [ with singular drift terms:

∂ t + b • ∇ -∆ + 2 r ∂ r Γ = 0 ( 14 
)
with boundary conditions,

Γ| r=0 = 0, (15) 
with initial conditions, Γ(x, 0) = Γ 0 (x) for a.e x ∈ R 3 ,

where

, Γ 0 = ru 0,θ , b = u r e r + u z e z , b • ∇ = u r ∂ r + u z ∂ z and div b = 0.
Note that in equation ( 14), the convection term has absorbed the term u r u θ r in the first equation [START_REF] Furioli | Unicité dans L 3 (R 3 ) et d'autres espaces fonctionnels limites pour Navier-Stokes[END_REF], which highlights the stabilizing effect of the convection. We remark also that Γ enjoys the maximal principle. Indeed thanks to inequality (4.6) in [START_REF] Neustupa | Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component[END_REF] (see also Proposition 1 in [START_REF] Chae | On the regularity of the axisymmetric solutions of the Navier-Stokes equations[END_REF]), we have for all q ∈ [2, ∞], for all t ∈ [0, T [,

Γ(t) L q (R 3 ) ≤ Γ 0 L q (R 3 ) . (17) 

Global regularity

In this section, we assume that u 0 ∈ H m is an axisymmetric solenoidal vector field, with m ≥ 2 and Γ 0 = ru 0,θ ∈ L 2 (R 3 ) ∩ L ∞ (R 3 ), then Theorem 3.1 holds and there exists a time T > 0 such that there exists an unique strong solution u to the Navier-Stokes equations (2) which belongs to

C([0, T [, H m (R 3 )) ∩ L 2 ([0, T [; H m+1 (R 3 
)) (see Section 2). This section is devoted to the proof of Theorem 5.1. The proof of our Theorem is obtained in three steps :

• First, thanks to the convection term, we eliminate an annoying term in [START_REF] Furioli | Unicité dans L 3 (R 3 ) et d'autres espaces fonctionnels limites pour Navier-Stokes[END_REF], u r r ω θ , by using the change of unknowns from (u θ , ψ θ , ω θ ) to (u 1 , ψ 1 , ω 1 ) (see [START_REF] Heywood | The Navier-Stokes equations, on the existence, regularity and decay of solutions[END_REF]).

• Second, thanks to Lemmata 5.2 and 5.3 , we establish in Lemma 5.4 a dynamic control of u 1 (t) 3 3 + ω 1 (t) 2 2 which reveals a dynamic interaction between the angular velocity and the angular vorticity fields.

• Third, using this dynamic control, we obtain the proof of our Theorem 5.1.

We re-write u θ and ψ θ as follows :

u θ (r, z, t) = ru 1 (r, z, t), ω θ (r, z, t) = rω 1 (r, z, t), ψ θ (r, z, t) = rψ 1 (r, z, t). ( 18 
) Since m ≥ 2, then u ∈ C([0, T [; H 2 (R 3 )) 3 ∩ L 2 ([0, T [; H 3 (R 3 
)) 3 and thanks to Lemmata 3-6 in [START_REF] Neustupa | Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component[END_REF], we deduce that,

u 1 ∈ C([0, T [; H 1 (R 3 )) ω 1 ∈ C([0, T [; L 2 (R 3 )) ∩ L 2 ([0, T [; H 1 (R 3 )). ( 19 
)
Thanks to [START_REF] Hou | On the Stabilizing Effect of Convection in 3D Incompressible Flow[END_REF] and Lemma 1 in [START_REF] Hou | Global Regularity of the 3D Axi-symmetric Navier-Stokes Equations with Anisotropic Data[END_REF] used firstly with u = ψ 1 , f = ω 1 , secondly with u = ψ 1 , f = ω 1 and using the same choice of the weight w as in Lemma 2 ( [START_REF] Hou | Global Regularity of the 3D Axi-symmetric Navier-Stokes Equations with Anisotropic Data[END_REF]), we get,

