Target detection with a liquid-crystal-based

passive Stokes polarimeter
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We present an imaging system that measures the polarimetric state of the light coming from each point
of a scene. This system, which determines the four components of the Stokes vector at each spatial
location, is based on a liquid-crystal polarization modulator, which makes it possible to acquire four-
dimensional Stokes parameter images at a standard video rate. We show that using such polarimetric
images instead of simple intensity images can improve target detection and segmentation performance.

© 2004 Optical Society of America
120.5410, 260.5430, 100.0100, 100.5010, 230.3720.

OCIS codes:

1. Introduction

The polarization state of light contains important in-
formation about a scene that is complementary to
information provided by the light’s intensity and
color. Forming an image of the polarization proper-
ties of the light reflected or emitted by a scene is thus
useful in such applications as scene analysis, robot-
ics, and automatic target recognition.’-3 Such an
image can reveal contrasts between two zones of the
scene that have the same intensity reflectivity (so
that no contrast appears in the intensity image) but
different polarimetric properties, which can improve
the detectability of small, low-contrast objects in
images.*-6

Polarimetric imaging systems can be classified into
two categories: passive and active. An active sys-
tem uses an artificial light source to illuminate the
scene. In a passive system the image is formed from
a reflection of the ambient light?:8 or from the radia-
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tion emitted in an IR system.69:10 A polarimetric
camera measures the polarization state of the light
incident upon the camera, and its usual output is a
set of Stokes parameter images. By analyzing the
direction of polarization and the degree of partial
polarization of the reflected light, one can obtain im-
portant information about the presence and the ori-
entation of occluding edges37 or about the surface
orientation of the observed objects.?11-13  Another
important application of polarimetric imagery is in
the determination from their polarimetric properties
of the nature of the materials that are present in a
scene.'* Polarimetric imagery has been found use-
ful in detecting rust during inspection of ships’ hulls?3
and in discriminating between dielectric and metallic
areas on circuit boards,?12 which can be difficult with
intensity or even color images.

We describe in this paper a passive imaging system
that measures the Stokes vector at each spatial loca-
tion in a scene. It uses a variable retardance
scheme,’® and the polarimetric modulation is per-
formed by two liquid-crystal variable retarders
(LCVRs). Because of the rapid action of these de-
vices, Stokes parameter images can be acquired and
formed at a standard video rate. The LCVRs are
key components of the system, and we characterize
their performance in terms of precision of modulation
and image quality with a high-precision Mueller im-
ager. Finally, we address the important problem of
efficiently extracting information from these vecto-
rial images. For that purpose we consider statistics-
based detectors and a state-of-the-art segmentation
algorithm based on statistically active contours and
the principle of minimum description length



Fig. 1.

(MDL).16  We demonstrate the efficiency of these al-
gorithms for the detection of small objects in Stokes
images and for the characterization of their polari-
metric properties.

In Section 2 we describe the Stokes imaging system
and characterize the polarimetric response of the
LCVRs used in the system to assess the precision of
their measurements. In Section 3 we address the
issue of designing efficient processing techniques for
vectorial polarimetric images. After characterizing
the statistical properties of the noise that affects the
images and describing the operation of the image-
processing algorithms that we shall consider, we il-
lustrate the performance of the algorithms with
several images acquired by the Stokes imaging sys-
tem.

2. Stokes Imaging System

The measurement device is based on the use of two
Meadowlark Optics LRC-300 LCVRs. Each one of
these optical components makes it possible to modify
the polarization state of the incident light wave with-
out requiring mechanical actions on the device (rota-
tions). The Stokes garameters of the incident light,
S = [S,, S1, Sg, S3]" (T denotes transposition), can
thus be estimated precisely and rapidly. In the
present case the variable parameter of the device is
not an angular position but a pair of retardances (3,
dy). These retardances are adjusted by the ampli-
tude of a rectangular alternative voltage that is ap-
plied to the LCVR through an intermediately located
command interface board. First we describe the op-
eration of the proposed Stokes polarimeter, and then
we characterize the polarimetric response of the
LCVR.

