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Abstract 

A new inferential 2-step multiple input/multiple output (MIMO) model predictive control 

(MPC) of the particle size distribution (PSD) in emulsion polymerization processes is 

proposed. The bulk-like model describing the PSD is used with the material balances of 

initiator, radicals, monomer and surfactant. The inferential 2-step control strategy uses two 

measurements available online (without delay): the concentration of surfactant in the aqueous 

phase by conductimetry, and the concentration of monomer by calorimetry. In a first step, the 

optimal trajectory of surfactant concentration leading to the target PSD is calculated offline. 

In a second step, a multivariable model predictive control manipulates online the monomer 

and surfactant flow rates in order to track the precalculated surfactant concentration trajectory 

and to maximize the monomer concentration in the polymer particles in a constrained set-

point tracking. Two control strategies are compared (nonlinear MPC and linearized MPC) 

with and without modelling errors. 
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1 Introduction 

Polymers are the bases of many products. A big part of these products is produced by 

emulsion polymerization, such as dispersions (paints and adhesives, such as polyvinyl acetate, 

acrylic polymers), plastics after particle coagulation (e.g.: polystyrene, polymethyl 

methacrylate) and rubber (e.g.: styrene butadiene rubber, neoprene rubber). This process has 

several advantages over other free radical polymerization processes comprising the high 

conversion rate (close to 100%) and the low viscosity of the medium which enhances 

temperature control and reaction mixing. Also, the continuous phase in this process is water 

which reduces the amount of volatile organic compounds. The emulsion medium contains the 

monomer (usually water insoluble) which is the basis of the polymer, the reaction initiator and 

the surfactant which allows stabilization of the monomer droplets and polymer particles. The 

latex produced by emulsion polymerization is characterized by its polymer molecular weight 

and particle size distribution (PSD). The molecular weight distribution affects the mechanical 

properties of the final polymer, whereas the PSD affects the rheological and optical properties 

of the latex and its stability. The PSD also affects film formation properties of the latex 

(Geurts et al., 1996). Berend and Richtering (1995) studied the rheology of monodispersed 

and bidispersed lattices and concluded that the viscosity depends on the volume fraction of 

small to big particles and on the size of each population (see figure 1). Schneider et al. (2002) 

have shown that bimodal PSD allows increasing the solid content while maintaining a low 

viscosity (compared to monomodal PSD), which is of interest since high solid contents are 

usually desired in order to reduce transport costs and drying time. Therefore, it appears that 



controlling the PSD (of the final latex) is primordial to obtain specific end-use properties for 

paints and adhesives. 

 

 

Figure 1 - Monomodal PSD latex particles (left) and bimodal PSD latex particles (right). 

It is worthy to note that the process model describing the PSD is nonlinear, distributed and 

includes an important number of parameters that are not well known or sensitive to impurities. 

This renders the model-based control of the PSD a difficult task. Moreover, online 

measurement of bimodal PSD is not available. Existing technologies (such as light scattering) 

mainly concern the measurement of monodispersed lattices and operate offline. Elizalde et al. 

(2000) and Schneider and McKenna (2002) realised a comparative study of technologies used 

to measure the PSD. Separative technologies, such as capillary hydrodynamic fractionation 

(CHDF), were found to be the most adapted for multi-dispersed lattices. But, the main 

inconvenience of these techniques is the long analysis time. Therefore, these measurements 

can hardly be used in an online closed-loop control scheme. An interesting alternative 

measurement for controlling the PSD is the online measurement of the concentration of free 

surfactant in the aqueous phase which gives information about the stability of particles and 

the concentration of micelles. Santos et al. (2007) used the conductimetry and ion-selective 

electrodes to measure the concentration of free anionic surfactant molecules (sodium dodecyl 

sulfate) in the aqueous phase in emulsion polymerisation. 



Until now, the control of the PSD was treated in different ways in the literature to obtain a 

bimodal PSD. For the PSD control in such processes, one may distinguish, batch to batch, 

indirect and direct control strategies (Kiparissides, 2006): 

• Batch to batch control 

In this method, an offline optimization study is first realised based on the process model to 

determine the optimal input profiles that give the desired PSD. Then, the obtained input 

profiles are applied experimentally, therefore assuming perfect process modelling. By 

collecting measurements after each batch, modelling errors can be corrected and can be 

assumed to remain unchanged for a given lot of products. By applying this method, Crowley 

et al. (2000) used the surfactant flow rate to control the PSD. The so-called zero-one model 

was used to represent the PSD in a semi-batch emulsion polymerization of styrene. Flores-

Cerillo and MacGregor (2002) proposed a batch to batch control strategy by adding an online 

correction of the surfactant concentration in the middle of the reaction using a prediction of 

the PSD obtained by partial least square models (based on online temperature measurements 

and offline surface tension and PSD measurements). Immanuel and Doyle III (2002) used an 

open loop genetic control algorithm to predict the control profiles to obtain the desired PSD of 

a copolymerization process. Doyle III et al. (2003) proposed a hybrid model-based approach 

for batch-to-batch control of the PSD. A fundamental population balance model describing 

the PSD evolution was augmented by a partial least squares model. By this way, only slight 

batch-to-batch correction was required. Both the surfactant and initiator flow rates were 

manipulated. Online measurement of the full PSD was assumed available, which is still a 

challenging issue. The batch to batch iterative feedback PSD control was also used by 

Immanuel et al. (2008). They considered correction of modelling errors from batch to batch. 