ψ 1 ∈ C([0, T [; H 2 (R 3 )) ∩ L 2 ([0, T [; H 3 (R 3 )). ( 20 
)
As in [START_REF] Hou | Dynamic Stability of the 3D Axi-symmetric Navier-Stokes Equations with Swirl[END_REF], from [START_REF] Furioli | Unicité dans L 3 (R 3 ) et d'autres espaces fonctionnels limites pour Navier-Stokes[END_REF], we derive the following equivalent system for (u 1 , ω 1 , ψ 1 ) :

               ∂ t u 1 + u r ∂ r u 1 + u z ∂ z u 1 = 2u 1 ∂ z ψ 1 (t) + ∂ 2 r u 1 + ∂ 2 z u 1 + 3 r ∂ r u 1 , ∂ t ω 1 + u r ∂ r ω 1 + u z ∂ z ω 1 = ∂ z (u 1 ) 2 + ∂ 2 r ω 1 + ∂ 2 z ω 1 + 3 r ∂ r ω 1 , -∂ 2 r ψ 1 + ∂ 2 z ψ 1 + 3 r ∂ r ψ 1 = ω 1 (21) 
where,

u r = -r ∂ψ 1 ∂z , u z = 1 r ∂(r 2 ψ 1 ) ∂r . ( 22 
)
Note that in the new system [START_REF] Hou | Dynamic Stability of the 3D Axi-symmetric Navier-Stokes Equations with Swirl[END_REF], the convection term has absorbed one of the vortex-stretching terms u r ω θ r , which originally appears in the second equation of [START_REF] Furioli | Unicité dans L 3 (R 3 ) et d'autres espaces fonctionnels limites pour Navier-Stokes[END_REF]. In some sense, the convection term has already stabilized one of the potentially destabilized vortex-stretching terms in the above reformulation. To obtain the proof of the crucial Lemma 5.4, we use Lemma 5.2 and Lemma 5.3. Lemma 5.2 depends on Lemma 5.1 which is an immediate consequence of CKN-type inequalities proved in [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF].

Lemma 5.1. There exists a constant C > 0 such that for all v ∈ C ∞ 0 ([0, +∞[\{0}) and α > 1 2 , we have,

∞ 0 |v(r)| 2 r 2(α-1) dr ≤ C ∞ 0 |v ′ (r)| 2 r 2α dr.
Here is the proof of Lemma 5.2. Lemma 5.2. There exists a constant C > 0 such that for all t ∈ [0, T [ and for all R > 0, we have,

u 1 (t) 4 4 ≤ C Γ(t)χ {r≤R} L ∞ ∇|u 1 (t)| 3 2 2 2 + C Γ 0 L ∞ R 2 u 1 (t) 3 3 . Proof. Let R > 0. Consider the cut-off function ζ defined on R + for which 0 ≤ ζ ≤ 1, ζ = 1 on [0, 1 2 ], supp ζ ⊂ [0, 1]. Now, we consider the rescaled cut-off function ζ R defined on R + by ζ R (r) = ζ r R
. For any x ∈ R 3 , we write x under the form x = (x ′ , z) where x ′ ∈ R 2 . Then, we have,

|u 1 (t)| 4 = R 3 (|u 1 (x, t)|ζ R (|x ′ |) + |u 1 (x, t)|(1 -ζ R (|x ′ |))) 4 dx ≤ 4 R 3 ( |u 1 (x, t)|ζ R (|x ′ |) ) 4 dx + 4 R 3 ( |u 1 (x, t)|(1 -ζ R (|x ′ |)) ) 4 dx ≤ 4 R 3 ( |u 1 (x, t)|ζ R (|x ′ |) ) 4 dx + 4 R 3 |u 1 (x, t)| 4 χ {|x ′ |≥ R 2 } dx.
With r = |x ′ |, we recall that Γ = ru θ and Γ 0 = ru θ (0), we notice that r 2 u 1 (t) = Γ(t), then

