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Abstract

A new inferential 2-step multiple input/multiple tput (MIMO) model predictive control

(MPC) of the particle size distribution (PSD) in @sion polymerization processes is
proposed. The bulk-like model describing the PSDussd with the material balances of
initiator, radicals, monomer and surfactant. Thierential 2-step control strategy uses two
measurements available online (without delay):civecentration of surfactant in the aqueous
phase by conductimetry, and the concentration afanter by calorimetry. In a first step, the
optimal trajectory of surfactant concentration legdo the target PSD is calculated offline.
In a second step, a multivariable model predictigatrol manipulates online the monomer
and surfactant flow rates in order to track thecpleulated surfactant concentration trajectory
and to maximize the monomer concentration in thigrper particles in a constrained set-
point tracking. Two control strategies are compafohlinear MPC and linearized MPC)

with and without modelling errors.
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1 Introduction

Polymers are the bases of many products. A big plathese products is produced by
emulsion polymerization, such as dispersions (pant adhesives, such as polyvinyl acetate,
acrylic polymers), plastics after particle coagwiat (e.g.: polystyrene, polymethyl
methacrylate) and rubber (e.g.: styrene butadiabbar, neoprene rubber). This process has
several advantages over other free radical polyagon processes comprising the high
conversion rate (close to 100%) and the low vidggosi the medium which enhances
temperature control and reaction mixing. Also, thatinuous phase in this process is water
which reduces the amount of volatile organic conmaisu The emulsion medium contains the
monomer (usually water insoluble) which is the badithe polymer, the reaction initiator and
the surfactant which allows stabilization of thenomer droplets and polymer particles. The
latex produced by emulsion polymerization is chimazed by its polymer molecular weight
and particle size distribution (PSD). The moleculaight distribution affects the mechanical
properties of the final polymer, whereas the PSBc#d the rheological and optical properties
of the latex and its stability. The PSD also afefitm formation properties of the latex
(Geurts et al., 1996). Berend and Richtering (19896Ylied the rheology of monodispersed
and bidispersed lattices and concluded that theosiy depends on the volume fraction of
small to big particles and on the size of each fadjmn (see figure 1). Schneider et al. (2002)
have shown that bimodal PSD allows increasing thiel €ontent while maintaining a low
viscosity (compared to monomodal PSD), which isndérest since high solid contents are

usually desired in order to reduce transport casts drying time. Therefore, it appears that



controlling the PSD (of the final latex) is primabto obtain specific end-use properties for

paints and adhesives.
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Figure 1 - Monomodal PSD latex particles (left) dnmhiodal PSD latex particles (right).

It is worthy to note that the process model desmgilthe PSD is nonlinear, distributed and
includes an important number of parameters thahatevell known or sensitive to impurities.
This renders the model-based control of the PSDificudt task. Moreover, online
measurement of bimodal PSD is not available. Engstiechnologies (such as light scattering)
mainly concern the measurement of monodispersaddatand operate offline. Elizalde et al.
(2000) and Schneider and McKenna (2002) realisemhgparative study of technologies used
to measure the PSD. Separative technologies, sudallary hydrodynamic fractionation
(CHDF), were found to be the most adapted for nuifipersed lattices. But, the main
inconvenience of these techniques is the long aisatyme. Therefore, these measurements
can hardly be used in an online closed-loop contaieme. An interesting alternative
measurement for controlling the PSD is the onlireasurement of the concentration of free
surfactant in the aqueous phase which gives infoomabout the stability of particles and
the concentration of micelles. Santos et al. (203&8d the conductimetry and ion-selective
electrodes to measure the concentration of freenansurfactant molecules (sodium dodecyl

sulfate) in the aqueous phase in emulsion polyaiois.




Until now, the control of the PSD was treated iffedent ways in the literature to obtain a
bimodal PSD. For the PSD control in such processes, may distinguish, batch to batch,
indirect and direct control strategies (Kiparissid2006):
« Batch to batch control

In this method, an offline optimization study isstirealised based on the process model to
determine the optimal input profiles that give ftthesired PSD. Then, the obtained input
profiles are applied experimentally, therefore asgg perfect process modelling. By
collecting measurements after each batch, modelimgrs can be corrected and can be
assumed to remain unchanged for a given lot ofymisd By applying this method, Crowley
et al. (2000) used the surfactant flow rate to idrthe PSD. The so-called zero-one model
was used to represent the PSD in a semi-batch emuytslymerization of styrene. Flores-
Cerillo and MacGregor (2002) proposed a batch tolbeontrol strategy by adding an online
correction of the surfactant concentration in thiddie of the reaction using a prediction of
the PSD obtained by partial least square modekse(ban online temperature measurements
and offline surface tension and PSD measuremdns)anuel and Doyle 11l (2002) used an
open loop genetic control algorithm to predict toatrol profiles to obtain the desired PSD of
a copolymerization process. Doyle Il et al. (20p8)posed a hybrid model-based approach
for batch-to-batch control of the PSD. A fundamémpi@pulation balance model describing
the PSD evolution was augmented by a partial legqisares model. By this way, only slight
batch-to-batch correction was required. Both thdastant and initiator flow rates were
manipulated. Online measurement of the full PSD assumed available, which is still a
challenging issue. The batch to batch iterativadlbeek PSD control was also used by
Immanuel et al. (2008). They considered correctibmodelling errors from batch to batch.
Recently, Alamir et al. (2010) applied an iteratigarning control of the PSD by proposing a

simplified behavioural model to describe the PSBsiBes offline correction of the model and



control inputs, delayed online measurements ofRf8® were used in the feedback control.
Using a behavioural model represents an advantageéodits simplicity and therefore shorter
run time, even though it might increase the babdhatch correction level.

