
HAL Id: hal-00649039
https://hal.science/hal-00649039

Submitted on 7 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preemption Delay Analysis for Floating Non-Preemptive
Region Scheduling

José Marinho, Vincent Nélis, Stefan M. Petters, Isabelle Puaut

To cite this version:
José Marinho, Vincent Nélis, Stefan M. Petters, Isabelle Puaut. Preemption Delay Analysis for
Floating Non-Preemptive Region Scheduling. 2011. �hal-00649039�

https://hal.science/hal-00649039
https://hal.archives-ouvertes.fr

Preemption Delay Analysis for Floating
Non-Preemptive Region Scheduling

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-111202

Version:

Date: 12-05-2011

José Marinho

Vincent Nélis

Stefan M. Petters

Isabelle Puaut

Technical Report HURRAY-TR-111202 Preemption Delay Analysis for Floating Non-Preemptive

 Region Scheduling

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Preemption Delay Analysis for Floating Non-Preemptive Region Scheduling
José Marinho, Vincent Nélis, Stefan M. Petters, Isabelle Puaut

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
In real-time systems, there are two distinct trends for scheduling task sets on unicore systems: non-preemptive and
preemptive scheduling. Non-preemptive scheduling is obviously not subject to any preemption delay but its
schedulability may be quite poor, whereas fully preemptive scheduling is subject to preemption delay, but benefits from
a higher flexibility in the scheduling decisions. The time-delay involved by task preemptions is a major source of
pessimism in the analysis of the task Worst-Case Execution Time (WCET) in real-time systems. Preemptive scheduling
policies including non-preemptive regions are a hybrid solution between non-preemptive and fully preemptive
scheduling paradigms, which enables to conjugate both world's benefits. In this paper, we exploit the connection
between the progression of a task in its operations, and the knowledge of the preemption delays as a function of its
progression. The pessimism in the preemption delay estimation is then reduced in comparison to state of the art
methods, due to the increase in information available in the analysis.

Preemption Delay Analysis for Floating
Non-Preemptive Region Scheduling

José Manuel Marinho∗, Vincent Nélis∗, Stefan M. Petters∗, Isabelle Puaut†
∗CISTER-ISEP Research Centre, Polytechnic Institute of Porto, Portugal

†University of Rennes 1, UEB, IRISA, Rennes, France
Email: {jmsm,nelis,smp}@isep.ipp.pt , Isabelle.Puaut@irisa.fr

Abstract—In real-time systems, there are two distinct trends for

scheduling task sets on unicore systems: non-preemptive and preemp-

tive scheduling. Non-preemptive scheduling is obviously not subject

to any preemption delay but its schedulability may be quite poor,

whereas fully preemptive scheduling is subject to preemption delay,

but benefits from a higher flexibility in the scheduling decisions.

The time-delay involved by task preemptions is a major source

of pessimism in the analysis of the task Worst-Case Execution

Time (WCET) in real-time systems. Preemptive scheduling policies

including non-preemptive regions are a hybrid solution between

non-preemptive and fully preemptive scheduling paradigms, which

enables to conjugate both world’s benefits. In this paper, we exploit

the connection between the progression of a task in its operations,

and the knowledge of the preemption delays as a function of its

progression. The pessimism in the preemption delay estimation is

then reduced in comparison to state of the art methods, due to the

increase in information available in the analysis.

I. INTRODUCTION

Nowadays processors are composed of several subsystems (such
as caches, pipelines, transfer lookaside buffers, etc.) which display,
at any time-instant, an associated “state”. In the context of this
work, what we understand by “state of a subsystem” is the history
information enclosed in the subsystem, as well as its logical
configuration, at a particular time-instant. For example, the state
of a cache at a given time-instant can be seen as a snapshot of all
the information stored in that cache at that instant. The objective
of this state is to accelerate average-case execution times. All
these processor subsystems quasi-continuously face state changes
at run-time and we are concerned with state changes which affect
the temporal behavior of the executing tasks. In particular, it is
the case for task preemptions: when a task resumes its execution
(after being preempted), for example, the cache(s) will display
a state which is different from its state at the time the task got
interrupted. If its state has been substantially altered during the
time the task was pending, it is likely that it might be needed
to reconstruct at least partially its working set after the the task
resumes execution.