|u 1 (t)| 4 χ {r≥ R 2 } = |Γ(t)|χ {r≥ R 2 } r 2 |u 1 (t)| 3 ≤ 4|Γ(t)| R 2 |u 1 (t)| 3
and thanks to [START_REF] He | Regularity for solutions to the Navier-Stokes equations with one velocity component regular[END_REF], we obtain,

|u 1 (t)| 4 χ {r≥ R 2 } ≤ 4 Γ 0 L ∞ R 2 |u 1 (t)| 3 .
Therefore, we deduce for all t ∈ [0, T [,

|u 1 (t)| 4 ≤ 4 R 3 ( |u 1 (x, t)|ζ R (|x ′ |) ) 4 dx + 16 Γ 0 L ∞ R 2 R 3 |u 1 (t)| 3 . ( 23 
)
We consider u 1 (x, t) under the form u 1 (r, z, t), then we have,

(|u 1 (x, t)|ζ R (|x ′ |)) 4 = 2π ∞ -∞ ∞ 0 |u 1 (r, z, t)| 4 ζ R (r) 4 r dr dz.
For a.e z ∈ R, thanks to Lemma 5.1 used with v = (|u 1 (•, z, t)|ζ R (r)) 2 and α = 3 2 , we obtain,

∞ 0 (|u 1 (r, z, t)|ζ R (r)) 4 r dr ≤ C ∞ 0 |∂ r (|u 1 (r, z, t)|ζ R (r)) 2 | 2 r 3 dr = 4C ∞ 0 (|u 1 (r, z, t)|ζ R (r)) 2 |∂ r (|u 1 (r, z, t)|ζ R (r))| 2 r 3 dr ≤ 4C ∞ 0 |Γ(r, z, t)| |u 1 (r, z, t)| |∂ r (|u 1 (r, z, t)|ζ R (r))| 2 r dr ≤ 8C ∞ 0 |Γ(r, z, t)| |u 1 (r, z, t)|(|u 1 (r, z, t)| 2 ζ ′ R (r) 2 + ζ R (r) 2 |∂ r |u 1 (r, z, t)|| 2 ) rdr ≤ 8C ∞ 0 |Γ(r, z, t)| |u 1 (r, z, t)| 3 ζ ′ 2 L ∞ R 2 + 4 9 χ {r≤R} |∂ r |u 1 (r, z, t)| 3 2 | 2 r dr.
(24) Thanks to Inequality [START_REF] He | Regularity for solutions to the Navier-Stokes equations with one velocity component regular[END_REF], then from (24), we infer that there exists a constant

C 1 > 0 such that, ∞ 0 (|u 1 (r, z, t)|ζ R (r)) 4 r dr ≤ C 1 Γ 0 L ∞ R 2 ∞ 0 |u 1 (r, z, t)| 3 rdr + C 1 Γ(t)χ {r≤R} L ∞ ∞ 0 |∂ r |u 1 (r, z, t)| 3 2 | 2 rdr.
Therefore, we obtain,

R 3 (|u 1 (x, t)|ζ R (|x ′ |)) 4 dx ≤ C 1 Γ 0 L ∞ R 2 |u 1 (t)| 3 + C 1 Γ(t)χ {r≤R} L ∞ |∇|u 1 (t)| 3 2 | 2 . (25) 
Then, using ( 23) and ( 25), we conclude the proof.

To prove Lemma 5.4, the main Lemma in this section, we need Lemma 5.3.

Lemma 5.3. There exists a constant C > 0 such that for all

f ∈ L 2 (R 2 ) radial function such that |x| 2 f ∈ L 2 (R 2 ) and g ∈ H 2 (R 2 ), we have, R 2 f g ≤ C R 2 |x| 4 f (x) 2 dx 1 2 ∆g L 2 (R 2 ) .
Proof. Since f is a radial function, there exists ζ a real function on R + such that for a.e x ∈ R 2 ,

f (x) = ζ(|x|), (26) 
and using the change of variables with polar coordinates x = (r cos θ, r sin θ), r ∈ R + and θ ∈ [0, 2π], we obtain,

f L 2 (R 2 ) = √ 2π ζ(r)r 1 2 L 2 (R + ) , |x| 2 f L 2 (R 2 ) = √ 2π ζ(r)r 5 2 L 2 (R + ) . (27) 
Let K > 0, ζ K the real function defined on R + by ζ K (r) = ζ(r)χ {0≤r≤K} for all r ≥ 0. We introduce also φ K the real function defined on R * + for all r > 0 by,