Recently, Alamir et al. (2010) applied an iterative learning control of the PSD by proposing a 

simplified behavioural model to describe the PSD. Besides offline correction of the model and 



control inputs, delayed online measurements of the PSD were used in the feedback control. 

Using a behavioural model represents an advantage due to its simplicity and therefore shorter 

run time, even though it might increase the batch to batch correction level. 

• Indirect (or inferential) control 

In inferential control, even though the desired property to control is not measured online, the 

controller uses the available measurements to fulfil its objective. Abedini and Shahrokhi 

(2008) used the measurement of the surfactant concentration to control the PSD by a single 

input/single output PID controller that tunes the free surfactant flow rate. They assumed 5% 

impurities in the surfactant and 10% model mismatch mainly in the coefficient of propagation 

rate and the diffusion coefficient of monomer, to evaluate the robustness of their strategy. The 

monomer concentration was not controlled. 

• Direct control 

Closed-loop direct control corresponds to the control of the PSD using its online measurement 

or an estimate that can be based on its discontinuous measurement. It appears that in the case 

of PSD control, direct control can only be based on an estimate of the PSD since there is a 

delay in its measurement. Alhamad et al. (2005) and Zeaiter et al. (2006) used MPC to 

broaden the PSD. Real outputs were inferred by open-loop model simulation combined with a 

corrective term of the model using CHDF offline delayed measurements. Alhamad et al. 

(2005) manipulated the flow rates of the monomers (styrene and methyl methacrylate), 

surfactant and initiator and used the zero-one kinetic model. Zeaiter et al. (2006) manipulated 

only the monomer flow rate (styrene) and used a model generated through linearization 

around the offline optimal trajectory. Therefore, the authors did not manipulate the surfactant 

flow rate, which is however known to be the main control variable of the PSD. Moreover, in 

no continuous online measurements were available for the closed loop control, even not the 

monomer conversion which requires the use of a precise process model: therefore, the 



robustness of such control approach is questionable, especially since the polymerization 

reactions are usually irreproducible and sensitive to impurities. Dokucu et al. (2008) and 

Dokucu and Doyle III (2008) developed different control laws to control the PSD in a semi-

batch emulsion copolymerization reactor. They compared the PID and the nonlinear 

predictive control using quadratic dynamic matrix controller. They used two measurements: 

the solid content (available every minute) and the PSD (available every 12 minutes). The 

delay of measurement was compensated by an extended Kalman filter. In (Dokucu and Doyle 

III, 2008), the dynamics of the PSD were represented by a reduced order model. They used 

the 10 first moments of the PSD as control outputs. The linear prediction model was obtained 

from a nonlinear model using the step response. The use of a linear model helped to describe 

the variation from nominal trajectories. Dokucu et al. (2008) used principal component 

analysis to obtain the reduced model. 

For processes explicitly described by partial differential equations (PDE) model, the 

controller can be implemented in two ways. The first way consists of keeping the infinite 

dimensional representation of the PDE model, synthesizing an infinite dimensional controller, 

and using a finite approximation of this controller. However, in control theory, due to the 

complexity of the problem, relatively few studies have been devoted to the control of 

processes explicitly described by PDE models, especially in the nonlinear case. The second 

more frequent way is therefore to construct a finite approximation of the model and then to 

synthesize a finite dimensional controller. The original PDE model is usually simplified into 

an ordinary differential equation (ODE) model using one of the following numerical methods: 

finite differences method, finite volume method, orthogonal collocation method, Galerkin's 

method, or modal decomposition. However, even if various finite dimensional methods are 

proposed to control such distributed parameter systems, there is no general framework yet. 

 



In the present work, the objective is to control together the concentration of free surfactant 

and the concentration of monomer, which helps to get the prescribed target PSD. Indeed, 

Semino and Ray (1995) studied the theoretical controllability of the population balance 

equations of this system. They concluded that the surfactant concentration is the main control 

variable of the number of particles and therefore the PSD in the emulsion polymerisation. In a 

previous work (da Silva et al., 2008), the relationship between the free surfactant 

concentration trajectory and the final PSD was demonstrated. In parallel, controlling the 

concentration of monomer in the polymer particles allows us to avoid the presence of 

monomer droplets which might destabilize the latex (by adsorbing surfactant at their surface) 

and might delay particle nucleation in an unpredictable manner. Also, controlling the 

concentration of monomer in the polymer particles affects particle growth and therefore 

directly affects the PSD. For these reasons, the considered process outputs are the 

concentration of free surfactant in the aqueous phase available by conductimetry (inferential 

control) and the concentration of monomer in the reactor available by calorimetry, which are 

both easier to measure online than the PSD. Two control variables are manipulated in the 

proposed strategy: the surfactant and monomer flow rates. Note however that the two control 

actions could be decoupled and therefore two single input/single output controllers could also 

be developed. Decoupling would however not be perfect and therefore we prefer integrating 

both actions in a MIMO controller. A 2-step inferential control strategy is then developed to 

get the final target bimodal PSD: 

Step 1) Based on a target bimodal PSD and the process model, the theoretical trajectory of 

concentration of free surfactant into water to follow during the reaction is calculated offline 

by optimization. 

