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Observer design for MIMO non-uniformly observable
systems

Pascal Dufour, Saida Flila and Hassan Hammouri

Abstract—The design of high gain observers is usually based on
normal forms of observability. If the system is observable for every
input (uniform observability), the gain of the observer does not required
a solution to differential equation. For multiple input multiple output
(MIMO) non-uniformly observable systems, we give here a sufficient
condition that the input must satisfy in order to design an observer.
Unlike uniformly observable systems, the observer gain of non-uniformly
observable systems is derived from a Lyapunov differential equation.

Index Terms—Nonlinear systems, observers.

I. INTRODUCTION

The problem of state estimation is an important issue in control,
diagnosis and monitoring of process systems. Many methods have
been developed for designing an observer for nonlinear systems.
Among these methods, a rather natural approach consists in steering
the nonlinear system into a state affine system up to output injection,
by a suitable change of coordinates. Indeed, an extended Luenberger
(or Kalman) observer can be designed for this class of systems (see
for instance [3], [4], [6], [5], [12], [7], [16], [18], [15], [22], [27]).
From the observability point of view, nonlinear systems which can
be steered into linear systems up to output injection by a change of
coordinates ([3], [4], [6]) are similar to stationary linear systems, in
the sense that their observability does not depend on the input and
a Luenberger observer can be designed for both classes of systems.
An extension of this property consists of characterizing a large class
of nonlinear systems which are observable independent of the input
(called uniformly observable systems). This problem has been studied
by [2] in the single output case and visited in [8] by giving a new
proof in the case where the nonlinear system is control affine. The
authors showed that uniformly observable systems can be transformed
into a normal form. Moreover, this normal form has been used in
[8] in order to design a high gain observer. The extension of this
observer synthesis for non-control affine systems has been stated
in the single output case in [11] and in the multi-output case in
[21]. In other respects, based on some specific normal forms (having
triangular structures), several results on the high gain observer design
for MIMO systems exist in the literature: see for instance [10], [14],
[19], [20], [28]. In the same spirit, more recently, in [25], [26],
[29] and [30] a high gain observer method which allows design of
a finite time observer has been proposed. For systems which are
not necessarily uniformly observable systems, there is no systematic
way permitting to design an observer. Nevertheless, there exist some
sufficient conditions based on Lyapunov techniques which permit
design of an observer whose gain does not depend on the inputs
(see e.g. [1], [13], [17], [23]).
Based on some works mentioned above, in [24], the authors gave
sufficient conditions that permit characterization of nonlinear systems
which can be converted into higher dimension normal form. The
issue is that the proposed class of systems may admit inputs which
render these systems unobservable. In order to design an observer for
these systems, the authors assumed that the inputs must render the
system sufficiently observable in some sense (local regular inputs,
see definition 1 below). The gain of the proposed observer was then
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obtained from a Lyapunov differential equation.
In this paper, we go back to the work of [24] and show that if a system
admits a local regular input then the system satisfies the uniform
observability structure stated in [21]. Hence a simpler observer may
be designed, in the sense that the observer gain does not need
a Lyapunov differential equation. Consequently, in this paper, we
give a new formulation which permits design of an observer for a
class of systems which are not uniformly observable. In this work,
the condition that an input must satisfy, in order to guarantee the
convergence of the observer, is weaker than the local regular condition
given in [24].
This paper is organized as follows: In section 2, we discuss the
observer synthesis stated in [24] and give some preliminary results
which allow a new formulation that permits design of an observer
for a class of non-uniformly observable systems. Finally, in section
3, we state our main result.

II. PROBLEM STATEMENT AND PRELIMINARY RESULTS

A. Problem statement

Consider the following normal form:{
ż = F (u, z)
y = Cz

(1)

where the inputs u(.) take their values in U ⊂ Rm, which is assumed
to be compact in the sequel. The state z(.) is a column vector of Rn

which can be decomposed into the form z =
(
zT1 . . . . . . zTq

)T
where zi is column vector of Rni ; y = Cz = z1 ∈ Rn1 . F (u, z) = F1(u, z)

...
Fq(u, z)

, where:

Fi(u, z) = Fi(u, z1, . . . , zi+1), for 1 ≤ i ≤ q − 1 (2)

which means that żi = Fi(u, z).
Using the uniform observability concept, the authors in [21] gave
a geometric condition (uniform observability structure) that permits
the transformation of a nonlinear system into the normal form (1)-(2)
with the following additional rank condition:

Rank
(
∂Fi
∂zi+1

(u, z)

)
= ni+1; ∀z; ∀u ∈ U (3)

Remark 1. From the rank condition (3), we can obviously deduce
that n1 ≥ . . . ≥ nq .