φ K (r) = ∞ r 1 ρ ∞ ρ τ ζ K (τ ) dτ dρ. (28) 
Using successively the fact that supp ζ K ⊂ [0, K] and |ζ K | ≤ |ζ|, for all α ≥ 0 and for a.e τ > 0, we get,

|τ ζ K (τ )| = τ 1 2 -α |τ α+ 1 2 ζ K (τ )| ≤ τ 1 2 -α K α+ 1 2 |ζ(τ )| = K α+ 1 2 τ α τ 1 2 |ζ(τ )| . (29) 
Using definition [START_REF] Ladyzhenskaya | On the unique global solvability of the Cauchy problem for the Navier-Stokes equations in the presence of the axial symmetry[END_REF], inequality [START_REF] Lei | Structure of solutions of 3D Axi-symmetric Navier-Stokes Equations near Maximal Points[END_REF], Cauchy-Schwarz inequality and ( 27), we deduce that φ K ∈ C 1 (]0, +∞[) and for all r > 0 and α > 1 2 ,

r α-1 2 |φ K (r)| ≤ K α+ 1 2 (α -1 2 ) 2π(2α -1) f L 2 (R 2 ) , r α+ 1 2 |φ ′ K (r)| ≤ K α+ 1 2 2π(2α -1) f L 2 (R 2 ) , r α |(rφ ′ K (r)) ′ | ≤ K α+ 1 2 |r 1 2 ζ(r)|. (30) 
Let us show that r

1 2 φ K ∈ L 2 ([0, +∞[) and r 3 2 φ ′ K ∈ L 2 ([0, +∞[). (31) 
Using the first inequality of (30) with α = 3 4 and α = 2, we infer respectively that r

1 4 |φ K (r)| ≤ C K f L 2 (R 2 ) and r 3 2 |φ K (r)| ≤ C K f L 2 (R 2 )
, where C K > 0 is a real depending only on K. Then, we get

+∞ 0 rφ K (r) 2 dr = 1 0 rφ K (r) 2 dr + +∞ 1 rφ K (r) 2 dr = 1 0 r 1 2 (r 1 4 φ K (r)) 2 dr + +∞ 1 1 r 2 (r 3 2 φ K (r)) 2 dr ≤ 5 3 C 2 K f 2 L 2 (R 2 ) .
Therefore, we deduce that r

1 2 φ K ∈ L 2 ([0, +∞[). It remains to show that r 3 2 φ ′ K ∈ L 2 ([0, +∞[).
Using the second inequality of (30) with α = 3 4 and α = 2, we infer respectively that r

5 4 |φ ′ K (r)| ≤ C K f L 2 (R 2 ) and r 5 2 |φ ′ K (r)| ≤ C K f L 2 (R 2 )
, where C K > 0 is a real depending only on K. Then, we get

+∞ 0 r 3 |φ ′ K (r)| 2 dr = 1 0 r 3 |φ ′ K (r)| 2 dr + +∞ 1 r 3 |φ ′ K (r)| 2 dr = 1 0 r 1 2 (r 5 4 φ ′ K (r)) 2 dr + +∞ 1 1 r 2 (r 5 2 φ ′ K (r)) 2 dr ≤ 5 3 C 2 K f 2 L 2 (R 2 ) .
Therefore, we deduce that r