Reconstructing the subsystems’ states is attached to time penal-
ties in real processors, which may increase the execution time
of a task by non-negligible amounts of time. In general purpose
computing this effect is balanced by the usually huge performance
gains by deploying such state carrying sub-systems and hence
is in most cases ignored. In embedded real-time systems, where
timeliness is an essential property of the system and is hence
thoroughly analysed, these penalties need to be carefully evaluated
to ensure that all deadlines are met.

In this work we will mainly focus on the cache-related preemp-
tion delay (CRPD), because this delay has the most important

impact on the variation of the execution time of a preempted
task [1]. Knowledge of preemption delays is crucial for the
assessment of the timing behavior of task-sets when scheduled
by a given scheduling policy.

Real-time scheduling policies may be broken into three broad
categories, with respect to how preemptions are handled: (a) Non-
preemptive scheduling, where task preemptions are not allowed,
(b) Fully-preemptive scheduling, where the highest priority active
task always gets hold of the processor as soon as it arrives in
the system (by interrupting the current executing task if needed),
and (c) Limited preemptive scheduling, a hybrid solution between
non- and fully-preemptive scheduling. This latter category can be
itself divided into two subcategories: fixed non-preemptive region
scheduling, where preemption points are hard-coded in the task’s
code and preemptions are allowed only when the execution of
a task reaches one of these preemption points, and floating non-
preemptive region scheduling. In the latter one, whenever a higher
priority task is released, the currently running task starts to execute
in a non-preemptive region. The length of this non-preemptive
region is constant and defined in static time for each task. When
the duration of the non-preemptive region elapses, the regular
priority relationship between tasks is applied and the task with
the highest priority is dispatched onto the processor potentially
collating several preemptions into a single point.

On the one hand the floating non-preemptive regions model is
more flexible than the fixed one and does not require modifications
in the applications. On the other hand it restricts the time-locations
at which the preemptions may take place, which makes it more
predictable than fully-preemptive scheduling policies. These poli-
cies thus provide the system designer with more information about
how the system will behave and decrease the pessimism involved
in the analysis. It is important to state that the schedulability
of these restricted preemption policies dominate over the fully
preemptive ones [2]. The theory devised onwards assumes the
scheduling using floating non-preemptive regions and proposes a
new approach to safely but more tightly bound the preemption
delay suffered by a task when compared to the state-of-the-art.

II. RELATED WORK AND CONTRIBUTION

CRPD estimation has been a subject of wide study. Several
methods have been proposed that provide an off-line estimation
based on static analysis, for this inter-task interference value. Even
though the work was later refined we will only discuss initial
work. Lee et al. presented one of the earliest works on CRPD
estimation for instruction-caches [3] where the concept of useful
cache blocks was introduced.

Computation of the CRPD in data caches has been proposed by
Ramaprasad and Mueller [4]. Since the assumption used in [3],
that the value of CRPD throughout a control flow graph’s basic
block would remain constant, no longer holds for data caches a
different approach had to be devised.

Preemption delay estimation is of little value without its integra-
tion into the schedulability test of the systems. Since preemption
delay is affected by all elements of the task-set several approaches
exist to handle this situation. Scheduling analysis by Lee [3] is
based on response-time analysis (RTA) by using the k highest
values of preemption delay and incorporating that quantity into
the response time of the task. Lee uses integer linear programming
(ILP) to compute the preemption delay suffered by each task.

Busquets et al. also used RTA [5], but considered the maximum
effect the preempted task may suffer by multiplying the number
of preemptions with the maximum CRPD. While this is more
pessimistic than Lee’s approach, it removes the complex analysis
of intersecting cache sets which for realistically sized programs
suffers from heavy state explosion.

Also a less complex algorithm in comparison to Lee’s resorting
to RTA was presented by Petters and Färber [1]. Opposed to
Busquets’ approach Petters uses the knowledge of the maximum
damage each preempting task may cause instead of only con-
sidering the worst-case preemption delay. The ILP problem is
addressed by using an iterative algorithm.