The above normal form (1)-(2) together with the rank condition (3)
have been used in [21] in order to synthesize an exponential observer.
In this paper, we restrict ourselves to the case where F (u, z) =
A(u)z + G(u, z). Hence system (1) takes the following particular
form: {

ż = A(u)z +G(u, z)
y = Cz = z1

(4)

where: 

C = [In1 . . . 0 . . . 0]

A(u) =


0 A12(u) . . . 0

0 0
. . .

...
...

...
. . . Aq−1,q(u)

0 0 . . . 0


G(u, z) =

 G1(u, z)
...

Gq(u, z)


(5)
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u ∈ U , Gi(u, z) = Gi(u, z1, . . . , zi), zi ∈ Rni , Ai,i+1(u) are
ni×ni+1 continuous matrices and In1 is the n1×n1 identity matrix.

Remark 2. In order to obtain an extension of the observer design
stated in [21], the rank condition given in (3) will be omitted. In
particular inequalities n1 ≥ . . . ≥ nq are not necessarily satisfied,
and system (5) may admit inputs which render it unobservable,
namely, inputs which do not distinguish between any two different
initial states.

Problem formulation:
As in [24] and many references herein, we will design an observer
for systems (5) such that its gain depends only on the pair (C,A(.)),
the input u(.) and the Lipschitz constant of G. To do so, consider

the set Gc = {G, such that ‖∂G
∂z

(u, z)‖ ≤ c, ∀(u, z) ∈ U ×
Rn}. The observer formulation that we will solve below consists of
characterization of a set U ⊂ L∞(R+, U) and a system of the form:{

˙̂z = A(u)ẑ +G(u, ẑ) +K(S)(Cẑ − y)

Ṡ = H(u, S)
(6)

where S(t) belongs to an open subset of some RN and H , K
are smooth functions, such that system (6) forms an exponential
observer for system (5) which converges for every u ∈ U and for
every G ∈ Gc. This formulation means that the observer gain does
not depend on the nonlinear term G.

B. Some preliminary results

In [9] and [24], the authors gave a condition that u(t) must satisfy
in order to design an observer which converges independently on the
choice of the global Lipschitz term G. Such inputs are called local
regular inputs and are defined as follows:
Let Φu(t, s) be the transition matrix of the state affine system:{

ż = A(u)z
y = Cz

(7)

defined by
d(Φu(t, s))

dt
= A(u(t))Φu(t, s), with Φu(s, s) = I (I is

the identity matrix).

Definition 1. [9], [24] A bounded input u(.) is said to be local
regular input (or locally regular), if there exist θ0 > 0 and α > 0,
such that for every θ ≥ θ0; for every t ≥ 1

θ
:

Ψ(t− 1

θ
, t) =

∫ t

t− 1
θ

ΦTu (s, t)CTCΦu(s, t)ds ≥ αθ∆−2
θ (8)

where Ψ(t − 1
θ
, t) is the Gramian of observability defined on

[t− 1
θ
, t], and where:

∆θ =


θIn1 0 . . . 0

0 θ2In2

. . .
...

... . . .
. . . 0

0 . . . . . . . . . θqInq

 (9)

.

The following result is stated in [24]:

Theorem 1. [24] Assuming that G is a global Lipschitz function and
that u(.) is locally regular, then an observer for the nonlinear system
(5) takes the following form:

˙̂z = A(u)ẑ +G(u, ẑ)−∆θS
−1CT (Cẑ − y)

Ṡ = −θ(γS +AT (u)S + SA(u)− CTC)
S(0) is a n× n symmetric positive definite (SPD) matrix.

(10)

where θ > 0 and γ > 0 are constant parameters.

Remark 3. In section III, we will discuss an example where the
particular input u(t) = cos(t) is not a local regular input, but is a
regular input (as defined in definition 2 below).

We end this section by showing (see proposition below) that the
local regular input hypothesis (see definition 1) is here a strong one,
in the sense that the set of such inputs is an empty one whenever the
inequalities n1 ≥ . . . ≥ nq (which is a consequence of the uniform
observability structure stated in (2-(3)) is not satisfied.