3 2 φ ′ K ∈ L 2 ([0, +∞[).
By using also the third inequality of (30) with α = 3 2 and thanks to [START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Flows (2nd edition)[END_REF], we infer,

r 3 2 (rφ ′ K ) ′ ∈ L 2 ([0, +∞[). ( 32 
)
Then thanks to [START_REF] Lei | Criticality of the axially symmetric Navier-Stokes equations[END_REF] and [START_REF] Lemarié-Rieusset | Recent Developments in the Navier-Stokes Problem[END_REF], by using twice Lemma 5.1 with α = 3 2 , we deduce,

r 1 2 φ K L 2 (R + ) r 3 2 φ ′ K L 2 (R + ) = r 1 2 (rφ ′ K ) L 2 (R + ) r 3 2 (rφ ′ K ) ′ L 2 (R + ) = r 5 2 ∆φ K (r) L 2 (R + ) , (33) 
where for all r > 0, ∆φ K (r) := 1 r (rφ ′ K ) ′ . From (28), we notice,

∆φ K (r) = ζ K (r). ( 34 
)
Then, from [START_REF] Leonardi | On axially symmetric flows in R 3[END_REF], using [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], we obtain,

r 1 2 φ K L 2 (R + ) r 5 2 ζ K (r) L 2 (R + ) ≤ r 5 2 ζ(r) L 2 (R + ) . (35) 
We introduce the radial function Φ K defined on R 2 by,

Φ K (x) = φ K (|x|). (36) 
Then, we get ∆Φ K (x) = ∆φ K (|x|) and thanks to (34), we have

∆Φ K (x) = ζ K (|x|) = ζ(|x|)χ {|x|≤K} = f (x)χ {|x|≤K} .
Since, we have,

R 2 f g = R 2 f (x)χ {|x|≤K} g(x) dx + R 2 f (x)χ {|x|>K} g(x) dx ≤ R 2 f (x)χ {|x|≤K} g(x) dx + R 2 f (x)χ {|x|>K} g(x) dx .
Then, we deduce,

R 2 f g ≤ R 2 ∆Φ K (x)g(x) dx + R 2 f (x)χ {|x|>K} g(x) dx . (37) 
For the first term at the right hand side of inequality [START_REF] Lions | Un théorème d'existence et d'unicité dans les équations de Navier-Stokes en dimension 2[END_REF], using integration by parts and thanks to Cauchy-Schwarz inequality, we get,

R 2 ∆Φ K (x)g(x) dx = R 2 Φ K (x)∆g(x) dx ≤ Φ K L 2 (R 2 ) ∆g L 2 (R 2 ) . (38) 
Using the change of variables with polar coordinates, from [START_REF] Lions | Sur la régularité et l'unicité des solutions turbulentes des équations de Navier-Stokes[END_REF], we observe,

Φ K L 2 (R 2 ) = √ 2π φ K (r)r 1 2 L 2 (R + )
, then thanks to [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires[END_REF] and ( 27), we deduce,

Φ K L 2 (R 2 ) |x| 2 f L 2 (R 2 ) . (39) 
Then, using [START_REF] Liu | Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation[END_REF], from [START_REF] Liu | Convergence analysis of the energy and helicity preserving scheme for axisymmetric flows[END_REF], we deduce,

R 2 ∆Φ K (x)g(x) dx |x| 2 f L 2 (R 2 ) ∆g L 2 (R 2 ) . (40) 
For the second term at the right hand side of inequality [START_REF] Lions | Un théorème d'existence et d'unicité dans les équations de Navier-Stokes en dimension 2[END_REF], thanks to Cauchy-Schwarz inequality, we obtain,

R 2 f (x)χ {|x|>K} g(x) dx ≤ f L 2 ({x∈R 2 ,|x|>K}) g L 2 (R 2 ) . (41) 
Using ( 40) and [START_REF] Monniaux | Unicité dans L d des solutions du système de Navier-Stokes : cas des domaines lipschitziens[END_REF], from (37), we obtain,

R 2 f g |x| 2 f L 2 (R 2 ) ∆g L 2 (R 2 ) + f L 2 ({x∈R 2 ,|x|>K}) g L 2 (R 2 ) . (42) 
Since f ∈ L 2 (R 2 ), then f L 2 ({x∈R 2 ,|x|>K}) → 0 as K → ∞. Then, taking the limit in inequality [START_REF] Neustupa | Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component[END_REF] as K → ∞, we obtain,

R 2 f g |x| 2 f L 2 (R 2 ) ∆g L 2 (R 2 ) ,
which concludes the proof. Now, we turn to the proof of the main Lemma of this section.