Altmeyer et al. presents a summary of all of the literature
so far relative to preemption delay on fully preemptive fixed
task priority [6]. The authors also presented an enhancement to
the available work by merging the approaches of Petters and
Busquets in a safe way and considering jitter and the preemption
delay suffered by the shared resource execution. A demand-bound
function based procedure has been proposed by Ju et al. [7], while
the general approach of computing the CRPD is similar to Lee’s
approach.

All of the presented preemption delay-aware schedulability tests
are specific to fully preemptive scheduling and are much more
pessimistic than the one presented in this work since they do not
consider the evolution of the preemption delay with the program
progression of the preempted task. Our approach differs from
past work in the sense that it ties the preemption delay with
program-execution progression, thus enabling less pessimism in
the preemption delay estimation.

Restricting preemption points presents a viable way to address
the problem of preemption delay. The mechanism of preemption
deferral was first proposed by Burns et al. [8]. It has a number
of advantages as has been pointed out in several works e.g. [9],
[10]. In particular, Gang Yao et al. provide a comparison of all
the available methods described so far in literature [10] regarding
restricted preemptive scheduling using fixed task priority.

Bertogna and Baruah have devised a method to compute the
size of the non-preemptive regions, for earliest deadline first
(EDF) scheduling policy, using a demand-bound function based
technique [2]. In this work the slack in the schedule depending on
the length of the interval, assuming synchronous release of all the
tasks, is computed. The method fits both the fixed non-preemptive
region model and the floating one.

Several methods addressing the same issue in fixed task priority
exist [11], [12]. A fixed priority scheduling method has been

devised by Gang Yao et al. [11], where a maximum bound on
the length of fixed non-preemptive regions is provided. In this
situation the computed length of the fixed non-preemptive regions
are generally larger than in previous work, as the last chunk of a
task’s execution is not subject to further preemptions. This enables
a further reduction on the number of preemptions.

Marinho and Petters presented a method to increase, at
run-time, the length of the preemption triggered floating non-
preemptive regions for fixed task priority [12]. This method is
taking advantage of off-line knowledge and on-line task release
information to increase the length of the non-preemptive regions.
This leads generally to a steep decrease on the preemptions suf-
fered. Similar to previous work the preemption delay problem was
not addressed in their work. Reducing the number of preemptions
helps decreasing the pessimism added to the schedulability test.

The preemption delay estimation problem using fixed non-
preemptive region scheduling was presented by Bertogna et al.
[13]. In order to reduce CRPD, the usage of fixed non-preemptive
areas of code is proposed. The preemption points are thus re-
duced to a small number of well defined points. In this way
the maximum CRPD is decreased and overall system’s response
time is enhanced. This work has the limitation that it requires
manipulation of the code of tasks and thus is not very amenable
to system developers. In particular, it is not straightforward to
take into account tasks with complex control flow graphs [13].
Additionally it can not be easily applied in situations where the
task-sets are subject to run-time change, since the maximum
allowed distance between preemption points is defined by the
higher priority workload.

Our work addresses the computation of the preemption delay
in systems using preemption triggered floating non-preemptive
regions which was previously not covered in the literature.

III. SYSTEM MODEL

The system consists of a task set τ = {τ1, . . . , τn} scheduled
to run on a single core processor. Each task τi may generate a
potentially infinite sequence of jobs, which are the entities that
contend for the processor usage. For each task, we assume that
we have an estimation of its worst-case execution time (WCET)
denoted by Ci.

There is an inherent priority relation between the jobs which
governs the contention for the processor. This contention will
be treated in a limited preemption model, which means that
preemptions are allowed but are subject to some restrictions. This
work supports both fixed task priority [11] and EDF [2] with
floating non-preemptive region scheduling policies.