Proposition 1. Assuming that there exists an input u(.) which is
locally regular and which is continuous at some τ0 > 0, then for 2 ≤
i ≤ q, we have Rank(Ai−1,i(u(τ0))) = ni, and since Ai−1,i(u) is
a ni−1 × ni matrix, it follows that n1 ≥ . . . ≥ nq .

Proof: Since A(u) is a nilpotent matrix (Aq(u) = 0) and C =
[In10 . . . 0 . . . 0], we deduce that:

CΦu(s, t) = [E1(t, s) . . . Eq(t, s)] (11)

where:

E1(t, s) = In1

E2(t, s) =

∫ s

t

A12(u(t1))dt1

and for 3 ≤ i ≤ q :

Ei(t, s) =

∫ s

t

∫ t1

t

. . .

∫ ti−2

t

A12(u(t1)) . . . ..Ai−1,i(u(ti−1))

dt1 . . . dti−1

(12)
hence:

Ψ(t− 1
θ
, t) =

∫ t
t− 1

θ
ΦTu (s, t)CTCΦu(s, t)ds

=


ψ11(t− 1

θ
, t) ψ12(t− 1

θ
, t) . . . ψ1q(t− 1

θ
, t)

ψT12(t− 1
θ
, t) ψ22(t− 1

θ
, t) . . . ψ2q(t− 1

θ
, t)

...
...

. . .
...

ψT1q(t− 1
θ
, t) ψT2q(t− 1

θ
, t) . . . ψqq(t− 1

θ
, t)


(13)

where ψij(t− 1
θ
, t) =

∫ t
t− 1

θ
ETi (t, s)Ej(t, s)ds.

Condition (8) implies:

∃θ0 > 0; ∃α > 0; ∀θ ≥ θ0; ∀t ≥ 1
θ
;∀i, 1 ≤ i ≤ q :

ψii(t− 1
θ
, t) ≥ α

θ2i−1 Ini
(14)

u(.) is continuous at some τ0 > 0, consider θ0 such that τ0 > 1
θ0

and
using the fact that A(u) is continuous with respect to u, we deduce
that for 2 ≤ i ≤ q:

ψii(τ0, θ) =

(
∫ τ0
τ0− 1

θ

∫ s
τ0
. . .
∫ ti−2

τ0
ATi−1,i(u(ti−1)) . . . AT12(u(t1))

dt1 . . . dti−1ds)

(
∫ τ0
τ0− 1

θ

∫ s
τ0
. . .
∫ ti−2

τ0
A12(u(t1)) . . . Ai−1,i(u(ti−1))

dt1 . . . dti−1ds)

=
1

(2i− 1)((i− 1)!)2θ2i−1(
ATi−1,i(u(τ0)) . . . AT12(u(τ0))A12(u(τ0)) . . . Ai−1,i(u(τ0))

)
+εi(τ0, θ)

(15)

with: lim
θ→∞

εi(τ0, θ) = 0 (16)

Noticing thatATi−1,i(u(τ0)) . . . AT12(u(τ0))A12(u(τ0)) . . . Ai−1,i(u(τ0))
together with εi(τ0, θ) are ni × ni matrices. Combining (14), (15)
and (16), we deduce that:
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Rank((ATi−1,i(u(τ0)) . . . AT12(u(τ0)))(A12(u(τ0)) . . . Ai−1,i(u(τ0))))
= ni.
Finally Rank(Ai−1,i(.)) ≤ min{ni, ni−1} yields to n1 ≥ . . . ≥ nq .

III. OBSERVER SYNTHESIS BASED ON REGULAR INPUTS

In proposition 1 above, we have shown that the local regular input
assumption which is used in theorem 1) implies that n1 ≥ . . . ≥ nq ,
which restricts the class of systems (5). In this section, this local
regular assumption is replaced by a weaker one, and an observer for
the class of systems (5) is proposed. To do so, let us consider the
differential equation defined on the manifold S+ of SPD matrices:{

Ṡ = −θS −AT (u)S − SA(u) + CTC
S(0) ∈ S+ (17)

where A(u) is the n × n matrix given in (5). A simple calculation
gives:

S(t) =e−θtΦTu (0, t)S(0)Φu(0, t)

+

∫ t

0

e−θ(t−s)ΦTu (s, t)CTCΦu(s, t)ds
(18)

Since, ΦTu (0, t)S(0)Φu(0, t) is a SPD matrix and that the integral
term of (18) is a symmetric positive matrix, it follows that S(t) is a
SPD matrix. In the sequel, we will consider the following matrix:

P(t) =
∫ t
0
e−θ(t−s)ΦTu (s, t)CTCΦu(s, t)ds =

P11(t) P12(t) . . . P1n(t)
PT12(t) P22(t) . . . P2n(t)

...
...