« Indirect (or inferential) control
In inferential control, even though the desiredpamty to control is not measured online, the
controller uses the available measurements tol fiidfi objective. Abedini and Shahrokhi
(2008) used the measurement of the surfactant otmaten to control the PSD by a single
input/single output PID controller that tunes theef surfactant flow rate. They assumed 5%
impurities in the surfactant and 10% model mismatetinly in the coefficient of propagation
rate and the diffusion coefficient of monomer, ¥@leate the robustness of their strategy. The
monomer concentration was not controlled.

« Direct control
Closed-loop direct control corresponds to the adrf the PSD using its online measurement
or an estimate that can be based on its disconisiaaeasurement. It appears that in the case
of PSD control, direct control can only be basedaarestimate of the PSD since there is a
delay in its measurement. Alhamad et al. (2005) Zeaditer et al. (2006) used MPC to
broaden the PSD. Real outputs were inferred by-t@psm model simulation combined with a
corrective term of the model using CHDF offline algdd measurements. Alhamad et al.
(2005) manipulated the flow rates of the monometyréne and methyl methacrylate),
surfactant and initiator and used the zero-onetikimeodel. Zeaiter et al. (2006) manipulated
only the monomer flow rate (styrene) and used aahggnerated through linearization
around the offline optimal trajectory. Thereforge tauthors did not manipulate the surfactant
flow rate, which is however known to be the maimtcol variable of the PSD. Moreover, in
no continuous online measurements were availabléhto closed loop control, even not the

monomer conversion which requires the use of aiggeprocess model: therefore, the



robustness of such control approach is questionadpecially since the polymerization
reactions are usually irreproducible and sensitovempurities. Dokucu et al. (2008) and
Dokucu and Doyle 11l (2008) developed different tohlaws to control the PSD in a semi-
batch emulsion copolymerization reactor. They camgbathe PID and the nonlinear
predictive control using quadratic dynamic matrontoller. They used two measurements:
the solid content (available every minute) and B&D (available every 12 minutes). The
delay of measurement was compensated by an extétaledn filter. In (Dokucu and Doyle
[ll, 2008), the dynamics of the PSD were represtig a reduced order model. They used
the 10 first moments of the PSD as control outplite linear prediction model was obtained
from a nonlinear model using the step response.ubkeof a linear model helped to describe
the variation from nominal trajectories. Dokucu at (2008) used principal component
analysis to obtain the reduced model.

For processes explicitly described by partial ddfgial equations (PDE) model, the
controller can be implemented in two ways. Thetfigsy consists of keeping the infinite
dimensional representation of the PDE model, syititey an infinite dimensional controller,
and using a finite approximation of this contrallefowever, in control theory, due to the
complexity of the problem, relatively few studieave been devoted to the control of
processes explicitly described by PDE models, ealhedn the nonlinear case. The second
more frequent way is therefore to construct adir@pproximation of the model and then to
synthesize a finite dimensional controller. Thegmral PDE model is usually simplified into
an ordinary differential equation (ODE) model usorge of the following numerical methods:
finite differences method, finite volume methodthoigonal collocation method, Galerkin's
method, or modal decomposition. However, even rfous finite dimensional methods are

proposed to control such distributed parameteesaystthere is no general framework yet.



In the present work, the objective is to contr@ether the concentration of free surfactant
and the concentration of monomer, which helps tbtlge prescribed target PSD. Indeed,
Semino and Ray (1995) studied the theoretical obiability of the population balance
equations of this system. They concluded that titastant concentration is the main control
variable of the number of particles and therefoeeRSD in the emulsion polymerisation. In a
previous work (da Silva et al., 2008), the relagioip between the free surfactant
concentration trajectory and the final PSD was destrated. In parallel, controlling the
concentration of monomer in the polymer particldevwes us to avoid the presence of
monomer droplets which might destabilize the ldtexadsorbing surfactant at their surface)
and might delay particle nucleation in an unpreditd manner. Also, controlling the
concentration of monomer in the polymer particléecis particle growth and therefore
directly affects the PSD. For these reasons, thesidered process outputs are the
concentration of free surfactant in the aqueous@lavailable by conductimetry (inferential
control) and the concentration of monomer in trectar available by calorimetry, which are
both easier to measure online than the PSD. Twdéraowvariables are manipulated in the
proposed strategy: the surfactant and monomer rila@s. Note however that the two control
actions could be decoupled and therefore two simglet/single output controllers could also
be developed. Decoupling would however not be peidead therefore we prefer integrating
both actions in a MIMO controller. A 2-step infetiah control strategy is then developed to
get the final target bimodal PSD:

Step 1) Based on a target bimodal PSD and the sgsaoedel, the theoretical trajectory of
concentration of free surfactant into water todallduring the reaction is calculated offline
by optimization.

Step 2) This obtained theoretical trajectory oéfsairfactant concentration is then used in one

of the two control objectives: a trajectory tragkiproblem is defined to control the



concentration of surfactant in the aqueous phadeisacombined to a constrained set-point
regulation problem of the concentration of monomethe polymer particles (which aims at
maximising the monomer concentration but avoiding presence of droplets). The online
measurements are the free surfactant concentrédjononductimetry) and the concentration
of monomer (by calorimetry). The flow rates of swthnt and monomer are both manipulated
online by a MIMO model-based predictive controlderd are constrained in magnitude. We
compare the behaviour of linearized MPC and noalndPC in two simulation cases: the
first case assumes a perfect model, which allowdatang the methodology. The second case
assumes parameter uncertainties that have impamaact on the open-loop results. This test

allows evaluating the performance of the contradied robustness to modelling errors.