A floating non-preemptive region starts when the highest pri-
ority job is executing on the processor and a higher priority job
is released. We denote by Qi the length of the non-preemptive
regions of task τi. This means that once a floating non-preemptive
region has started, it will last for Qi time units unless the currently
running job completes before. Therefore, the preemption points
which lead to the worst-case cumulative preemption delay are
subject to the constraint of being distanced by at least Qi time
units apart. The first preemption can only happen after the task τi
has completed Qi units of execution. In this situation a higher
priority release occurred at the same exact moment at which
τi started execution. It is likely that the first preemption will

occur after τi has progressed further than Qi. The Qi value is
a characteristic of each task. If the currently running job has not
yet finished after the Qi time units elapse then the highest priority
job in the ready queue preempts it. The determination of Qi can
be performed by following the approaches determined in Bertogna
et al. [2] or Marinho and Petters [12] and is assumed given within
this work.

When a preempted task (say τi) resumes its execution, its
remaining execution time will eventually increase, in comparison
to the situation in which it was not preempted. This effect is
due to the loss of working set in the hardware state. Within this
work we focus on the largest contributor which is the CRPD. We
call this increase in the remaining execution time the preemption
delay that the task τi has to account for. This delay is as high as
the amount of information, useful for the remaining execution of
τi, evicted during the preemption. The preemption delay varies
during the execution of the job. Let illustrate that with a simple
example. Suppose that a task starts its execution by loading from
the memory an important amount of data. Then the task processes
all these data in a short period of time and finally, it performs a
long-time computation using only a small subset of the data. In
this case, the maximum preemption delay during the beginning
of the task will be high, since in the worst-case scenario all the
loaded data might be evicted during a preemption, hence forcing
the task to reload them at the return from preemption. Then, once
the data have been processed, the maximum preemption delay falls
drastically, since a preemption during the long-time computation
can only force the task to reload the few data that it needs when
resuming its execution.

Each task is then characterised by a task-specific preemption
delay pattern. As jobs execute their preemption delay varies with
their progression through their execution. We model this varying
cost of every task τi using a preemption delay function fi. As
such, it displays, for any time-instant t where the function is
defined, an upper bound on the preemption cost that the task
would incur if it was preempted at time t. This function is only
valid for the first preemption since it does not take into account
the preemption delay that has to be paid in the post-preemption
execution.

IV. COUPLING PREEMPTION DELAY COST WITH EXECUTION
POINTS

This section focuses on determining the initial preemption delay
function fi of each task τi. For that purpose, one first needs to
obtain for every task represented by its control-flow graph (see
Figure 1.a), the interval of time [smin

b , emax
b] during which every

basic block b might execute, considering the execution of τi in
isolation.

Computing execution intervals on loop-free code requires to
know for every basic block b its earliest and latest start offsets
smin
b and smax

b . This can be done by a breadth-first traversal of
the CFG, applying to every traversed basic block b the following
formulas:

smin
entry

def
= smax

entry
def
= 0 (1)

smin
b

def
= min

x∈pred(b)
(smin

x + emin
x) (2)

smax
b

def
= max

x∈pred(b)
(smax

x + emax
x) (3)

offsets per basic block

0

1 2

3

4

5 6

7

8

9

10

(b). CFG with computed earliest and latest start

[0,0]

[15,25] [15,25]

[30,65]

[55,100]

[65,125]

[50,95]

(a). CFG with execution time intervals
per basic block

0

1 2

3

4

5 6

7

8

9

10

[15,25]

[15,25]

[20,40][15,35]

[20,30]

[10,10]

[40,50]

[5,5]

[5,5]

[10,20]

[60,175]

[65,180]

[50,95]

[55,100]

[15,25]

Fig. 1. Example of CFG for loop-free code. The CFG is composed of several
basic blocks (0..10) connected by directed edges that represent jumps in the code.
Each basic block is a set of sequential instructions delimited by a jump. In the left
part, intervals [cmin

b , cmax
b] represent the minimum and maximum execution times

of basic block b. In the right part, intervals [smin
b , smax

b] represent the earliest and
latest start time of every basic block b.

with pred(b) the direct predecessor(s) of a basic block b in the
CFG, and entry the task entry basic block. In the formulas, emin

x

(resp. emax
x) represents the minimum (resp. maximum) execution

time of basic block x; such values can be produced by standard
WCET estimation tools. Figure 1.b) shows for every basic block
its earliest and latest start offset after applying the above formulas.
Then, the time interval within which every basic block b may
execute is [smin

b , smin
b + emax

b].
This method can be extended in a straightforward manner to

programs with natural loops. The algorithm presented above can
be applied to every loop individually, starting with the innermost.
A loop can then be considered as a single node with known
earliest and latest start offsets when analyzing the outer loop of the
whole program. Similarly, tasks containing function calls can be
analyzed provided that their call graph is acyclic by first analyzing
the leaves in the call graph.