Step 2) This obtained theoretical trajectory of free surfactant concentration is then used in one 

of the two control objectives: a trajectory tracking problem is defined to control the 



concentration of surfactant in the aqueous phase and is combined to a constrained set-point 

regulation problem of the concentration of monomer in the polymer particles (which aims at 

maximising the monomer concentration but avoiding the presence of droplets). The online 

measurements are the free surfactant concentration (by conductimetry) and the concentration 

of monomer (by calorimetry). The flow rates of surfactant and monomer are both manipulated 

online by a MIMO model-based predictive controller and are constrained in magnitude. We 

compare the behaviour of linearized MPC and nonlinear MPC in two simulation cases: the 

first case assumes a perfect model, which allows validating the methodology. The second case 

assumes parameter uncertainties that have important impact on the open-loop results. This test 

allows evaluating the performance of the controller and robustness to modelling errors. 

 

The paper is organized as follow: first, the bulk-like model and the various balances needed 

are reminded. Secondly, the offline determination of the surfactant concentration is presented. 

Then, the linearized MPC strategy employed is reminded and applied to the described 

problem. Simulation results for the 2-step inferential closed-loop control approach are then 

discussed, in term of trajectory tracking and final PSD, both in the ideal case and with 

parameter uncertainties. 

2 Process model 

Modelling of emulsion polymerization processes leads to complex models describing 

different physico-chemical phenomena. The population balance of particles is important to 

describe particle nucleation, growth and coagulation if necessary. Material balances of the 

different components (initiator, radicals, monomer and surfactant) must be considered in the 

continuous and dispersed phase. In the following, the main model equations are given, 

whereas the remaining equations are given in the appendix1. 



2.1 Population balance equations 

The particle size distribution during emulsion polymerizations may be described either by the 

pseudo-bulk model or the zero-one model. These models are combined to the reaction kinetics 

(propagation, terminations, transfer, and coagulation) to predict the evolution of the PSD. The 

pseudo-bulk model (see for instance Immanuel and Doyle III (2003)) has a general form and 

is available for almost all particle sizes during most of the reaction stages since it has no 

assumption on the number of radicals in the particles. The zero-one model (Gilbert, 1995) is 

adapted only for systems where the number of radicals per particle can be either 0 or 1, such 

as styrene polymerization and is applicable at the beginning of most reactions where the gel 

effect is negligible. It distinguishes: particles that have one radical, particles that have no 

radicals, and particles that have an oligomeric radical. Only particles containing an oligomeric 

radical are subject to radical desorption in this model. Edouard et al. (2005) have proposed a 

new representation of the zero-one model, called bulk-like model. The interest of this model 

is that it describes the number of particles of a specific size independently of the number of 

radicals they contain (which is measurable), whereas in the zero-one model, the online 

measurement is only a combination of the 3 states. The bulk-like model is described as: 
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where n(r,t) and ( , )n r t  are respectively the number of moles of particles and the average 

number of radicals in particles of size r at time t, with the following boundary conditions: 
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and the associated initial conditions: 
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The total nucleation rate is hom( ) ( ) ( )nuc mict t tℜ = ℜ + ℜ , where the homogeneous (hom( )tℜ ) and 

micellar ( ( )mic tℜ ) nucleation rates are given by: 

1
hom 1( ) [ ] ( )[ ]( )

critjcrit

w
w j wpt k M t IM t V

−
−ℜ =  

1

,

1

( ) [ ]( )[ ]( )
critj

mic em i i w

i

t k Mic t IM t V

−

=

ℜ = ∑  
(4.) 

 

The nucleation control variables (allowing obtaining a bimodal PSD) can be detected from the 

micellar nucleation rate in equation (4.). They are the concentration of micelles (determined 

by the concentration of surfactant into water) and the concentration of oligoradicals (affected 

by the concentration of initiator and monomer into water). Temperature might also affect the 

propagation, solubility and entry parameters which affects the nucleation rate. 

Remaining equations are given in the appendix. This bulk-like model was validated by 

simulation by (Edouard et al., 2005) and is used in this work combined with the material 

balances of initiator, radicals, monomer and surfactant in order to control the PSD. 

2.2 Initiator and radicals material balances in the aqueous phase 

In order to calculate the concentration of radicals in the polymer particles, the material 

balances of radicals in the aqueous phase should be studied. As shown in table 1, the reaction 

is initiated in water with the initiator decomposition ([I](t)) that produces primary radicals 



([I•](t)) that react with the monomer molecules dissolved in water to generate oligomeric 

radicals ([IMi](t)). The total concentration of radicals in the aqueous phase ([T](t)) is given 

by: 
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where [E](t) is the concentration of monomeric radicals that have a lipophilic nature and can 

easily diffuse into and out of particles. The material balances of initiator and radicals in the 

aqueous phase resulting from the reactions described in table 1 are given by: 
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2.3 Monomer material balance 

The number of moles of residual monomer is given by the material balance of monomer: 
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where: 

• Qm(t) is the flow rate of monomer (used as a control action in our control strategy).  