The paper is organized as follow: first, the bukelmodel and the various balances needed
are reminded. Secondly, the offline determinatibthe surfactant concentration is presented.
Then, the linearized MPC strategy employed is relethand applied to the described
problem. Simulation results for the 2-step infel@ntlosed-loop control approach are then
discussed, in term of trajectory tracking and fiR8D, both in the ideal case and with

parameter uncertainties.

2 Process model

Modelling of emulsion polymerization processes fedt complex models describing
different physico-chemical phenomena. The populabalance of particles is important to
describe particle nucleation, growth and coagutatfonecessary. Material balances of the
different components (initiator, radicals, monoraed surfactant) must be considered in the
continuous and dispersed phase. In the followihg, thain model equations are given,

whereas the remaining equations are given in theragix.



2.1 Population balance equations

The particle size distribution during emulsion pobrizations may be described either by the
pseudo-bulk model or the zero-one model. These lm@de combined to the reaction kinetics
(propagation, terminations, transfer, and coagutatio predict the evolution of the PSD. The
pseudo-bulk model (see for instance Immanuel angdeDidl (2003)) has a general form and
is available for almost all particle sizes duringsnof the reaction stages since it has no
assumption on the number of radicals in the pagiclThe zero-one model (Gilbert, 1995) is
adapted only for systems where the number of redpmer particle can be either O or 1, such
as styrene polymerization and is applicable atbéginning of most reactions where the gel
effect is negligible. It distinguishes: particldsat have one radical, particles that have no
radicals, and patrticles that have an oligomeriecceddOnly particles containing an oligomeric
radical are subject to radical desorption in thiedel. Edouard et al. (2005) have proposed a
new representation of the zero-one model, calldk-ldkke model. The interest of this model
is that it describes the number of particles opectic size independently of the number of
radicals they contain (which is measurable), wrereathe zero-one model, the online
measurement is only a combination of the 3 stdties.bulk-like model is described as:
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wheren(r,t) and n¢ty are respectively the number of moles of partides the average

number of radicals in particles of sizat timet, with the following boundary conditions:



G(Mye»t) (2)

N(fpyest) =D”U—C(t), 0t>0
N(rue:t) =1, Ot>0

and the associated initial conditions:

n(r,0)=0, Or O fnyc  max| 3
n(r,0)=1, DrD[rnuc rmax] ( )

The total nucleation rate dS.()=0nm®)+0mct), Where the homogeneous (,u) and
micellar (o.(t)) nucleation rates are given by:

Ohom(® =Kp  [MI(O[ M, (9 Ve

crit ™

jcrit -1 (4.)
Onic®= ), kemi[MI(O[IM()Vay

i=1

The nucleation control variables (allowing obtaghanbimodal PSD) can be detected from the
micellar nucleation rate in equation (4.). They e concentration of micelles (determined
by the concentration of surfactant into water) #mal concentration of oligoradicals (affected
by the concentration of initiator and monomer intater). Temperature might also affect the
propagation, solubility and entry parameters wiaffacts the nucleation rate.

Remaining equations are given in the appendix. Thik-like model was validated by
simulation by (Edouard et al., 2005) and is usedhia work combined with the material

balances of initiator, radicals, monomer and stafsidn order to control the PSD.

2.2 Initiator and radicals material balances in the aqueous phase

In order to calculate the concentration of radicalsthe polymer particles, the material
balances of radicals in the aqueous phase shoudtubdeed. As shown in table 1, the reaction

is initiated in water with the initiator decompasit (1] (t)) that produces primary radicals



([177() that react with the monomer molecules dissolvedvater to generate oligomeric
radicals [IM;] (). The total concentration of radicals in the aq@ephase[(T] (t)) is given

by:

Jerie 71
T =TE 1900 + Y [ M) (5.

i=1
where[E] (t) is the concentration of monomeric radicals thateha lipophilic nature and can
easily diffuse into and out of particles. The miaielbalances of initiator and radicals in the

aqueous phase resulting from the reactions descnib&ble 1 are given by:
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2.3 Monomer material balance

The number of moles of residual monomer is givethigymaterial balance of monomer:

(N (1)
Na

AN (1)
dt

= Qm(®) —kp[M] () (7))

where:

*  Qnt) is the flow rate of monomer (used as a contrabadh our control strategy).

» The concentration of monomer in the polymer pat¢M](t) is calculated using the
partitioning coefficients considering that the more is partitioned between water,
droplets and particles:

[MIp(0) =[M] o xkp-yy (8.)
where[M] (1) is the concentration of monomer in the aqueous@aich is limited by
the saturation value of water with monomer (intétvainder saturation, and interval Il

bellow saturation) as follows:

dm

KM W
[MIw(Y) = Em(t) (9)

else

=[M]S, under saturatior

Vi *+Kp-uVp (©)

2.4 Surfactant material balance

The number of moles of surfactant in the reablgt) is given by:

dNs(t)
dt

=Qs(t) (10)
whereQs(t) is the flow rate of surfactant (used as a coraotion in our control strategy). The
concentration of surfactapf (t) in the aqueous phase is the following:

[SI(OVw = Ns(®) = NE () - N0 (11.)
The concentration of micellefMic](t) is calculated from[](t) using the following

expression:



[Mic](t) =max[o,w]

Nagg (12.)
where CMC represents the critical micellar concentration soffactant andn,g is the

aggregation number of surfactant in forming micelle

2.5 Summary for the process model

The nonlinear PDE model (1-12) takes the followgegeral form:

w =Fq(Xm({,t),ut)) ,0¢0Q,t>0)

(Sy) 1 FoOm(¢.0) =0 ,0¢ 09Q, t> 0) (13)
*m(Z,0=x% 0¢0eQ0Q,t=0)
Ym(®) =H(xm(.1) ,0€00Q0Q,t>0)

wherex.,(7,t) =[n(Z,t) n(Z.t) 11 071 M1 [E) Nyt NI is the state vectoym(t)=[[F w(t)
[M] p(t)]T is the vector of measured and controlled output§=[Qs(t) Qu(t)]" is the
manipulated input vector¢is the space variable inside the space domaiwith the

boundaryQ), t is time.Fq, Fp, H are operators of suitable dimensions.

3 Offline determination of surfactant profile

As described by the process model, the surfactrgartitioned between the surface of
particles, droplets (slightly) and the aqueous ph&ghen the concentration of surfactant in
the aqueous phase exceeds the CMC, micelles anedorf the concentration of radicals in

the aqueous phase is sufficient, micelles are hapidcleated to form polymer particles.

Therefore, the free surfactant concentration cacdsidered as a direct control variable of
the PSD (da Silva et al., 2008).

Crowley et al. (2000) used a sequential quadratagramming method to calculate the

optimal flow rate of surfactant that gives the des$iPSD. Immanuel and Doyle Il (2002)



used a genetic algorithm to obtain the global optmthat can then be improved using local
optimization. Such algorithms are stochastic aedttvely use random processes. The choice
of tuning parameters involved in genetic algorithnssich as cross-over and muting
probabilities is quite difficult.

In this work, a deterministic optimization methadused. The optimization procedure aims to
find the desired trajectory of free surfactant @ntcation ([S]ref) that leads to the target PSD
in view of the given initial conditions. This comteation is to be tracked in the online control
step by comparison to the available process ouipes figure 2). In order to do so, the
optimisation seeks the sequence of values of darfadlow rate that is constrained in
magnitude (upper bound and lower bound).

The simulation time is 420 min and is divided id® intervals of 35 min each. It was found
that dividing the time intervals into more thanitfrvals does not change fundamentally the
optimal concentration (i.e., the final PSD trackisgno more strongly improved), whereas
less than 12 intervals does not permit to solveectly the problem (i.e., the optimization
problem is not well-posed leading to large errarghie determination of the nucleation time).
The PDE model (13.) used in this optimization taskrst transformed into an ODE model by
the finite difference method, and then solved by @GDE matlab solver. The function
Isgnonlin in the Matlaff optimization toolbox is used to minimize the Edetn norm
between the desired and simulated PSD. A bimoda&l, R&ich is close to the prescribed
target PSD, is obtained, as shown by figure 3afit be seen that particle nucleation takes
place as soon as the concentration of free surfaeteceeds the CMC, initially during the
fifteen first minutes, due to the initial surfadtamoncentration and after 325 minutes due to
the optimised surfactant flow rate.

Note that when nucleation is not desired, the agation results are not unique (the

concentration of free surfactant can take any vhktereen 0 and slightly less than the CMC).



But, in order to provoke the second nucleation, dbecentration of free surfactant should

exceed the CMC and therefore the same amount fafcsant is added sooner or later (e.g. the
total amount of surfactant into water should inseetom 0 or slightly less than the CMC to

the desired amplitude above the CMC).

Note that the obtained solution remains optimalneNvehere is a change in the surface of
particles and droplets (due for instance to a cekamghe monomer flow rate, reaction rate ...).
Moreover, it is robust to a number of parametess tduthe availability of the measurement of
[S]w- The only parameters that are required preciseyree CMC and 434 which are known

for many surfactants.

Targets Offline Online

. .. . yrefl(r): [S]wret(ﬂ i
Oftline optimization

(requires CMC, n,,,.) 2 MPC % i

Viepy= 0.95% [M)Fﬂt

Constraints:
Ll=o09sx ]

- Minimal and maximal flowrates

Figure 2: Offline and online optimization scheme.
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4 MPC control approach

4.1 Linearized MPC

Among the finite dimensional controllers, modeldgcive control is one of the most popular

(Qin and Badgwell, 2003). It is a particular clagsoptimal control. Thousands of industrial



applications of MPC exist today, for example in tieemical and petrochemical industries.
The main advantage is that constraints (due to:ipu&ted variables, physical limitations,
operating procedures or safety reasons...) may bdicilyp specified into the problem
formulation. The second advantage of MPC is itétglib address long time delays, inverse
responses, significant nonlinearities and multadale interactions.

If the model exhibits a nonlinear behaviour, a nuoa solution technique must be used to
solve this optimization problem which leads to higgmputational effort. The computation
effort may however be greatly reduced by lineagzihe system in some manner and
subsequently employing the optimisation technigdegeloped for linear systems (Zheng,
1997, 1998). Nevistic (1997) showed excellent sanah results when a linear time varying
(LTV) system approximation was used, which was Waled at each time step over the
predicted system trajectory.