. . .
...

PT1n(t) PT2n(t) . . . Pnn(t)

 (19)

Remark 4. Let U a bounded subset of Rm in which u(.) takes its
values and θ > 0, then:

a) There exists a constant κ > 0, s.t. for every input u which
takes its values in U , we have:

P(t) ≤ κI (20)

b) S(t) and P(t) have the same behavior for large t. More
precisely, there exists a constant ω > 0 which only depends
on U such that:

S(t)− ωe−
θt
2 I ≤ P(t) ≤ S(t) + ωe−

θt
2 I (21)

Proof: The inequality (20) comes from the boundedness of
A(u(.)) and the expressions (11)-(12). The inequalities in (21) are
direct consequence of expression (18).

In the sequel, Γ(t) denotes the n × n symmetric positive block
diagonal matrix:

Γ(t) =

 P11(t) . . . 0
...

. . .
...

0 . . . Pqq(t)

 (22)

The Pii are given by:
• P11(t) = (

∫ t
0
e−θ(t−s)ds)In1

• For i ≥ 2: Pii(t) = ...∫ t
0
e−θ(t−s)[

(
∫ t
s

∫ t1
s
. . .
∫ ti−2

s
ATi−1,i(u(ti−1)) . . . AT12(u(t1))dt1 . . . dti−1)

(
∫ t
s

∫ t1
s
. . .
∫ ti−2

s
A12(u(t1)) . . . Ai−1,i(u(ti−1))dt1 . . . dti−1)

]ds

Definition 2. A bounded input u(.) is said to be a regular input if,
and only if, ∃θ0 > 0; ∃T0 > 0; ∃t0 ≥ T0; ∃α0; ∀θ > θ0; ∀t ≥ t0,
we have:

i)
∫ t
t−T0

ΦTu (s, t)CTCΦu(s, t)ds ≥ α0I , where I is the identity
matrix.

ii) Γ(t) ≤ α(θ)P(t), for some α(θ) such that limθ→∞
α(θ)

θ2
= 0.

iii) ∃γ > 0, ‖P−1
jj (t)‖‖Pii(t)‖ ≤ γ, for 1 ≤ j ≤ i.

Lemma 1. Consider t0 of definition 2, there exist two constants
η1 > 0, η2 > 0, such that for every t ≥ t0, we have:

P(t) ≥ η2
∫ t

t−T0

e−θ(t−s)ΦTu (s, t)CTCΦu(s, t)ds ≥ η3I (23)

where η3 = α0η2e
−θT0 , and:

η1P(t) ≤ S(t) ≤ η2P(t) (24)

Proof: (23) comes from the definition of P and i) of the above
definition. (24) is deduced from the definition of S(t), P(t) and (23).

Remark 5. The set of regular inputs contains the set of local regular
inputs.

Proof: Let us show that if u is a local regular input, then i), ii)
and iii) of definition 2 are satisfied.

i) Let u be a local regular input, from (8), we have: Ψ(t −
1
θ
, t) =

∫ t
t− 1

θ
ΦTu (s, t)CTCΦu(s, t)ds ≥ αθ∆−2

θ . Hence i)
of definition 2 is satisfied for T0 = θ−1.

ii) On the one hand, using the expression of Pii(t) and the fact
that the Akl(u(t)) are bounded, we can show that Pii(t) ≤
a

θ2i−1 Ini , for some constant a which does not depend on
θ. Hence, Γ(t) ≤ aθ∆−2

θ . On the other hand, since u is
local regular, we have P(t) ≥ e−1Ψ(t − 1

θ
, t) ≥ αe−1θ∆−2

θ

(Pii(t) ≥ αe−1

θ2i−1 Ini ). Combining these two facts, we deduce
Γ(t) ≤ ae

α
P(t), which is exactly condition ii) of definition 2.

iii) From above we know that ã
θ2i−1 Ini ≤ Pii(t) ≤ a

θ2i−1 Ini for
some constants a and ã. Thus iii) of definition 2 is fulfilled.