A. Operation of the Stokes Imaging Polarimeter

A schematic of the device is illustrated in Fig. 1. A
light wave passes successively through a monochro-
matic filter centered on wavelength A\, = 520 nm
(middle of the visible spectrum), two variable retard-
ers, and a linear polarizer. The resultant light in-
tensity is then measured by a CCD camera. The
influence of each of these optical components on the

monochromatic filter

/— liquid crystal variable retarder 1

/— liquid crystal variable retarder 1

/—— linear polarizer

CCD camera

Schematic of the proposed Stokes imaging polarimeter.

state of polarization of the light wave is modeled by a
Stokes—Mueller formalism. Stokes vector S°** of the
light wave at the polarizer output (denoted S” in Fig.
1) is thus related to input Stokes vector S™ (denoted
S in Fig. 1) by the following matrix multiplication:

St = MPOLMR(al) MR(82) SHES Mglobalsin, (1)

where My(3) is the Mueller matrix of a pure retarder
with retardance 8 and Mpqy, is the Mueller matrix of
a linear polarizer.’®> For a given pair of retardances
(81, 8y), light intensity I, measured by the CCD cam-
era corresponds to Stokes parameter S§*. It is thus
alinear function of the input Stokes parameters S of
the observed light:

I=83"
= A(3;, 8)S§ + B(3;, 8)ST + C (34, 3,)S3'
+ D(Sly 82)8?7 (2)

where the parameters [A, B, C, D] correspond to the
first line of M, As a consequence, for each pixel
of the image of the observed scene, one can estimate
the four parameters of Stokes vector S by carrying
out N acquisitions I = {I,, i € [1, N]} for N combina-
tions of delays (3;, 3):

I, A, B, C, D,|/S;

I = MygcurS < IjZ = A:2 B:Z 6;2 DjZ 22 )
i l4s By 6y Dulls,

3)

where matrix My gy is a function of the N couples of
delays (one couple per line) and of the positioning of
the optical components. For expression (3) to be in-
vertible, N must be equal at least to 4. However, in
practice, better results are obtained with larger num-
bers of measurements. When N > 4, one can obtain
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the Stokes parameters by minimizing function F,
given by

S\ |
N 82
FZE Ii_[Aith CiaDi] S3 . (4)
i=1
S,

The positioning of each optical component (s, U5, and
0 in Fig. 1) is chosen to produce parameters 4;, B, C;,
and D, that correspond to sufficient conditioning of
matrix My qr that expression (3) can be safely in-
verted.1?

The maximum acquisition speed of 25 images/s
(standard video rate) implies that Stokes vector S, for
all the pixels of the imaged scene, is obtained in a
minimum time of 160 ms. However, in practice, ob-
taining a more robust estimate of the Stokes param-
eters often requires a sequence of at least N = 8
acquisitions. A 320-ms period is thus necessary to
produce an overdetermination of the system of equa-
tions.

It is important to note that, in the experimental
setup considered here, the light illuminating the
scene may be supposed to be diffuse or nonpolarized.
The observed polarimetric effect comes from the ca-
pacity of the various materials in the scene to polarize
light. One of the physical phenomena that can lead
to this effect is Fresnel reflection at a dielectric inter-
face. Indeed, during this process the components
parallel and orthogonal to the plane of incidence un-
dergo different coefficients of reflection, which can
create a partial polarization of the light.18

B. Characterization of the Polarimetric Response of the
LCVRs

The LCVRs are key components of the proposed
Stokes imaging system, and they determine the ac-
curacy of its measurements. It is thus important to
characterize their properties. The LRC-300 LCVRs
used in the measurement system are constructed by
use of optically flat fused-silica windows and nematic
liquid-crystal materials. These true zero-order re-
tarders are designed for maximum transmission from
400 to 700 nm. With no voltage applied, the liquid-
crystal molecules lie parallel to the glass substrates,
and maximum retardation is achieved. When volt-
age is applied, liquid-crystal molecules begin to tip in
a direction perpendicular to the fused-silica windows.
As voltage increases, the molecules tip further, caus-
ing a reduction in the effective birefringence and,
hence, retardance. The response time for the LCVR
to switch from one-half to zero wave (low to high
voltage) is ~5 ms; it is 20 ms for switching from zero
to one-half wave (high to low voltage).

We are interested in a full characterization of po-
larization controllers, as suggested by Drewes and
Chipman,!® and in studying the spatial response of
the LCVR by taking an imaging approach. For this
purpose we used the imaging Mueller polarimeter
situated at the Laboratoire des Sciences de I'Image,
de I'Information et de la Télédétection, Strasbourg.2°
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Fig. 2. Mueller image of the LCVR. Each subimage represents
the image of a coefficient of the Mueller matrix. The gray scale is
such that negative values appear in dark colors, zero in medium
gray, and positive in lighter gray. All images are normalized with
respect to the positive part of image M, which thus appears
completely white here.