Knowing the possible execution interval [smin
b , emax

b] of every
basic block b, the set of basic blocks that might execute at a given
time instant t, noted BB(t) is known. For each basic block b in
this set, state of the art methods like the one described in [3] is
used to compute the maximum CRPD when preempting the task
in basic block b, noted CRPDb. More formally, function fi can
be defined as follows:

fi(t)
def
= max

∀b∈BB(t)
(CRPDb)

V. DETERMINATION OF PREEMPTION DELAY UPPER-BOUNDS

As stated in Section III, a task will always execute non-
preemptively for at least Qi time units before a preemption occurs,
unless it completes before the end of the non-preemptive region.

A naive thought to upper-bound the cumulative preemption
delay over a task’s execution (say τi) might be to select from
fi the maximum number of points pk (each distanced from every
other by at least Qi time units) such that the sum

�
∀pk

fi(pk)
is maximum. However, the simple example depicted in Figure 2
shows that this solution is not correct. As we can see, on the top

p1

f (t)

P
D

hy
p
ot
he
ti
ca
l
ru
n

p1

p2

p2

p3

Q 2Q 3Q 4Q

Fig. 2. Comparison Between Function fi and the Run-time Preemption Delay
Development

plot where fi is depicted, there are at most two points that may be
selected (since no three points could be distanced by at least Qi

time units in time). The bottom plot presents an hypothetical run
of task τi, where the run-time preemption delay cost is presented.
At run-time, since time is spent paying preemption delay after
each preemption, more points can be selected (see the bottom
plot), hence providing a higher cumulative preemption delay.

A pessimistic, but correct, solution to upper-bound the execu-
tion time C �

i of a task τi while taking into account all the possible
preemption delays that τi might undergo during its execution, is
simply to multiply the maximum number of preemptions that can
occur during τi’s execution (i.e.,

�
Ci
Qi

�
, this is discussed in more

detail in [12]) by the maximum delay of one preemption (i.e.,
maxt∈[0,Ci] fi(t)). Given the increase in the WCET due to this
cumulative overhead, the maximum number of preemptions that
can occur eventually increases as well. Therefore, this computa-
tion has to be performed iteratively, in the style of the well-know
task response-time computation, i.e., C �(0)

i = Ci and

C �(k)
i = Ci +

�
C �(k−1)

i

Qi

�
× max

t∈[0,Ci]
fi(t) (4)

The pessimism of this computation comes directly from the fact
that it considers a constant cost for every possible preemption,
and this constant cost is assumed to be the maximum possible
cost. That is, this approach is not sensitive to the preemption cost
pattern of the task. As it was claimed in the abstract, using this
additional information (the tasks preemption cost pattern) enables
us to derive a much more accurate upper-bound. This second
technique is described in Algorithm 1, and a detailed explanation
is provided below.

Description of Algorithm 1. Initially we will explain the
intuition of the approach on Figure 3 before presenting the
actual algorithm. In Figure 3 the gray curve is the fi function.
Suppose that prog is the current progression in the task execution.
Considering the next preemption point, the approach is looking
for the lower bound on the progression which will be achieved
within the next Qi time units in any preemption scenario. For this,
function fi is investigated from the current prog to prog+Qi.
On the ordinate also at length Qi a line D(x, t) is drawn to
prog+Qi. The point p∩ where f first crosses D(x, t) limits the
range of values which need to be considered. A preemption past
this value would lead to a situation where this point would again

Algorithm 1: Upper-Bound the Preemption Delay
Input : fi(): preemption delay function of task τi

Qi: length of the non-preemptive region
Output: total delay: cumulative preemption delay suffered by τi

1 prog ← 0 ;
2 total delay ← 0;
3 delaymax ← 0 ;
4 pnext ← Qi ;
/* While the next progression is not beyond Ci */