• The concentration of monomer in the polymer particles [M]p(t) is calculated using the 

partitioning coefficients considering that the monomer is partitioned between water, 

droplets and particles: 
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where [M]w(t) is the concentration of monomer in the aqueous phase which is limited by 

the saturation value of water with monomer (interval II under saturation, and interval III 

bellow saturation) as follows: 
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2.4 Surfactant material balance 

The number of moles of surfactant in the reactor Ns(t) is given by: 
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where Qs(t) is the flow rate of surfactant (used as a control action in our control strategy). The 

concentration of surfactant [S]w(t) in the aqueous phase is the following: 
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The concentration of micelles [Mic](t) is calculated from [S]w(t) using the following 

expression: 
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where CMC represents the critical micellar concentration of surfactant and nagg is the 

aggregation number of surfactant in forming micelles. 

2.5 Summary for the process model 

The nonlinear PDE model (1-12) takes the following general form: 
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where ( , ) [ ( , )  ( , )   [ ]( )  [ ]( )  [ ]( )  [ ]( )  ( ) ( )]Tm i m sx t n t n t I t I t IM t E t N t N tζ ζ ζ •=  is the state vector, ym(t)=[[S]w(t) 

[M]p(t)]
T is the vector of measured and controlled outputs, u(t)=[Qs(t) Qm(t)]T is the 

manipulated input vector. ζ is the space variable inside the space domainΩ  (with the 

boundary∂Ω ), t is time. Fd, Fb, H are operators of suitable dimensions. 

3 Offline determination of surfactant profile 

As described by the process model, the surfactant is partitioned between the surface of 

particles, droplets (slightly) and the aqueous phase. When the concentration of surfactant in 

the aqueous phase exceeds the CMC, micelles are formed. If the concentration of radicals in 

the aqueous phase is sufficient, micelles are rapidly nucleated to form polymer particles. 

Therefore, the free surfactant concentration can be considered as a direct control variable of 

the PSD (da Silva et al., 2008). 

Crowley et al. (2000) used a sequential quadratic programming method to calculate the 

optimal flow rate of surfactant that gives the desired PSD. Immanuel and Doyle III (2002) 



used a genetic algorithm to obtain the global optimum that can then be improved using local 

optimization. Such algorithms are stochastic and iteratively use random processes. The choice 

of tuning parameters involved in genetic algorithms, such as cross-over and muting 

probabilities is quite difficult. 

In this work, a deterministic optimization method is used. The optimization procedure aims to 

find the desired trajectory of free surfactant concentration ([S]wref) that leads to the target PSD 

in view of the given initial conditions. This concentration is to be tracked in the online control 

step by comparison to the available process output (see figure 2). In order to do so, the 

optimisation seeks the sequence of values of surfactant flow rate that is constrained in 

magnitude (upper bound and lower bound). 

The simulation time is 420 min and is divided into 12 intervals of 35 min each. It was found 

that dividing the time intervals into more than 12 intervals does not change fundamentally the 

optimal concentration (i.e., the final PSD tracking is no more strongly improved), whereas 

less than 12 intervals does not permit to solve correctly the problem (i.e., the optimization 

problem is not well-posed leading to large errors in the determination of the nucleation time). 

The PDE model (13.) used in this optimization task is first transformed into an ODE model by 

the finite difference method, and then solved by an ODE matlab solver. The function 

lsqnonlin in the Matlab® optimization toolbox is used to minimize the Euclidean norm 

between the desired and simulated PSD. A bimodal PSD, which is close to the prescribed 

target PSD, is obtained, as shown by figure 3. It can be seen that particle nucleation takes 

place as soon as the concentration of free surfactant exceeds the CMC, initially during the 

fifteen first minutes, due to the initial surfactant concentration and after 325 minutes due to 

the optimised surfactant flow rate. 

Note that when nucleation is not desired, the optimisation results are not unique (the 

concentration of free surfactant can take any value between 0 and slightly less than the CMC). 



But, in order to provoke the second nucleation, the concentration of free surfactant should 

exceed the CMC and therefore the same amount of surfactant is added sooner or later (e.g. the 

total amount of surfactant into water should increase from 0 or slightly less than the CMC to 

the desired amplitude above the CMC). 

Note that the obtained solution remains optimal even if there is a change in the surface of 

particles and droplets (due for instance to a change in the monomer flow rate, reaction rate ...). 

Moreover, it is robust to a number of parameters due to the availability of the measurement of 

[S]w. The only parameters that are required precisely are the CMC and nagg, which are known 

for many surfactants. 

 

Figure 2: Offline and online optimization scheme. 



 

Figure 3 - Offline optimization: PSD (top +: target, top continuous: optimal solution found), 

optimal surfactant input flow rate found (middle) and optimal free surfactant concentration 

found (bottom continuous) with CMC (bottom dash-dot). 

4 MPC control approach 

4.1 Linearized MPC 

Among the finite dimensional controllers, model predictive control is one of the most popular 

(Qin and Badgwell, 2003). It is a particular class of optimal control. Thousands of industrial 



applications of MPC exist today, for example in the chemical and petrochemical industries. 

The main advantage is that constraints (due to: manipulated variables, physical limitations, 

operating procedures or safety reasons…) may be explicitly specified into the problem 

formulation. The second advantage of MPC is its ability to address long time delays, inverse 

responses, significant nonlinearities and multivariable interactions. 

If the model exhibits a nonlinear behaviour, a numerical solution technique must be used to 

solve this optimization problem which leads to high computational effort. The computation 

effort may however be greatly reduced by linearizing the system in some manner and 

subsequently employing the optimisation techniques developed for linear systems (Zheng, 

1997, 1998). Nevistic (1997) showed excellent simulation results when a linear time varying 

(LTV) system approximation was used, which was calculated at each time step over the 

predicted system trajectory. 