A time-varying linearized PDE model-based predietoontrol algorithm is used in this work
(for more details see Dufour et al., 2003). Fortpakying process (De Temmerman et al.,
2009), the performances using this controller noalinear PDE model-based controller were
quite similar. However, while the nonlinear apptoaas not implementable (due to the short
sampling time), the linearized model-based contpproach was implementable. The
computational time was indeed decreased by a fadtothe linearized case

The main idea of this approach is to transformittiggal PDE constrained problem into an
ODE unconstrained problem, such that the time rebédesolve the online optimization
problem is less than the sampling time. In ordedldcso, first, we define a cost functidro
minimise that reflects desired process behavioegulation, trajectory tracking, processing
time or energy consumption). Besides this costtfancoutput and input constraints (related
to the operating conditions, safety or quality) &oemulated as inequality constraints. The

output constraints are handled in the optimizapimblem through the penalty terdy; based



on the exterior penalty method. The cost functbband the penalty ternde: are then
combined into the penalized unconstrained costtiomcly (Fletcher, 1987), where the
penalty weights are tuned classically, as describbédetcher (1987): if one output constraint
is decreasing (but still larger than 0), then itsight is increased. The advantage of such
output constraints handling is that all constrawftshe optimization problem do not need to
be absolutely satisfied for the first iteration,igthis not the case for a barrier method. Hence,
any initial guess may be given for the optimizatiargument. In this formulation, the
manipulated variabla of the process is the constrained (in magnitudevatocity if needed)
optimization argument. This constrained optimizattwgument is then transformed into the
unconstrained optimization argumedt by a simple hyperbolic transformation method
(Dufour et al., 2003). The optimization argumeritas to be determined at each sample kme
using the process measurement (or estimation),nibdel prediction and the penalized
unconstrained cost functiak,.. Each component af is assumed to be a scalar (i.e. a step
function over the horizon).

Then, we proceed to the linearization in ordereuce the computational time needed for the
online resolution task. An offline linearization thed (for more details see Dufour et al.,
2003) of the nonlinear PDE modgy ) around a similar nonlinear PDE model (computed
offline) (&) is used to formulate offline the time varying lBmzed PDE mode[Sn,. ). Then,
online, the resolution of the time varying lineadzPDE mode{Sn,.) replaces the resolution
of the nonlinear modéBy.).

The last step is to approximate the PDE models B¥ @odels in order to be numerically
solved. The control objective is then to find oelithe variationd (hencedu) of the variable

d (hence the manipulated variablearound a chosen trajectady (henceup) that improves at
each sample time the online optimization resulseldaon the model response. The final

internal model structure with MPC (IMC-MPC) struetus given in figure 4.
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Figure 4 - General linearized IMC-MPC structure f@ur et al., 2003).

At each current sampling instakit(k is the actual discrete index of the model dgds the
plant sampling timef=k*Ts), the proposed MPC strategy makes therefore tHewimg
actions:
= the plant measurements are collected for use indgh&ol loop;
= the linearized plant mod€&n,.) is solved online to predict the output behaviauat
hypothetical set of future control sequence ovexcading horizon of lengtNp.
= the unconstrained cost functidg; is optimised (using a modified Levenber-Marquard
algorithm). This cost function accounts for theufet deviations of the predicted
behaviour (from a reference behaviour) and thethopiiput constraints.
= the optimisation result gives a sequence of th@msicained optimization argumesht
The real inpuu is then calculated frord. Then the first value of the optimal control
sequence is applied on the process.
These operations are repeated at ftme This algorithm was implemented in the MPC@CB

softwaré, which is used in this work.



4.2 Formulation for the PSD control

A MIMO control problem is solved here. For the fifsajectory tracking problem, the
reference trajectory for the free surfactant cotre¢ion (g we) IS the trajectory calculate in
section 3 by offline optimization. The second cohtybjective is to maximise the monomer
concentrationf M], but to maintain it below 95% of the saturationueal{ M] p’m). Indeed,
controlling the monomer concentration allows bathiting the presence of droplets and
maximising the rate of particle growth (affectirgetefore the PSD). Exceedifigl] p’m might
have detrimental effects on the control strategyhef PSD: it destabilises the particles and
causes coagulation. It is obvious that a PID cdietravould not be able to maximi$&I], in

a regulation problem and at the same time maintailways below the defined set point: the
controlled output might oscillate around it, which not allowed here. The MIMO MPC
control objective is therefore to obtain the debii§ ., as close as possible [t we and to
maintain the concentration of mononj&f], in the polymer particles as close as possible and
below the value (0.9%M] p’*“). The manipulated variables are the flow ratesusfactant and
monomer that are constrained in magnitude. Note ttleasequence of surfactant flow rate
obtained in the offline optimization procedure & msed. Indeed, polymerization reactions
can be irreproducible and sensitive to impuritiggjch makes computing the optimal flow
rates (input) offline useless. In terms of avagabhline measurements, as discussed before,
the concentration of surfactant in the agueousgbgsconductimetry, and the concentration
of monomer by calorimetry are used. The MIMO opzation problem that allows obtaining
the prescribed bimodal PSD at the end of the palaion reaction is stated in an MPC

formulation as follows:

i J =1d J
u:[Qs(rfkl)anm(k)] () = 1131(u) +y2d o) (14.)

with:



j=k+Ny,
3W= D )~ Ve ()2

j=k+1
Vo =Uyp o2l =[[Sup M
(15.)

T T
Vret =[Vrer1 Vrer 2" =[[Swret [M] pres |
[M] pret =0.95x M]3

Yp2(K) < Yref 2

Umin =[Qs.min Qm.min]T <U(K) <Umax=[Qs . maxlm .meJ;r

5 Resaults

Two simulation cases are discussed:
» The first case assumes a perfect model, which helpalidate the method.
» The second case assumes a parameter uncertainty, kds an important impact on
the open-loop results. This helps to evaluate #ropmance of the controller in a
more realistic case.