5 while pnext < Ci do

/* Update time, progression and delay */
6 prog ← pnext ;

/* Compute the next progression step and the
next delay to account for */

7 p∩ ← min{px} such that
8 px ∈ [prog(k), prog(k) +Qi]
9 and fi(px) = −px + prog(k) +Qi} ;

10 if p∩ = null then p∩ ← prog+Qi;
11 pmax ← argmaxpx∈[prog,p∩]{fi(px)};
12 delaymax ← fi(pmax);
13 pnext ← prog+Qi − delaymax;
14 total delay ← total delay+delaymax ;

15 return total delay ;

be considered in a subsequent iteration, since then prog would
not pass this point in the current iteration. Within the interval,
delaymax is determined. That means in an interval Qi under any
preemption scenario at least Qi − delaymax progress in program
execution will be achieved. It is a conservative bound as a later
preemption means that also the non preemptible region will only
start then. This point prog+Qi − delaymax will serve as new
starting point.

Returning to the Algorithm 1: Lines 1–4 initialise the variables.
The variable prog memorizes the current progression in the task’s
operations while total delay records the cumulative preemption
delay accounted for up to the current progression. As the task
τi executes, it accounts for progressing in its execution (and the
variable prog is increased) and for the preemption delay (which
updates the variable total delay). The algorithm is iterative, and
at each iteration the variables delaymax and pnext (lines 3 and 4)
are the preemption delay taking place only in the current iteration
and the next progression point in τi’s execution at which the next
iteration will start, respectively. Lines 1–4 can be seen as the first
iteration of the algorithm. delaymax is set to 0 and pnext to Qi,

prog +Qi

pmax
prog

D(x, t)

p∩pnext

delaymax

Qi − delaymax

delaymax

Qi

Fig. 3. Algorithm iteration sketch

because no preemption can occur during the first Qi time units
of τi’s execution.

The algorithm starts iterating at line 5, and it iterates as long as
the next computed progression point pnext does not fall beyond
τi’s execution boundary. Line 6 shifts the current progression point
of τi to the computed value pnext. Then, lines 12 and 13 compute
the next progression point pnext and the maximum delay that τi
could suffer while progressing in its operations from its current
progression point to pnext. Finally, line 14 adds this maximum
delay to the current cumulative delay accounted so far.

In the following Theorem 1, we prove that the value returned
by Algorithm 1 is an upper-bound on the cumulative preemption
delay that the given task τi might suffer during its execution.
This implies that the WCET of τi (while taking into account
all the possible preemption delays that τi might suffer during its
execution) is given by

C �
i
def
= Ci + total delay (5)

where total delay is the value returned by Algorithm 1.

Theorem 1. Algorithm 1 returns an upper-bound on the preemp-
tion delay that a given task τi can suffer during the execution of
any of its jobs.

Proof: Algorithm 1 computes the maximum cumulative pre-
emption delay iteratively, by progressing step by step through the
execution of the task τi. Hereafter, we use the notation prog(k) to
denote the progression through τi’s execution at the beginning of
the kth iteration of the algorithm. Similarly, total delay(k) will
be used to denote the cumulative preemption delay that τi has
suffered until it reached a progression of prog(k). In this proof, we
show that at each iteration k > 0, total delay(k) actually provides
an upper-bound on the cumulative preemption delay that τi might
suffer before reaching a progression of prog(k) in its execution.
The proof is made by induction.

Basic step. Algorithm 1 first considers that τi progresses by Qi

time units in its execution without suffering any preemption delay
(since it cannot get preempted during these first Qi time units).
We consider this first step as the first iteration of the algorithm.
That is, straightforwardly, total delay(1) = 0 is an upper (and
even exact) bound on the cumulative preemption delay that τi
may suffer before reaching a progression of Qi time units in its
execution.

Induction step. We assume (by induction) that total delay(k),
k > 1, is an upper-bound on the cumulative preemption delay
that τi might suffer before reaching a progression of prog(k) time
units in its execution.