A time-varying linearized PDE model-based predictive control algorithm is used in this work 

(for more details see Dufour et al., 2003). For pasta drying process (De Temmerman et al., 

2009), the performances using this controller or a nonlinear PDE model-based controller were 

quite similar. However, while the nonlinear approach was not implementable (due to the short 

sampling time), the linearized model-based control approach was implementable. The 

computational time was indeed decreased by a factor 5 in the linearized case 

The main idea of this approach is to transform the initial PDE constrained problem into an 

ODE unconstrained problem, such that the time needed to solve the online optimization 

problem is less than the sampling time. In order to do so, first, we define a cost function J to 

minimise that reflects desired process behaviour (regulation, trajectory tracking, processing 

time or energy consumption). Besides this cost function, output and input constraints (related 

to the operating conditions, safety or quality) are formulated as inequality constraints. The 

output constraints are handled in the optimization problem through the penalty term Jext, based 



on the exterior penalty method. The cost function J and the penalty term Jext are then 

combined into the penalized unconstrained cost function Jtot (Fletcher, 1987), where the 

penalty weights are tuned classically, as described in Fletcher (1987): if one output constraint 

is decreasing (but still larger than 0), then its weight is increased. The advantage of such 

output constraints handling is that all constraints of the optimization problem do not need to 

be absolutely satisfied for the first iteration, which is not the case for a barrier method. Hence, 

any initial guess may be given for the optimization argument. In this formulation, the 

manipulated variable u of the process is the constrained (in magnitude and velocity if needed) 

optimization argument. This constrained optimization argument u is then transformed into the 

unconstrained optimization argument d by a simple hyperbolic transformation method 

(Dufour et al., 2003). The optimization argument d has to be determined at each sample time k 

using the process measurement (or estimation), the model prediction and the penalized 

unconstrained cost function Jtot.. Each component of u is assumed to be a scalar (i.e. a step 

function over the horizon). 

Then, we proceed to the linearization in order to reduce the computational time needed for the 

online resolution task. An offline linearization method (for more details see Dufour et al., 

2003) of the nonlinear PDE model (SNL) around a similar nonlinear PDE model (computed 

offline) (S0) is used to formulate offline the time varying linearized PDE model (STVL). Then, 

online, the resolution of the time varying linearized PDE model (STVL) replaces the resolution 

of the nonlinear model (SNL). 

The last step is to approximate the PDE models by ODE models in order to be numerically 

solved. The control objective is then to find online the variation ∆d (hence ∆u) of the variable 

d (hence the manipulated variable u) around a chosen trajectory d0 (hence u0) that improves at 

each sample time the online optimization result, based on the model response. The final 

internal model structure with MPC (IMC-MPC) structure is given in figure 4. 



 

 

Figure 4 - General linearized IMC-MPC structure (Dufour et al., 2003). 

 

At each current sampling instant k (k is the actual discrete index of the model and Ts is the 

plant sampling time, t=k*Ts), the proposed MPC strategy makes therefore the following 

actions: 

� the plant measurements are collected for use in the control loop; 

� the linearized plant model (STVL) is solved online to predict the output behaviour to a 

hypothetical set of future control sequence over a receding horizon of length Np. 

� the unconstrained cost function Jtot is optimised (using a modified Levenber-Marquard 

algorithm). This cost function accounts for the future deviations of the predicted 

behaviour (from a reference behaviour) and the input-output constraints. 

� the optimisation result gives a sequence of the unconstrained optimization argument d. 

The real input u is then calculated from d. Then the first value of the optimal control 

sequence is applied on the process. 

These operations are repeated at time k+1. This algorithm was implemented in the MPC@CB 

software2, which is used in this work. 



4.2 Formulation for the PSD control 

A MIMO control problem is solved here. For the first trajectory tracking problem, the 

reference trajectory for the free surfactant concentration ([S]wref) is the trajectory calculate in 

section 3 by offline optimization. The second control objective is to maximise the monomer 

concentration [M]p but to maintain it below 95% of the saturation value ([M]p
sat). Indeed, 

controlling the monomer concentration allows both limiting the presence of droplets and 

maximising the rate of particle growth (affecting therefore the PSD). Exceeding [M]p
sat might 

have detrimental effects on the control strategy of the PSD: it destabilises the particles and 

causes coagulation. It is obvious that a PID controller would not be able to maximise [M]p in 

a regulation problem and at the same time maintain it always below the defined set point: the 

controlled output might oscillate around it, which is not allowed here. The MIMO MPC 

control objective is therefore to obtain the desired [S]w as close as possible to [S]wref  and to 

maintain the concentration of monomer [M]p in the polymer particles as close as possible and 

below the value (0.95*[M]p
sat). The manipulated variables are the flow rates of surfactant and 

monomer that are constrained in magnitude. Note that the sequence of surfactant flow rate 

obtained in the offline optimization procedure is not used. Indeed, polymerization reactions 

can be irreproducible and sensitive to impurities, which makes computing the optimal flow 

rates (input) offline useless. In terms of available online measurements, as discussed before, 

the concentration of surfactant in the aqueous phase by conductimetry, and the concentration 

of monomer by calorimetry are used. The MIMO optimization problem that allows obtaining 

the prescribed bimodal PSD at the end of the polymerization reaction is stated in an MPC 

formulation as follows: 

1 1 2 2
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5 Results 

Two simulation cases are discussed: 

� The first case assumes a perfect model, which helps to validate the method.  