In the first case, the proposed linearized MPQefiiais compared to a nonlinear MPC.

5.1 Numerical conditions

The following conditions are used:

The PDE models are approximated using the finitderdince method for spatial

discretization. For the simulated process, 200ialpdiscretization points4r =4x10° dm)

are used (which is enough to be accurate), wheretfl®e model used in the MPC, 50

spatial discretization points\ =1.6x 10 dm) are used (for faster computation).
« The sampling timdis 10s.
« The prediction horizonsNpi= Np,) are 10.

- For the magnitude constraints, the bounds are:



Qs max =1%107° mol.§1

Qs min =0 mol.s* (16.)
Qmmax =1x 103 mol.s* '

Qmnmin =0 mol.§t

« The initial conditions for the state are:

n(r0)=0, 0 rO[ fuc  fnax]
nr0)=1, 0 0 fuc  Fnax]
I(0)= 1x10° mol/dn?
[1](0)=0 mol/dm®

[IM {](0)=0 mol/dm® (a7.)
[E](0)=0 mol/dm

Npm(0)= 5.9x10° mol
Ng(0)=4x10° mol

+ Runs are performed under Matlab R14 for Linux,hwan AMD 64 3000+ 1.8GHz

processor, with 2Go of RAM.

5.2 PSD control assuming perfect process modelling

In the absence of modelling errors or measuremeisenthe simulation results depicted on
figure 5 show that the tracking of the concentratiof surfactant and the constrained
regulation for the monomer concentration are alrpestect. A slight error could however be
observed at the beginning of the reaction, duéearitial gap introduced between the initial
conditions in the process and the references. Tfbet®f this gap can be seen on the position
and height of the first population. The obtainedR the end of the reaction is bimodal with
almost the desired mean diameters, polydispersidsamplitudes. The calculated monomer
and surfactant flow rates are physically realisgbtpire 6) since they respect the predefined
magnitude constraints. Results of the linearizedCMidd nonlinear MPC are therefore quiet

comparable. However, the nonlinear approach regjrémes more computational time to



find the solution than the linearized MPC. In tesfrobjective function minimisation, it is 7%

higher (less precise) in the linearized approacm tthe nonlinear approach. In view of the

computational task and the optimization resultsait be concluded that the use of nonlinear

MPC is not justified. Therefore, only the lineadzkIPC is used in the next simulations. It is

also important to highlight that using the MPC colér remains indispensable since it

allows taking into account the process constraints.
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Figure 5 - Closed loop control without modelingoerftarget (dash), nonlinear MPC (dash

dot), linearized MPC (continuous)): trajectory &img of free surfactant concentration (top),

constrained set-point tracking of monomer concéotmigmiddle), and final PSD (bottom).
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5.3. PSD control with a model parameter uncertainty

A model parameter error is introduced in this sgctn the parametes, which represents the
particle surface that a surfactant molecule carecomdeed, if the surfactant contains any
impurities, its efficiency to stabilise particlesealeases. Furthermore, during surfactant
storage, aggregation of surfactant molecules moghur which directly affectag,. In a first
run, 10% of error is introduced in this parameted & a second run it is increased to 50%.
The impact of this uncertainty over the concentratf free surfactant in the aqueous phase
and the monomer concentration can be seen on §igirend 8. In this simulation, the
linearized MPC is used and is compared to open-lnopel simulation (that does not use

online measurements). As expected, for the opep-lowdel response, the calculated



concentration of free surfactant is strongly aecby theag, error (at the end of the run, the
concentration of free surfactant is 50% lower corag@do the case without error). Indeed, if
the used value dy, is higher than its real value, the particles woadisorb more surfactant
than predicted which reduces the amount of fretastant. The calculated concentration of
monomer is on the contrary almost not affectedhoy eérror (at the end of the run, §id]p is
2.5% higher compared to the case without error)ciwhs not surprising since there is no
direct relation betweeas, and[M]p. Due to the use of online measurements in a ciussul
manner, the optimisation task is found to lead ffaient tracking results in both output
variables which leads to the desired PSD while B0 error inag, the obtained PSD with
the open-loop model is monomodal. Indeed, in thse¢ the concentration of free surfactant
does not exceed the CMC a second time in orderdduge the second population. For the
closed-loop process response, the final obtain€aliB$lose to the desired final shape (figure
9), especially for the second population creatednduthe reaction, in all cases (with and
without modelling error). In terms of control act® (figure 10), the surfactant flow rate is
much more affected with uncertainties (up to 20Bghtthe monomer flow rate is (almost no
difference) due to the impact of this uncertaintygroboth controlled output (up to 50% for
the free surfactant concentration while ca. 3%tHhe monomer concentration). These results
underline the robustness of the controller.

It can be concluded that synthesizing an optimatnelpop controller assuming perfect
modelling would lead to important errors betweea tkal and the desired PSDs, due to
impurities, changes in the raw materials or dueldégradation of the process components.
Meanwhile, the closed-loop MIMO linearized MPC &gy is a much better strategy than
open-loop policy since it reduces the impact of #riror, even with high important modelling

errors.
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6. Conclusion

In this work, a new inferential model-based contsttategy of the PSD in emulsion
polymerisation was developed. Two online measurésnamre considered for the control
purpose: the monomer conversion by calorimetry @wedconcentration of surfactant in the
aqueous phase by conductimetry. The first limitatitay be that conductimetry was validated
experimentally only on low solid content systemieTonductimetry still can be applied to
high solid content systems if a circulating anditidn loop is added. Meanwhile, it should be
reminded that direct online measurement of the RSDot available and therefore, the
conductimetry represents a good alternative. Maeothe sensors measuring the PSD are

much more expensive than a simple conductimetes. diesuades their installation for online



monitoring in the industry, even though it mightgaessible with a circulation loop. It is to be
noted that the papers treating direct control ef®$D (based on online measurement of the
PSD) were mainly simulation studies.