During the kth iteration, Algorithm 1 computes prog(k+1) and
total delay(k+1) as follows:

prog(k+1) = prog(k) +Qi − delaymax (6)
total delay(k+1) = total delay(k) +delaymax (7)

where

delaymax = fi(pmax) (8)
pmax = argmax

px∈[prog(k),p∩]
{fi(px)} (9)

p∩ = min{px} such that (10)
px ∈ [prog(k), prog(k) +Qi]

and fi(px) = −px + prog(k) +Qi

Equations 6 and 7 can be interpreted as follows. During the kth

iteration, Algorithm 1 assumes that τi executes for Qi time units
during which τi progresses by Qi − delaymax units of time in its
execution and suffers from a delay of delaymax; The algorithm
assumes that τi gets preempted when its progression reaches
pmax given by Equation 9. Below we show that choosing any
other preemption point pother �= pmax would ultimately1 result
in a cumulative preemption delay lower than the one returned by
Algorithm 1, thus showing that the value returned by Algorithm 1
is an upper-bound. Two cases may arise: pother > pnext or
pother ≤ pnext.

Case 1: pother > pnext. This means that τi progresses in its
execution until it reaches pnext without being preempted, i.e., from
a progression of prog(k), τi reaches a progression of pnext by
being executed only for (pnext−prog(k)) time units, and with an
unchanged cumulative preemption delay of total delay(k). On
the other hand, in the execution scenario built by Algorithm 1,
τi’s execution reaches a progression of prog(k+1) = pnext by
being executed for Qi time units, and with a cumulative preemp-
tion delay of total delay(k+1) = total delay(k) +delaymax ≥
total delay(k). In other words, Algorithm 1 manages to progress
slower in τi’s execution while suffering from a greater preemption
delay. Furthermore, pother is still a candidate preemption point for
a further iteration of Algorithm 1.

Case 2. pother ≤ pnext. After executing τi for Qi time units,
we have that

1) the delay of the preemption that occurs when τi’s progres-
sion reaches pother has been totally accounted for (since
pother < pnext ≤ p∩).

2) the progression of τi in this scenario becomes

progother = prog(k) +Qi − fi(pother)

≥ prog(k) +Qi − fi(pmax)

≥ prog(k+1) (11)

3) the cumulative preemption delay becomes

total delayother = total delay(k) +fi(pother)

≤ total delay(k) +fi(pmax)

≤ total delay(k+1) (12)

Thus, after executing τi for Qi time units Algorithm 1 progressed
less in the execution of τi (Inequality 11) while suffering from
a higher preemption delay (Inequality 12). As a consequence
of Cases 1 and 2, it holds at each iteration of Algorithm 1
that choosing to preempt the task when it reaches a progression
of pmax ultimately leads to an upper-bound on its cumulative
preemption delay.

1when τi’s execution will be completed

0 500 1000 1500 2000 2500 3000 3500 4000−2

0

2

4

6

8

10

12

14

t

Pr
ee

m
pt

io
n

D
el

ay
 F

un
ct

io
ns

 f

Gaussian 1
Gaussian 2
2 local maximum

Fig. 4. Synthetic Benchmark Functions

0 200 400 600 800 1000 1200 1400 1600 1800 2000101

102

103

104

Q

C
um

ul
at

iv
e

Pr
ee

m
pt

io
n

D
el

ay
 D

ur
in

g
Ta

sk
 E

xe
cu

tio
n

Gaussian 1
Gaussian 2
2 local maximum
State of the Art

i

Fig. 5. Benchmark Results

VI. EVALUATION AND DISCUSSION

Three synthetic fi functions have been created in order to
compare the performance of the proposed preemption delay
estimation with the state-of-the-art method using the procedure
described by Equation 4. The three functions used are two bell
shaped functions, the first one with σ2 = 300 and µ = 2000 and
a vertical offset of 10 units and the second one with a bigger
variance, σ2 = 3000, the same average and no offset. Finally a
function with two local maxima separated in time is used. All
functions have maximum value of 10 units, and have C = 4000.
We vary the Qi value so having a fixed C still paints a generic
picture of how the methods behave.

The synthetic functions used represent distinct generic memory
usage patterns from tasks. The sole purpose of the set of functions
provided is to validate the method proposed in this paper. Having
generic patterns, rather than function fi extracted from a set of
real benchmarks (which would present more complex patterns),
enables for a more clear evaluation of Algorithm 1 performance.
These functions are portrayed in Figure 4.