Example 1. For the following example, we show that u(t) = cos(t)
is not a local regular input, but is a regular input. ẋ =

(
0 u
0 0

)
x

y = (1 0)x
(25)

The fact that cos(t) is not a local regular input can be obtained as
follows:

The transition matrix of (25) is
(

1
∫ t
s

cos(τ)dτ
0 1

)
and the term

Ψ22(t) of the Gramian given in (8) is
∫ t
t− 1

θ
(
∫ t
s

cos(τ)dτ)2ds. At

t = kπ + π
2

, we can verify that Ψ22(t) =
∫ 1
θ
0
ξ4O(ξ)dξ, for some

bounded function O(.). Hence, for θ sufficiently large, Ψ22(t) ≤ c

θ5
,

where c > 0 is a constant which does not depend on θ. Thus condition
(8) cannot be satisfied. Consequently, cos(t) is not a regular input
for (25).
In the appendix, we show that u(t) = cos(t) is a regular input for
this system.

Our candidate observer for system (5) takes the following form:
˙̂z = A(u)ẑ +G(u, ẑ)− S−1CT (Cẑ − y)

Ṡ = −θS −AT (u)S − SA(u) + CTC
S(0) is a SPD matrix

(26)
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As above, the control set U is bounded and Gc =

{G, such that ‖∂G
∂z

(u, z)‖ ≤ c, ∀(u, z) ∈ U × Rn}, for
some fixed constant c > 0.
Now we can state our main result:

Theorem 2. Let G ∈ Gc and let u(.) be a regular input. Then there
exists θ0 > 0 s.t. for every θ ≥ θ0; there exists two constants µ1(θ) >
0, µ2(θ) > 0 such that ‖ẑ(t)−z(t)‖ ≤ µ1(θ)e−µ2(θ)t‖ẑ(0)−z(0)‖,
where z(t) and ẑ(t) are the respective trajectories of systems (5) and
(26).

Proof: Setting e(t) = ẑ(t)− z(t), from (5)-(26), we get:{
ė = (A(u)− S−1CTC)e+ δ(G)

Ṡ = −θS −AT (u)S − SA(u) + CTC
(27)

where δ(G) = G(u, ẑ) − G(u, z). From (18), we know that S(t)
is a SPD matrix. Using the Cholesky decomposition we can set:
S(t) = Λ(t)ΛT (t), where Λ(t) is a lower triangular matrix, moreover
its diagonal terms are strictly positive. Now setting ε(t) = ΛT (t)e(t),
we get:

ε̇ = (ΛTA(u)Λ−T −Λ−1CTCΛ−T )ε+ ΛT δ(G) + Λ̇TΛ−T ε (28)

where Λ−T denotes the inverse of ΛT . Using again S(t) =
Λ(t)ΛT (t) and the fact that S(t) is a solution of the second equation
of (26), we obtain:

Λ̇ΛT + ΛΛ̇T = −θΛΛT −AT (u)ΛΛT − ΛΛTA(u) + CTC (29)

Let us multiply both sides of (29): to the left by Λ−1, and by Λ−T

to the right, we get:

Λ−1Λ̇ + Λ̇TΛ−T = −θI − Λ−1AT (u)Λ− ΛTA(u)Λ−T+
Λ−1CTCΛ−T

(30)
Now setting V (t) = εT (t)ε(t):

V̇ = ε̇T ε+ εT ε̇

= εT [Λ−1AT (u)Λ− Λ−1CTCΛ−T ]ε

+ εT [ΛTA(u)Λ−T − Λ−1CTCΛ−T ]ε

+ 2εTΛT δ(G)

+ εT [Λ−1Λ̇ + Λ̇TΛ−T ]ε

(31)

Combining (30) and (31), it follows:{
V̇ = −θV + 2εTΛT δ(G)− εTΛ−1CTCΛ−T ε

≤ −θV + 2
√
V ‖ΛT δ(G)‖

(32)

where ‖.‖ denotes the Euclidean norm.
Combining condition i) of definition 2 with the second inequality of
(24), we obtain:

∀t ≥ t0, S(t) = Λ(t)ΛT (t) ≤ η2P(t) (33)