Here, a new 2 step MIMO control strategy for emarispolymerisation control using MPC
was constructed as follows. In the first step, filee surfactant concentration trajectory was
pre-calculated offline, by model-based optimization order to get a predefined bimodal
PSD. In the second step, a MIMO MPC was appliednento track the pre-calculated
trajectory of free surfactant concentration an@ &smaximize the concentration of monomer
in the polymer particles by a constrained set-ptriatking near the saturation value. Both
monomer and surfactant flow rates were manipulatdthe. Being model-based, the strategy
is however dependent on the model quality. For gtenthe CMC of the surfactant should be
known. This parameter is however usually well knoamd it evolves slightly with time
during the surfactant storage. The controller sgatwas validated in presence of important
model parameter uncertainties (the particle surfamesred by a surfactant molecule). The
obtained PSD was closed to the prescribed PSD tisesngroposed closed-loop MPC but not
using the open-loop model response.

The comparison between the linearized and nonliéBC strategies showed that the
linearized model approach helps to decrease tlweilatibn time by a factor of 8 while the
performance degradation is lower than 7%. The fimed approach could therefore be
implemented with a short sampling tim&$), which was not the case for the nonlinear
controller. Moreover, optimization using a nonlin@odel is not always evident and might
not converge correctly. It should be noted howdhat the development time of a control
strategy based on the nonlinear is more straightfat compared to the strategy based on the

linearized model.
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Appendix
Here are the remaining equations used by the rearliRDE model (1-12):

Population balance equations

The particle growtl&(r,t) is given by:

Kp[M] p(t) MW,

G(r,t)= >
A deA

(18

The overall rate of entry of radicals into partgcle given by t) = o (r.t)+ o (r.t) , With the rate
of entry of oligomeric radicals into particleg, .ty and the rate of entry of monomeric
radicals into particleg,,r.t) defined as:

Per (1,1) = ke g (T, OIE](Y)

i:jcril_l
Pem(rt) = Z Kei (r)IM;](1) (19.)

i=z

where the parameters governing radical absorptidn particles or micelles and the

absorption of monomeric radicals into particles agepectively:

ke E(r,t) = 47ms (r ,t)Na Dy (20-)



kei(r,t)= fs(f,t)[M}
|

v (zsi<git D

whererg(r) is the swollen radius of particles given by:

1/3
— dm
rS(r’t)_rx[dm—[M]p(t)Mwm] (21)

The desorption coefficient of monomeric radicals:.t) is determined by:

__30,[MIu(®
Faes(r) r2(r, M1 (0 (22.)
The entry rate coefficient into micelles is:
- =rmcx[%], (2Si jorig -D) (23.)
|
Monomer material balance
The volume of particle¥(t) is calculated by:
Vo (t):%ﬂNA.[roo n(r,t)r3dr (24_)

nuc

The average number of radicals in the polymer glagiht) can be calculated as follows:

00

n(r,t)n(r,t)dr

=T (25.)
n(r,t)dr
[

nuc

The total number of particleg ) is obtained by integrating the PSD over



NB(t) = NAI n(r,t)dr (26.)

I’II'ILIC

Surfactant material balance

NS (t) andNg (t) are the number of moles of surfactant adsorbeth@molymer and droplet

surfaces:
Spbs[SIw(D
NP ) = p
=0 agpNA (1+bs[Slu(1) (27.)
NIy = Ma©)
So= 1N (28.)

whereVy(t) is the droplet volume arfgi(t) the total particle surface given by:

Va ()= (Nm(®) ~[M1uO ey M {9V D) S
m

[ (29')
Sp(t) = 47?NAI n(r,trZdr

Tuc



Table 1: Kinetic scheme for agueous phase reactions

Primary radical initiation

| 0. 21

Polymer radical initiation

1" +M O 1M,

Propagation

kW
IM, +M O - IM, 4

Chain transfer to monomer

IM, +M Ol E+inactive oligomers

Termination

IM, +IM, O 't]- inactive oligomer:

I +T O - inactive oligomer:

E+T 0% inactive oligomer:

Micellar nucleation

IM; +MicO K1 new particle

(z<i < jgrit —1)

Homogeneous nucleation

IM; 4+MO i, new particle

Jeri

Radical entry into particles

IM, + particle, 0'F1 - particle,,

Entry of a monomeric radical into particles

E + particle, 0 FF . particle,,

Desorption of a monomeric radical ffomarticlq]ﬂ 0w, E+ particle

particles




Designation and values of the model parameters

Parameter Designation Value and unit

A Droplet surface covered by a surfactant molecule 4.2x10% dm?

agp Particle surface covered by a surfactant molecule 4.2x10""dm?

bs Parameter of Langmuir isotherm 2.1x10° dm®mol™*

CMC Critical micellar concentration 3x10°mol.dm?®

O Monomer density 0.878 kg.dnt

dp Polymer density 1.044 kg.dri?