The proposed algorithm is shown empirically, in Figure 5,
to provide a considerably less pessimistic upper-bound on the
preemption delay value for a task, specially for smaller values of
Qi. Since the state of the art method purely relies on Qi, Ci and
the maximum preemption delay of fi then its preemption delay
estimate is strictly the same for all the benchmark functions, since
they all have the same C and maximum value. The preemption

delay axis in Figure 5 is in logarithmic scale so that the differences
between the state of the art and the proposed algorithm are more
easily observed across the entire Qi spectrum.

There are fluctuations in the results which are analysis artifacts
and imply that the analysis is pessimistic. In some cases increasing
the Qi results in bigger preemption delay. This is caused as
the analysis checks for the preemption delay in the window of
prog and tA, but conservatively considers the actual preemption
to occur at prog. An actual preemption at pmax in physical
terms would initiate a new window of length Qi to start only
at that pmax instead of prog , thus the method, as is proven in
Theorem 1, provides an upper bound for the preemption delay in
any conceivable real task execution scenario.

VII. CONCLUSION AND FUTURE WORK

In this work we have proposed a new algorithm to compute
an upper-bound on the preemption delay suffered by a task
which executes in a system scheduled with preemption triggered
floating non-preemptive regions. This algorithm has been shown
to dominate over the state-of-the-art method. The method is easy
to implement with small overhead and builds up on existing static-
analysis methods.

As of future work we intend to tighten our result by (i)
discarding less information during the computation of function
fi(t) and (ii) reducing the number of preemptions (i.e., the number
of iterations) considered in Algorithm 1 – it is indeed impossible
for a task to get preempted every Qi time units as assumed by
Algorithm 1 unless the periods of the other tasks enable such a
preemption scenario.

REFERENCES

[1] S. M. Petters and G. Färber, “Scheduling analysis with respect to hardware
related preemption delay,” in Workshop on Real-Time Embedded Systems,
London, UK, Dec 2001.

[2] M. Bertogna and S. Baruah, “Limited preemption edf scheduling of sporadic
task systems,” IEEE Transactions on Industrial Informatics, vol. 6, no. 4,
Nov 2010.

[3] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee,
and C. S. Kim, “Analysis of cache-related preemption delay in fixed-priority
preemptive scheduling,” IEEE Transactions on Computers, vol. 47, no. 6,
1998.

[4] H. Ramaprasad and F. Mueller, “Bounding preemption delay within data
cache reference patterns for real-time tasks,” in 12th RTAS, Apr 2006.

[5] J. Busquets-Mataix, J. Serrano, R. Ors, P. Gil, and A. Wellings, “Adding
instruction cache effect to schedulability analysis of preemptive real-time
systems,” in 17th RTSS, Jun 1996.

[6] S. Altmeyer, R. I. Davis, and C. Maiza, “Pre-emption cost aware response
time analysis for fixed priority pre-emptive systems,” in 32nd RTSS, Nov
2011.

[7] L. Ju, S. Chakraborty, and A. Roychoudhury, “Accounting for cache-related
preemption delay in dynamic priority schedulability analysis,” in 44th DATE,
Apr 2007.

[8] A. Burns, “Preemptive priority-based scheduling: an appropriate engineering
approach,” in Advances in real-time systems, S. H. Son, Ed. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1995.

[9] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with preemption
threshold,” in 6th RTCSA, 1999.

[10] G. Yao, G. Buttazzo, and M. Bertogna, “Comparative evaluation of limited
preemptive methods,” in 15th ETFA, Sep 2010.

[11] ——, “Feasibility analysis under fixed priority scheduling with limited
preemptions,” Journal Real-Time Systems, vol. 47, no. 3, 2011.

[12] J. Marinho and S. M. Petters, “Job phasing aware preemption deferral,”
International Conference on Embedded and Ubiquitous Computing 2011,
Oct 2011.

[13] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo, “Optimal
selection of preemption points to minimize preemption overhead,” in 23th
RTSS, Jun 2011.