Thus (32)-(33), yield to:

V̇ ≤ −θV + 2
√
a
√
V
√

(δ(G))TP(t)δ(G), ∀t ≥ t0 (34)

Since P(t) is a SPD matrix for t ≥ t0 (condition i) of
definition 2), we deduce that 2zTi Pij(t)zj ≤ zTi Pii(t)zi +
zTj Pjj(t)zj . Thus P(t) ≤ a(q)Γ(t), where Γ(t) is the diagonal
block matrix of P(t) (defined in (22)) and a(q) is a positive
constant which depends only on q. Hence (δ(G))TP(t)δ(G) ≤
a(q)

∑q
i=1(δ(G))Ti Pii(t)δ(G)i. Now using the mean value theorem,

we obtain: δ(G)i =
∑i
j=1Mij(.)ej , where ej = ẑj−zj and Mij(.)

is a ni×nj matrix depending only on (u, z, ẑ) and which is bounded
(since G ∈ Gc). Hence the following hold:{

(δ(G))Ti Pii(t)δ(G)i =
∑i
l,k=1 e

T
kM

T
ik(.)Pii(t)Mil(.)el

≤M‖Pii(t)‖
∑i
l=1 e

T
l el, M is a constant

(35)
Since the Pii’s are ni × ni SPD matrices, using the Cholesky
decomposition, we get Pii(t) = LiL

T
i where Li is a lower triangular

matrix. Set ε̃i = Liei and ε̃ = (ε̃T1 . . . ε̃
T
q )T , from (35) and inequality

iii) of definition 2, it follows that for every t ≥ t0:{
(δ(G))Ti Pii(t)δ(G)i ≤M‖Pii(t)‖

∑i
l=1 ‖P

−1
ll (t)‖ε̃Tl ε̃l

≤ b
∑i
l=1 ε̃

T
l ε̃l, where b > 0 is a constant which not depend on θ

(36)
Combining (34) and (36), there exists a constant ρ > 0, which does
not depend on θ, such that:

∀t ≥ t0, V̇ ≤ −θV + ρ
√
V
√
ε̃T ε̃ (37)

From ii) of definition 2, the following holds for θ ≥ θ0 and t ≥ t0:

Γ(t) ≤ α(θ)P(t), with lim
θ→∞

α(θ)

θ2
= 0 (38)

On one hand, using the definition of ε̃ and Γ(t), we get:

ε̃T ε̃ = eTΓ(t)e ≤ α(θ)eTPe (39)

On the other hand, using the first inequality of (24), we get:

eT (t)P(t)e(t) ≤ η−1
1 eT (t)S(t)e(t) = η−1

1 V (t), for every t ≥ t0
(40)

Now combining (37), (39) and (40), we obtain:

V̇ ≤ −θV + ρ

√
α(θ)

η1
V (41)

But limθ→∞
α(θ)

θ2
= 0, hence for θ0 sufficiently large and θ ≥ θ0,

we deduce that V (t) ≤ µ̃1e
−µ̃2tV (0), for some constants µ̃1 > 0,

µ̃2 > 0 depending on θ. Finally, using the first inequality of (24) and
inequality (23), it follows that ‖e(t)‖ ≤ µ1(θ)e−µ2(θ)t‖e(0)‖.

IV. CONCLUSION

In this paper, an observer design for systems that admit inputs
which render them unobservable has been investigated. It has been
showed that if the input satisfy some observability assumption
(regular input), one may design an observer where the gain requires
the resolution of a Lyapunov differential equation which does not
depend on the nonlinear term.

V. APPENDIX

In the example 1 in section III, we have seen that u(t) = cos(t)
is not a local regular input for the considered model of this example.
Here, for the same model, we show that u(t) = cos(t) is a regular
input.  ẋ =

(
0 u
0 0

)
x

y = (1 0)x
(42)

Let us check conditions i), ii) and iii) of definition 2:
1) Condition i): The transition matrix is Φ(s, t) =(

1
∫ t
s

cos(τ)dτ
0 1

)
.

Set T0 = 2π, the Gramian of observability on the
interval [t − 2π, t] is given by G(u, t − 2π, t) =(

2π
∫ t
t−2π

(
∫ t
s

cos(τ)dτ)ds∫ t
t−2π

(
∫ t
s

cos(τ)dτ)ds
∫ t
t−2π

(
∫ t
s

cos(τ)dτ)2ds

)
=
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π

(
2 −2 sin(t)

−2 sin(t) 1 + 2 sin2(t)

)
, and clearly,

G(u, t − 2π, t) ≥ α0I , for some constant α0 > 0. This
ends the proof of condition i) of definition 2.