� The second case assumes a parameter uncertainty, which has an important impact on 

the open-loop results. This helps to evaluate the performance of the controller in a 

more realistic case. 

In the first case, the proposed linearized MPC strategy is compared to a nonlinear MPC. 

5.1 Numerical conditions 

The following conditions are used: 

• The PDE models are approximated using the finite difference method for spatial 

discretization. For the simulated process, 200 spatial discretization points ( 94 10 dmr −∆ = × ) 

are used (which is enough to be accurate), whereas in the model used in the MPC, 50 

spatial discretization points ( 81.6 10 dmr −∆ = × ) are used (for faster computation). 

• The sampling time Ts is 10s. 

• The prediction horizons (NP1= NP2) are 10. 

• For the magnitude constraints, the bounds are: 
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• The initial conditions for the state are: 
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•  Runs are performed under Matlab R14 for Linux, with an AMD 64 3000+ 1.8GHz 

processor, with 2Go of RAM. 

5.2 PSD control assuming perfect process modelling 

In the absence of modelling errors or measurement noise, the simulation results depicted on 

figure 5 show that the tracking of the concentration of surfactant and the constrained 

regulation for the monomer concentration are almost perfect. A slight error could however be 

observed at the beginning of the reaction, due to the initial gap introduced between the initial 

conditions in the process and the references. The effect of this gap can be seen on the position 

and height of the first population. The obtained PSD at the end of the reaction is bimodal with 

almost the desired mean diameters, polydispersities and amplitudes. The calculated monomer 

and surfactant flow rates are physically realisable (figure 6) since they respect the predefined 

magnitude constraints. Results of the linearized MPC and nonlinear MPC are therefore quiet 

comparable. However, the nonlinear approach requires 8 times more computational time to 



find the solution than the linearized MPC. In term of objective function minimisation, it is 7% 

higher (less precise) in the linearized approach than the nonlinear approach. In view of the 

computational task and the optimization results, it can be concluded that the use of nonlinear 

MPC is not justified. Therefore, only the linearized MPC is used in the next simulations. It is 

also important to highlight that using the MPC controller remains indispensable since it 

allows taking into account the process constraints. 

 

Figure 5 - Closed loop control without modeling error (target (dash), nonlinear MPC (dash 

dot), linearized MPC (continuous)): trajectory tracking of free surfactant concentration (top), 

constrained set-point tracking of monomer concentration (middle), and final PSD (bottom). 



 

Figure 6 - Closed loop control without modeling error (nonlinear MPC (dash dot), linearized 

MPC (continuous)): surfactant flow rate (top) and monomer flow rate (bottom), both tuned by 

the controller. 

 

5.3. PSD control with a model parameter uncertainty 

A model parameter error is introduced in this section in the parameter asp which represents the 

particle surface that a surfactant molecule can cover. Indeed, if the surfactant contains any 

impurities, its efficiency to stabilise particles decreases. Furthermore, during surfactant 

storage, aggregation of surfactant molecules might occur which directly affects asp. In a first 

run, 10% of error is introduced in this parameter and in a second run it is increased to 50%. 

The impact of this uncertainty over the concentration of free surfactant in the aqueous phase 

and the monomer concentration can be seen on figures 7 and 8. In this simulation, the 

linearized MPC is used and is compared to open-loop model simulation (that does not use 

online measurements). As expected, for the open-loop model response, the calculated 



concentration of free surfactant is strongly affected by the asp error (at the end of the run, the 

concentration of free surfactant is 50% lower compared to the case without error). Indeed, if 

the used value of asp is higher than its real value, the particles would adsorb more surfactant 

than predicted which reduces the amount of free surfactant. The calculated concentration of 

monomer is on the contrary almost not affected by this error (at the end of the run, the [M]P is 

2.5% higher compared to the case without error) which is not surprising since there is no 

direct relation between asp and [M]P. Due to the use of online measurements in a closed-loop 

manner, the optimisation task is found to lead to efficient tracking results in both output 

variables which leads to the desired PSD while with 50% error in asp, the obtained PSD with 

the open-loop model is monomodal. Indeed, in this case, the concentration of free surfactant 

does not exceed the CMC a second time in order to produce the second population. For the 

closed-loop process response, the final obtained PSD is close to the desired final shape (figure 

9), especially for the second population created during the reaction, in all cases (with and 

without modelling error). In terms of control actions (figure 10), the surfactant flow rate is 

much more affected with uncertainties (up to 20%) than the monomer flow rate is (almost no 

difference) due to the impact of this uncertainty over both controlled output (up to 50% for 

the free surfactant concentration while ca. 3% for the monomer concentration). These results 

underline the robustness of the controller. 

It can be concluded that synthesizing an optimal open-loop controller assuming perfect 

modelling would lead to important errors between the real and the desired PSDs, due to 

impurities, changes in the raw materials or due to degradation of the process components. 

Meanwhile, the closed-loop MIMO linearized MPC strategy is a much better strategy than 

open-loop policy since it reduces the impact of this error, even with high important modelling 

errors.  



 

Figure 7 - Linearized MPC with parameter uncertainty: the model response ym and the 

trajectory tracking for the process output yp, both for the free surfactant concentration. 