Lemma 5.4. There exist two absolute constants γ 0 > 0 and C > 0 such that if there exists R > 0 such that,

sup t∈[0,T [ Γ(t)χ {r≤R} L ∞ ≤ γ 0 ,
then we get that for all t ∈ [0, T [,

1 3 u 1 (t) 3 3 + 1 2 ω 1 (t) 2 2 ≤ 1 3 u 1 (0) 3 3 + 1 2 ω 1 (0) 2 2 exp 3C Γ 0 L ∞ R 2 1 + Γ 0 2 L ∞ t .
Proof. We multiply the first equation of ( 21) by u 1 (t) |u 1 (t)|, integrate it over R 3 , use the incompressibility condition [START_REF] Giga | Weak and Strong Solutions of the Navier-Stokes Initial Value Problem[END_REF] and integration by parts, to obtain for all t ∈ [0, T [,

1 3 d dt u 1 (t) 3 3 + 8 9 |∇|u 1 (t)| 3 2 | 2 + 2 3 ∞ -∞ |u 1 (0, z, t)| 3 dz = 2 |u 1 (t)| 3 ∂ z ψ 1 (t). (43) 
Note that, in order to treat the convective term, we have integrated by parts and the boundary integrals have vanished at r = 0 due to the fact that u θ (0, z, t) = 0, while near r = ∞ due to the standard density argument. We observe,

|u 1 (t)| 3 ∂ z ψ 1 (t) = R R 2 |u 1 (x ′ , z, t)| 3 ∂ z ψ 1 (x ′ , z, t)dx ′ dz. (44) 
Thanks to [START_REF] Hou | On the Stabilizing Effect of Convection in 3D Incompressible Flow[END_REF], [START_REF] Hou | On the Partial Regularity of a 3D Model of the Navier-Stokes Equations[END_REF] and Lemma 5.3, there exists a constant C 0 > 0 such that for a.e z ∈ R,

R 2 |u 1 (x ′ , z, t)| 3 ∂ z ψ 1 (x ′ , z, t)dx ′ ≤ C 0 |x ′ | 2 |u 1 | 3 (•, z, t) L 2 (R 2 ) ∇ 2 x ′ (∂ z ψ 1 )(•, z, t) L 2 (R 2 ) . (45) 
From [START_REF]Pop : Étude qualitatif des solutions des équations de Navier-Stokes en dimension 3[END_REF], thanks to [START_REF] Seregin | On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations[END_REF] and Cauchy-Schwarz inequality, we get,

|u 1 (t)| 3 ∂ z ψ 1 (t) ≤ C 0 R |x ′ | 2 |u 1 | 3 (•, z, t) 2 L 2 (R 2 ) dz 1 2 R ∇ 2 x ′ (∂ z ψ 1 )(•, z, t) 2 L 2 (R 2 ) dz 1 2 = C 0 |x ′ | 2 |u 1 (t)| 3 L 2 (R 3 ) ∇ 2 x ′ ∂ z ψ 1 (t) L 2 (R 3 ) . (46 
) Thanks to Lemma 1 in [START_REF] Hou | Global Regularity of the 3D Axi-symmetric Navier-Stokes Equations with Anisotropic Data[END_REF] used with u = ∂ z ψ 1 (t), f = ∂ z ω 1 (t) and using the same choice of the weight w as in Lemma 2 of [START_REF] Hou | Global Regularity of the 3D Axi-symmetric Navier-Stokes Equations with Anisotropic Data[END_REF], we deduce that there exists a constant C 1 > 0 such that for all t ∈ [0, T [,

|∇ 2 ∂ z ψ 1 (t)| 2 ≤ C 1 |∂ z ω 1 (t)| 2 . ( 47 
)
Then, thanks to ( 46) and ( 47), we deduce that there exists a real C 2 > 0 such that for all t ∈ [0, T [, 