Dw Diffusion coefficient of monomer in water 1.5x10" dm2.¢"

[E] (©) Concentration of monomeric radicals mol:dm

f Initiator efficiency 1[]

G(rb) Particle growth dm.s*

[ Index [-]

[1](@®) Concentration of initiator mol.dm®

(1) Concentration of primary radicals mol.dm

[1Mi] (©) Concentration of radicals of length i mol.dm

Jerit Critical size of solubility of oligomers 5]

Ka-w Partitioning coefficient of monomer between droplend the 1966 [-]
agueous phase

ky" Decomposition rate coefficient of the initiator 7.4x10" s*

Kaes(r,t) Desorption coefficient of monomeric radicals Ts

ke e(rt) Entry rate coefficient of monomeric radicals intrticles dm.mort.s?

Kemi Entry rate coefficient into micelles dmolt.s™




kei (r,t) Entry rate coefficient of oligo radicals of lengtimto particles ~ dmmol*.s*
Ko Propagation rate coefficient of monomer into péetic 260 dmmol*.s*
Kp-w Partitioning coefficient of monomer between padscand the 1348 [-]

agueous phase
Kot Propagation rate coefficient of a primary radical 60Q dnm.mol*.s*
Kot Propagation rate coefficient of an oligomer of léng 1200 dmmol*.s*
Ko2" Propagation rate coefficient of an oligomer of lén3 280 dm.mol™.s™
Kos" Propagation rate coefficient of an oligomer of [éng 260 dmmol'.s™
Koa" Propagation rate coefficient of an oligomer of léng 260 dmmol'.s™
Koe Coefficient of propagation of monomeric radical 2B6°.molt.s?
Koe" Propagation rate coefficient of monomeric radicals 260 dnt.mol*.s*
k™ Termination rate coefficient of radicals in the aqus phase  1.6x10°dn.mol*.s?
K" Transfer rate coefficient to monomer in the aqugihese 9.3x103dm’.mort.s?*
ke Transfer rate coefficient to monomer into the mées 9.3x10°dm’.mor*.s*
[M] o(t) Monomer concentration in particles mol.dm
[M] p’ﬁt Monomer concentration in particles under saturation mol.dmi®
[M]w(t) Monomer concentration in water mol.dm
[M] 2 Monomer concentration in water under saturation 5.3x10° mol.dm?
[Mic] (1) Micelle concentration mol.dm®
MWy Molecular weight of monomer 0.104 kg.riol
Nagg Agglomeration micellar number 60 [-]
n(r,t) Number of moles of particles of size r at time t lioho
n(r,t) Average number of radicals per particle of sizetmae t [-]

n()

Average number of radicals per particle at time t

11




Na Avogadro’s number 6.022%10” mol*
Nm(t) Number of moles of residual monomer mol
Ns(t) Total number of moles of surfactant mol

NE (t) Number of moles of surfactant on particles’ surface mol

NS (1) Number of moles of surfactant on droplets’ surface mol

Np' (t) Total number of particles [-]

Qm(t) Monomer flow rate mol.s*

Q1) Surfactant flow rate mol.s"

r Radius dm

rq Droplet radius 1.1x10* dm
I max Maximum radius considered in the PSD calculation 8.26x10" dm
Frmic Micelle radius 2.6x10° dm
Fnuc Nucleation radius 2.6x10° dm
rgr) Swollen radius of particles dm

Ohom (t) Homogeneuous nucleation rate mol.s

O e (O Micellar nucleation rate mol.s*

Onue (1) Total nucleation rate mol.s"

p(r.t) Overall rate of entry of radicals into particles Irsd

Per (1.1) Rate of entry of oligomeric radicals into particles mol.s"
Pem(r.t) Rate of entry of monomeric radicals into particles mol.s*
[Fw(t) Surfactant concentration in water mol.dm
S(1) Total particle surface dnt

t Time S

s Final time S




[T] (t) Total concentration of radicals in the aqueous phas mol.dni®
Vy(t) Volume of droplets dm’
Vp (t) Volume of particles dm’
Vw Volume of the aqueous phase 1°%dm
z Minimum number of units of monomer in the radical particle 3 [-]

entry




Notationsfor the control strategy

d Unconstrained manipulated variable

do Unconstrained manipulated variable &r

4d Unconstrained manipulated variable $v.

Fu, Fa, H Nonlinear operators

] Discrete time index in the future

k Actual discrete time index

J, 1, & Cost function

Jext Exterior penalty function

Jiot Total penalized cost function

Np,Np1, Np2 Prediction horizons (-)

S\ Nonlinear model

S Nonlinear model computed off-line

Sni Time-varying linearized model computed online

t Time (s)

Ts Sampling time (s)

u Manipulated variable

Unmin Minimum magnitude allowed for the manipulated vialéa
Urnax Maximum magnitude allowed for the manipulated Valga
Uo Manipulated variable fog

Au

Manipulated variable foBn,




Xm Model state

Yp, Yp1, Yp2 Process output

Yref, Yref1, Yrer2 Reference behavior

20 Boundary of the spatial domain
Q Spatial domain

¢ Space variable (m)

hr2 Weight for the cost functions




Tablefootnotes

1 The time dependence of some variables is volymiatrwritten, in order to have an easier readifigeses details may be found in the table
“Designation and values of the model parameters”.

2 © University Claude Bernard Lyon 1 - EZUS. In erdo use MPC@CB, please contact the author: d@tagep.univ-lyonl.fr . Visit the

website dedicated to this softwahgtp://MPC-AT-CB.univ-lyon1.fr
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