This system can accurately measure the Mueller ma-
trix at each point of a scene. The advantage of such
device compared with a standard nonimaging polar-
imeter is that it makes possible the estimation of the
spatial homogeneity of the polarimetric response.
In fact, for liquid-crystal modulators the lack of spa-
tial homogeneity is often the main problem. How-
ever, we tested regions at the center and on the edges
of the device, and the device’s response proved quite
homogeneous. Figure 2 gives examples of Mueller
images obtained for a 2-V input voltage, correspond-
ing to an approximate half-wave operation, when a
binary pattern is placed in the input beam. It can be
seen that the Mueller response corresponds to that of
a pure retarder.’> Up to the accuracy of the imaging
setup, the diffusion or depolarization effects that
characterize some liquid-crystal modulators have not
been observed. Moreover, the contrast of the binary
pattern is preserved, which indicates good spatial
resolution of the device.

3. Target Detection and Characterization in
Polarimetric Images

In this section we show some examples of applica-
tions in which the Stokes parameter image, com-
pared to simple intensity imaging, can improve
information extraction from a scene. One of the ad-
vantages of precise Stokes imaging is that it reveals
slight variations in the polarimetric properties of the
objects that are present in a scene. Because the con-
trasts are weak, it is necessary to take into account
the nature of the noise that is present in the image to
be able to perform efficient information extraction.
Algorithms based on statistical decision and estima-
tion theory are good candidates for addressing this
problem.
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In Subsection 3.A we determine the nature of the
noise that is present in the images of interest to be
able to design detection and segmentation algo-
rithms. The characteristics of such algorithms are
described in Subsection 3.B, and they are applied in
Subsections 3.C and 3.D to images acquired with the
proposed Stokes imager.

A. Characterization of Noise

Statistics-based detection and segmentation algo-
rithms rely on a probabilistic model of the images.
Let us characterize the noise that affects the images
so we can determine an adequate image model from
which processing algorithms will be derived. Figure
3 presents the four components of the Stokes param-
eter image acquired with the system described in
Section 2. Ten different pairs of retardances (31, 52)
have been used, corresponding to every combination
of 3; = 80°, 240° and &, = 0°, 80°, 160°, 240°, 320°.
For each of these ten pairs of retardances the CCD
camera measures, for each pixel of the observed
scene, light intensity /; used for minimization of func-
tion F [Eq. (4)]. The positioning of the optical com-
ponents is {5; = 20°, §, = 45°, and 6 = 90° (Fig. 1).
These values lead to parameters A;, B;, C;, and D,,
which allow for sufficient conditioning of matrix
M 1car [expression (3)].

The scene represents three small objects on a uni-
form background. The background is made of card-
board, and the objects are small pieces of transparent
cellophane tape. It is interesting to note that com-
ponent S,, which represents the intensity image,
looks quite different from the three other channels.

Sg 53

Fig. 3. Stokes parameter image of three small pieces of transparent cellophane tape on a cardboard background.

The objects, which are transparent, do not appear
clearly in this image, whereas some spots that are
due to dust are quite apparent. In the three other
channels, however, the objects of interest appear in
clear contrast (positive or negative) to a rather uni-
form background. Indeed, these last three channels
of the Stokes vector represent the polarimetric prop-
erties of the light. It can be seen that the light re-
flected from the cardboard background has
homogeneous polarimetric properties, which are dif-
ferent from those of the light reflected from the ob-
jects of interest.

It can also be noted that the noise in channels S;,
S5, and S5 is quite important. This is so because the
polarimetric contrast is weak and thus the dynamic
range of the image is low. Let us now determine the
statistical properties of this noise so we can design
the processing algorithms. We consider the region
outlined by a white rectangle in Fig. 3, channel S;.
We have represented in Fig. 4 histograms of this
region for the three polarimetric channels S;, S,, and
S;. We have superimposed upon the histograms
Gaussian curves with the same means and variances
as the samples.

It can be seen that the noise is close to Gaussian.
We thus consider an image model in which the noise
is Gaussian. More precisely, to process the polari-
metric data we consider a vectorial, three-channel
image S = (S;, S,, S;) composed of the last three
Stokes parameters. This vector will be the input to
the detection and segmentation algorithms. Each of
its channels will be assumed to be statistically inde-
pendent and distributed with a Gaussian probability-
density function.

" histogram ——
035 - Gaussian ------ ]

y T
histogram —— histogram
Gaussian ------ Gaussian -

7 & 5 4 -3 2 4 0 1 2 3 6 4 2

Fig. 4. Histograms of a homogeneous region in the three channels, S;, S,, and S;.
A Gaussian with same mean and variance as the corresponding histogram is drawn (dotted curve) over each

white in Fig. 3, channel S;.