2 |u 1 (t)| 3 ∂ z ψ 1 (t) ≤ C 2 |x ′ | 2 |u 1 (t)| 3 L 2 (R 3 ) |∂ z ω 1 (t)| 2 1 2 . ( 48 
)

3 i=1 x 2

 32 3 , we denote by |x| the norm defined by |x| =

  and ν > 0 denote respectively the unknown velocity field, the scalar pressure function of the fluid at the point (x, t) ∈ R 3 × [0, ∞[ and ν > 0 the viscosity of the fluid, with initial conditions, u(x, 0) = u 0 (x) for a.e x ∈ R 3 .

  Recalling Γ = ru θ , with r = |x ′ |, we notice that |x ′ | 2 u 1 (t) = Γ(t), then |x ′ | 2 |u 1 (t)| 3 = |Γ(t)| |u 1 (t)| 2 , then from[START_REF] Sohr | The Navier-Stokes Equations. An Elementary Functional Analytic Approach, Birkhaüser Advanced Texts[END_REF], we obtain,2 |u 1 (t)| 3 ∂ z ψ 1 (t) ≤ C 2 |Γ(t)| |u 1 (t)| 2 2 ∂ z ω 1 (t) 2 |Γ(x, t)| 2 |u 1 (x, t)| 4 dx |Γ(x, t)χ {|x ′ |≤R} | 2 |u 1 (x, t)| 4 dx + R 3 |Γ(x, t)χ {|x ′ |>R} | 2 |u 1 (x, t)| 4 dx |Γ(x, t)χ {|x ′ |≤R} | 2 |u 1 (x, t)| 4 dx + |u 1 (x, t)| 3 dx,where for the last inequality we have used the fact that|Γ(x, t)χ {|x ′ |>R} | 2 |u 1 (x, t)| 4 = |Γ(x, t)χ {|x ′ |>R} | 2 |Γ(x, t)| |x ′ | 2 |u 1 (x, t)| 3where we have used energy equality (4). Now, we multiply the second equation of (8) by ω r , the third equation of (8) by ω z , integrate them over R 3 and sum the equations obtained, then we get for all t ∈ [0, T [, Thanks to Lemma 2 in[START_REF] Chae | On the regularity of the axisymmetric solutions of the Navier-Stokes equations[END_REF] and Theorem 3.1.1 in[START_REF] Chemin | Perfect Incompressible Fluids[END_REF], we deduce that there exists a constantC 2 > 0 such that for all t ∈ [0, T [, ∇u r (t) 2 ≤ C 2 ω θ (t) 2 ∇u z (t) 2 ≤ C 2 ω θ (t) 2 . (67)Furthermore, thanks to Cauchy-Schwarz inequality and Young inequality, we have for all t ∈ [0, T [, ω r (t)ω z (t) 2 ≤ ω r (t) 4 ω z (t) 4 Schwarz inequality, (67) and (68), we deduce that there exists a constant C 3 > 0 such that for all t ∈ [0, T [, Thanks to Interpolation inequality, Sobolev embedding Ḣ1 (R 3 ) ֒→ L 6 (R 3 ), we deduce that there exists a constant C 4 > 0 such for all t ∈ [0, T [, Then, thanks to (65) and (74), we deduce that lim sup t→T ω(t) 2 < +∞. However since u ∈ C([0, T ], H m (R 3 )) with m ≥ 2, then (6) holds and we thus infer a contradiction with[START_REF] Chae | On the regularity of the axisymmetric solutions of the Navier-Stokes equations[END_REF]. Therefore we obtain that for any R > 0, sup t∈[0,T [ Γ(t)χ {r≤R} L ∞ ≥ γ 0 , which concludes the proof.