 

 



 

Figure 8 - Linearized MPC with parameter uncertainty: the model response ym and the 

constrained set-point tracking for the process output yp, both for the monomer concentration. 

 



 

Figure 9 – Linearized MPC with parameter uncertainty: the model response ym and the 

process output yp, both in terms of final PSD. 

 

 



 

Figure 10 - Linearized MPC with parameter uncertainty: the surfactant flow rate (top) and 

monomer flow rate (bottom) tuned by the controller. 

6. Conclusion 

In this work, a new inferential model-based control strategy of the PSD in emulsion 

polymerisation was developed. Two online measurements were considered for the control 

purpose: the monomer conversion by calorimetry and the concentration of surfactant in the 

aqueous phase by conductimetry. The first limitation may be that conductimetry was validated 

experimentally only on low solid content systems. The conductimetry still can be applied to 

high solid content systems if a circulating and dilution loop is added. Meanwhile, it should be 

reminded that direct online measurement of the PSD is not available and therefore, the 

conductimetry represents a good alternative. Moreover, the sensors measuring the PSD are 

much more expensive than a simple conductimeter. This dissuades their installation for online 



monitoring in the industry, even though it might be possible with a circulation loop. It is to be 

noted that the papers treating direct control of the PSD (based on online measurement of the 

PSD) were mainly simulation studies. 

Here, a new 2 step MIMO control strategy for emulsion polymerisation control using MPC 

was constructed as follows. In the first step, the free surfactant concentration trajectory was 

pre-calculated offline, by model-based optimization, in order to get a predefined bimodal 

PSD. In the second step, a MIMO MPC was applied online to track the pre-calculated 

trajectory of free surfactant concentration and also to maximize the concentration of monomer 

in the polymer particles by a constrained set-point tracking near the saturation value. Both 

monomer and surfactant flow rates were manipulated online. Being model-based, the strategy 

is however dependent on the model quality. For example, the CMC of the surfactant should be 

known. This parameter is however usually well known and it evolves slightly with time 

during the surfactant storage. The controller strategy was validated in presence of important 

model parameter uncertainties (the particle surface covered by a surfactant molecule). The 

obtained PSD was closed to the prescribed PSD using the proposed closed-loop MPC but not 

using the open-loop model response. 

The comparison between the linearized and nonlinear MPC strategies showed that the 

linearized model approach helps to decrease the calculation time by a factor of 8 while the 

performance degradation is lower than 7%. The linearized approach could therefore be 

implemented with a short sampling time (10s), which was not the case for the nonlinear 

controller. Moreover, optimization using a nonlinear model is not always evident and might 

not converge correctly. It should be noted however that the development time of a control 

strategy based on the nonlinear is more straightforward compared to the strategy based on the 

linearized model.  
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Appendix 

Here are the remaining equations used by the nonlinear PDE model (1-12): 

Population balance equations 

The particle growth G(r,t) is given by: 
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The overall rate of entry of radicals into particles is given by ( , ) ( , ) ( , )er emr t r t r tρ ρ ρ= + , with the rate 

of entry of oligomeric radicals into particles ( , )er r tρ  and the rate of entry of monomeric 

radicals into particles ( , )em r tρ  defined as: 
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where the parameters governing radical absorption into particles or micelles and the 

absorption of monomeric radicals into particles are, respectively: 
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where rs(r) is the swollen radius of particles given by: 
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The desorption coefficient of monomeric radicals ( , )desk r t  is determined by: 
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The entry rate coefficient into micelles is: 
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Monomer material balance 

The volume of particles Vp(t) is calculated by: 
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The average number of radicals in the polymer particles ( )n t  can be calculated as follows: 
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The total number of particles ( )T
PN t  is obtained by integrating the PSD over r: 
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Surfactant material balance 

Ns
P (t) and Ns

d (t) are the number of moles of surfactant adsorbed on the polymer and droplet 

surfaces:  
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where Vd(t) is the droplet volume and Sp(t) the total particle surface given by: 
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Table 1: Kinetic scheme for aqueous phase reactions 

Primary radical initiation 2
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Designation and values of the model parameters 

Parameter Designation Value and unit 

asd Droplet surface covered by a surfactant molecule 4.2×10-17dm² 

asp Particle surface covered by a surfactant molecule 4.2×10-17dm² 

bs Parameter of Langmuir isotherm 2.1×103 dm3.mol-1 

CMC Critical micellar concentration 3×10-3mol.dm-3 

dm Monomer density 0.878 kg.dm-3 

dp Polymer density 1.044 kg.dm-3 

Dw Diffusion coefficient of monomer in water 1.5×10-7 dm².s-1 

[E] (t) Concentration of monomeric radicals  mol.dm-3 

f Initiator efficiency 1 [-] 

G(r,t) Particle growth dm.s-1 

i Index [-] 