2) Condition ii): The matrix P(t) defined in (19) is given by:
P(t) =( ∫ t

0
e−θ(t−s)ds

∫ t
0
e−θ(t−s)(

∫ t
s

cos(τ)dτ)ds∫ t
0
e−θ(t−s)(

∫ t
s

cos(τ)dτ)ds
∫ t
0
e−θ(t−s)(

∫ t
s

cos(τ)dτ)2ds

)
.

Hence we can obtain the decomposition P(t) = P̃(t) +M(t),
where P̃(t) is:

1

θ

θ cos(t) + sin(t)

θ(θ2 + 1)
θ cos(t) + sin(t)

θ(θ2 + 1)
P̃22(t)

 (43)

where P̃22(t) =
2θ2 cos2(t) + 4 sin2(t) + 6θ sin(t) cos(t) + 2

θ(1 + θ2)(4 + θ2)

and ‖M(t)‖ ≤ ãe−
θ
2
t, for some constant ã which does not

depend on θ. Consequently, it suffices to verify condition ii)
of definition 2 for P̃(t) and its block diagonal matrix Γ̃(t):

Γ̃(t) =


1

θ
0

0
2θ2 cos2(t) + 4 sin2(t) + 6θ sin(t) cos(t) + 2

θ(1 + θ2)(4 + θ2)

 .

(44)
Since Γ̃(t) is invertible, to show that Γ̃(t) ≤ α(θ)P̃(t) (for

some constant α(θ) s.t. limθ→∞
α(θ)

θ2
= 0), it suffices to show

the following:

Pθ(t) = Γ̃−
1
2 (t)P̃(t)Γ̃−

1
2 (t) ≥ α−1(θ)I (45)

Consider the following elementary relation:

zTPθ(t)z = z21+z22+2a(θ, t)z1z2 ≥ (1−|a(θ, t)|)‖z‖2 (46)

where:

a(θ, t) =
(θ cos(t) + sin(t))

√
4 + θ2

√
1 + θ2

√
2
√

(θ cos(t) + 3
2

sin(t))2 + 1− 1
4

sin2(t)

(47)
or,

(1 + θ2)

(4 + θ2)
a2(θ, t) =

(θ cos(t) + sin(t))2

2((θ cos(t) + 3
2

sin(t))2 + 1− 1
4

sin2(t))
=

(θ cos(t) + sin(t))2

2[(θ cos(t) + sin(t))2 + 2(θ cos(t) + sin(t)) sin(t) + 1]
(48)

In order to check inequality (45), it suffices to show that:

∃α0 ∈]0, 1[;∃θ0 > 0;∀t ≥ 0, a2(θ, t) ≤ α0 (49)

If θ cos(t) + sin(t) = 0, then a2(θ, t) = 0 and hence (49)
is satisfied. Now assuming that θ cos(t) + sin(t) 6= 0, setting
Z = (θ cos(t) + sin(t))−1 and s = sin(t), we obtain:

a2(θ, t) =
(4 + θ2)

(1 + θ2)

1

2(1 + sZ + Z2)
. Since lim

θ→∞

(4 + θ2)

(1 + θ2)
=

1, in order to achieve (49), it suffices to show that 2(1 + sZ+

Z2) ≥ 3

2
. This last inequality comes from the fact that 2Z2 +

2sZ + 1
2
≥ 0, since |s| ≤ 1 . This ends the proof of condition

ii) of definition 2.

3) Condition iii): Using again the decomposition P(t) = P̃(t) +
M(t) given in the above step 2), it suffices to check condition
iii) of definition 2 for the diagonal elements of P̃:
P̃11 =

1

θ

P̃22 =
4θ2 cos2(t) + 4(1 + 2 sin2(t)) + 10θ sin(t) cos(t)

2θ(1 + θ2)(4 + θ2)
(50)

Clearly, it is not difficult to verify that P̃−1
11 P̃22 ≤ γ, where

γ is a positive constant which does not depend on θ (since
|s| ≤ 1). This ends the proof of condition iii) of definition 2.
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