	Further, we have					
	|Γ(t)| |u 1 (t)| 2 2 2 = =	R 3	≤	1 2	ω r (t) 2 4 +	1 2	ω z (t) 2 4 .	(68)
	R 3 R 3 From (66), using Cauchy-1 ≤ 2 d dt ( ω r (t) 2 2 + ω z (t) 2 2 ) +		Γ 0 R 2 3 L ∞ |∇ω r (t)| 2 + |∇ω z (t)| 2 + R 3	ω r (t) r	2	(69)
					≤ C 3 ω θ (t) 2 ( ω r (t) 2 4 + ω z (t) 2 4 ).
					≤		Γ(t) 3 L ∞ R 2	|u 1 (x, t)| 3
					≤		Γ 0	3 L ∞
									(65)
	1 2	d dt	( ω r (t) 2 2 + ω z (t) 2 2 ) +	|∇ω r (t)| 2 + |∇ω z (t)| 2 +	ω r (t) r
					≤ C 2 2 |Γ(t)| |u 1 (t)| 2 2 2 +	1 4	2 . ∂ z ω 1 (t) 2	(49)

2 = ∂ r u r (t)ω 2 r (t) + (∂ z u r (t) + ∂ r u z (t))ω r (t)ω z (t) + ∂ z u z (t)ω 2 z (t) .

(66)

R 2 |u 1 (x, t)| 3 ( thanks to [START_REF] He | Regularity for solutions to the Navier-Stokes equations with one velocity component regular[END_REF]).

Then, from [START_REF] Temam | Navier-Stokes Equations[END_REF], we obtain

(50) Using [START_REF] Uchovskii | Axially symmetric flows of an ideal and viscous fluid in the whole space (in Russian[END_REF], from [START_REF] Neustupa | An interior regularity criterion for an axially symmetric suitable weak solution to the Navier-Stokes equations[END_REF], we deduce that for all t ∈ [0, T [,

We multiply the first equation of ( 21) by ω 1 (t), integrate it over R 3 , use the incompressibility condition [START_REF] Giga | Weak and Strong Solutions of the Navier-Stokes Initial Value Problem[END_REF], then we obtain for all t ∈ [0, T [,

By using integration by parts, Cauchy-Schwarz inequality and Young inequality, we deduce that for all t ∈ [0, T [,

Using [START_REF] Wei | Regularity criterion to the axially symmetric Navier-Stokes equations[END_REF], from [START_REF] Wahl | Regularity of weak solutions of the Navier-Stokes equations[END_REF], we obtain for all t ∈ [0, T [,

We sum inequalities ( 51) and ( 54), then, we obtain for all t ∈ [0, T [,

(55) Thanks to Lemma 5.2 and inequality [START_REF] He | Regularity for solutions to the Navier-Stokes equations with one velocity component regular[END_REF], from (55), we deduce that there exists a constant C 3 > 0 such that for all t ∈ [0, T [,

Let us introduce the unique constant γ 0 > 0 satisfying

. Since the real-valued function y → C 3 (1 + y 2 )y is nondecreasing, then under the assumption that there exists R > 0 such that for any t ∈ [0, T [, Γ(t)χ {r≤R} L ∞ ≤ γ 0 , we get

and from (56) we deduce that for all t ∈ [0, T [,

which implies that for all t ∈ [0, T [,

Then thanks to Gronwall inequality, we deduce that for all t ∈ [0, T [,

which concludes the proof. Now, we finish with our main result. 

where γ 0 > 0 is the absolute constant involved in Lemma 5.4.

Proof. To get the proof, we assume first that inf

We derive first an estimate of ω θ ∈ L ∞ L 2 . Thanks to Lemma 5.4, we get that there exists a constant C > 0 such that for all t ∈ [0, T [,

(59) We multiply the first equation of [START_REF] Chen | Lower Bound on the Blow-up Rate of the Axisymmetric Navier-Stokes Equations[END_REF]