[I](t) Concentration of initiator mol.dm-3 

[I•](t) Concentration of primary radicals mol.dm-3 

[IMi] (t) Concentration of radicals of length i  mol.dm-3 

jcrit Critical size of solubility of oligomers 5 [-] 

kd-w Partitioning coefficient of monomer between droplets and the 

aqueous phase 

1966 [-] 

kd
w Decomposition rate coefficient of the initiator 7.4×10-7 s-1 

kdes(r,t) Desorption coefficient of monomeric radicals s-1 

ke,E(r,t) Entry rate coefficient of monomeric radicals into particles dm3.mol-1.s-1 

kem,i  Entry rate coefficient into micelles dm3.mol-1.s-1 



ke,i (r,t) Entry rate coefficient of oligo radicals of length i into particles dm3.mol-1.s-1 

kp Propagation rate coefficient of monomer into particles 260 dm3.mol-1.s-1 

kp-w Partitioning coefficient of monomer between particles and the 

aqueous phase 

1348 [-] 

kpI
w Propagation rate coefficient of a primary radical 2600 dm3.mol-1.s-1 

kp1
w Propagation rate coefficient of an oligomer of length 1 1200 dm3.mol-1.s-1 

kp2
w Propagation rate coefficient of an oligomer of length 2 280 dm3.mol-1.s-1 

kp3
w Propagation rate coefficient of an oligomer of length 3 260 dm3.mol-1.s-1 

kp4
w Propagation rate coefficient of an oligomer of length 4 260 dm3.mol-1.s-1 

kpe Coefficient of propagation of monomeric radical 260 dm3.mol-1.s-1 

kpe
w Propagation rate coefficient of monomeric radicals 260 dm3.mol-1.s-1 

kt
w Termination rate coefficient of radicals in the aqueous phase 1.6×109 dm3.mol-1.s-1 

ktr
w Transfer rate coefficient to monomer in the aqueous phase 9.3×10-3 dm3.mol-1.s-1 

ktr Transfer rate coefficient to monomer into the particles 9.3×10-3 dm3.mol-1.s-1 

[M]p(t) Monomer concentration in particles mol.dm-3 

[M]p
sat Monomer concentration in particles under saturation mol.dm-3 

[M]w(t) Monomer concentration in water mol.dm-3 

[M]w
sat Monomer concentration in water under saturation 5.3×10-3  mol.dm-3 

[Mic] (t) Micelle concentration mol.dm-3 

MWM Molecular weight of monomer 0.104 kg.mol-1 

nagg Agglomeration micellar number 60 [-] 

n(r,t) Number of moles of particles of size r at time t mol.dm-1 

( , )n r t  Average number of radicals per particle of size r at time t [-] 

( )n t  Average number of radicals per particle at time t [-] 



NA Avogadro’s number  6.022×1023 mol-1 

Nm(t) Number of moles of residual monomer mol 

Ns(t) Total number of moles of surfactant mol 

P
sN (t) Number of moles of surfactant on particles’ surface mol 

d
sN (t) Number of moles of surfactant on droplets’ surface mol 

NP
T(t) Total number of particles [-] 

Qm(t) Monomer flow rate mol.s-1 

Qs(t) Surfactant flow rate mol.s-1 

r Radius dm 

rd Droplet radius 1.1×10-4 dm 

rmax Maximum radius considered in the PSD calculation 8.26×10-7  dm 

rmic Micelle radius 2.6×10-8 dm 

rnuc Nucleation radius 2.6×10-8 dm 

rs(r) Swollen radius of particles dm 

homℜ (t) Homogeneuous nucleation rate mol.s-1 

micℜ (t) Micellar nucleation rate mol.s-1 

nucℜ (t) Total nucleation rate mol.s-1 

( , )r tρ  Overall rate of entry of radicals into particles mol.s-1 

( , )er r tρ  Rate of entry of oligomeric radicals into particles mol.s-1 

( , )em r tρ  Rate of entry of monomeric radicals into particles mol.s-1 

[S]w(t) Surfactant concentration in water mol.dm-3 

Sp(t) Total particle surface  dm2 

t Time s 

tf Final time s 



[T] (t) Total concentration of radicals in the aqueous phase mol.dm-3 

Vd(t) Volume of droplets dm3 

Vp (t) Volume of particles dm3 

Vw Volume of the aqueous phase 1 dm3 

z Minimum number of units of monomer in the radical for particle 

entry 

3 [-] 

 



Notations for the control strategy 

d Unconstrained manipulated variable 

d0 Unconstrained manipulated variable for S0 

∆d Unconstrained manipulated variable for STVL 

Fb, Fd, H Nonlinear operators 

j Discrete time index in the future  

k Actual discrete time index  

J, J1, J2 Cost function 

Jext Exterior penalty function 

Jtot Total penalized cost function 

Np,Np1, Np2 Prediction horizons (-) 

SNL Nonlinear model 

S0 Nonlinear model computed off-line 

STVL Time-varying linearized model computed online 

t Time (s) 

Ts Sampling time (s) 

u Manipulated variable 

umin Minimum magnitude allowed for the manipulated variable 

umax Maximum magnitude allowed for the manipulated variable 

u0 Manipulated variable for S0 

u∆  Manipulated variable for STVL  



xm Model state 

yp, yp1, yp2 Process output 

yref, yref1, yref2 Reference behavior 

∂Ω  Boundary of the spatial domain 

Ω  Spatial domain 

ζ  Space variable (m) 

1 2,γ γ  Weight for the cost functions 

 



Table footnotes 

1 The time dependence of some variables is voluntary not written, in order to have an easier reading. Theses details may be found in the table 

“Designation and values of the model parameters”. 

2 © University Claude Bernard Lyon 1 - EZUS. In order to use MPC@CB, please contact the author: dufour@lagep.univ-lyon1.fr . Visit the 

website dedicated to this software: http://MPC-AT-CB.univ-lyon1.fr 
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