°
2 4 3 6 -5 4 -3 -2 -1 0 1 2 3 4 5

The region considered here is the area outlined in

histogram. Mean m and standard deviation o in the three channels are m; = —2.24 and o; = 1.12in S;; m, = —0.20 and 0, = 1.46 in

Sy; mg = —0.40 and 053 = 1.28 in S;.
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B. Statistical Image Processing

We describe in this subsection algorithms based on
statistical decision and estimation theory that can
solve problems of target detection and shape segmen-
tation in the vectorial Stokes parameter images.
We assume that the image—or the subimage—of in-
terest is composed of two regions: region a, which
corresponds to the object of interest, and region b,
which corresponds to the background. The shape of
the object, which corresponds to the borders between
the two regions, is defined by a set of parameters w.
As explained above, the gray levels in each of these
regions are assumed to be random vectors distributed
with Gaussian probability-density functions. We
describe, in what follows, detection and segmentation
algorithms based on this image model.

1. Target Detection Based on the Generalized
Likelihood Ratio Test

The problem that we address is detection of a target
with shape w (which defines region a) in an image.
For small targets, w can be defined as a square with
the size of the expected targets. We define another
shape, F, which contains w, and we denote the com-
plement of w in F: w = F — w. The number of
pixels in shape F (w, w) is Ny (N,,, N,), with N =
N, + N,.

The image is scanned with mask F and, for each
position 7 = (x, ¥) in the image, detection is made by
use of a generalized likelihood ratio test (GLRT).2!
Inasmuch as the Stokes channels are modeled with
Gaussian probability-density functions with un-
known means and variances, the GLRT consists in
computing, for each position 7, the following expres-
sion?2;

3
R(T, w) = E {—-N, IOg([ég]k) - N, IOg([ég]k)
k=1

+ Ng log([671)}, (5)

where [62], is the variance empirically estimated in
regions a, b, and F in channel S,. We then compare
R(7, w) with a threshold to determine whether a
target is present at position 7.

In practice, the sizes of the searched-for objects
may not be known. The size can then be considered
as a nuisance parameter that can be estimated in the
maximum-likelihood sense. More precisely, let us
denote by {w,, & € [1, K|} the K possible shapes. The
detection criterion that will be used has the following
expression23:

R(7) = max [R(7, w)]. (6)

It consists of choosing the mask w,, that leads to the
highest value of the GLRT.

2. Target Segmentation

Let us now consider segmentation of a single object in
an image. To solve this problem, we use a method
based on polygonal active contours and on the MDL
principle.1® This method consists in determining
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the polygon with the minimal number of nodes that
best approximates the shape of the object, in the
sense of the MDL criterion.1624.25 We deform the
polygon and determine its number of nodes by opti-
mizing a mathematical criterion that depends on the
number and the position of the nodes of the polygon.
w denotes the shape of the object, that is, the coor-
dinates of the nodes of polygonal shape, £ is the num-
ber of nodes of the polygon, and N is the total number
of pixels in the image. In the case where the noise in
each channel is Gaussian, the expression of the math-
ematical criteria is

J(w, k) = >, (N,(w)log{[62],(w)}
k=1
+ Ny(w)log{[62](w)}) + k log N, (7)

where N, (w) and N,(w) are the number of pixels on
the target and on the background, respectively, which
depend on the shape of the object w. This criterion
corresponds to an approximation of the average code
length necessary for encoding the image data.¢

In practice, this criterion is optimized in two
steps.’® In the first step we segment the object by
optimizing J(w, k) with respect to w for an increasing
number of nodes % to obtain a precise estimation of
the object’s shape. The second step consists in re-
moving the less-useful nodes (i.e., decreasing k) one
by one until the criterion J/(w, k&) is minimized. It is
worth noting that this segmentation algorithm pos-
sesses no free parameter to be adjusted by the user.
Examples of application of this method are shown in
Subsection 3.C.

C. Determination of the Shapes of Large Objects

Let us consider first the segmentation of complex
shapes in Stokes images. Figure 5 presents images
of two shapes made from transparent cellophane tape
on a cardboard background. The physical configu-
ration that we used to obtain these images is the
same as that used for Fig. 3. The shapes are barely
visible on intensity images S,, which are also per-
turbed by dust. In channels S;-S;, however, the
shapes appear in clear contrast (positive of a nega-
tive) to the background. As we said above, we thus
work on the vectorial three-channel image composed
of Stokes components S;—S3, to which we apply the
multichannel snake defined in Eq. (7). We present
in Fig. 6 the result of the segmentation of these ob-
jects. The two leftmost figures represent the initial
shape, which is a rectangle. The two central figures
represent the polygonal contour estimated after the
first step of the segmentation algorithm, which con-
sists in progressively adding nodes to the contour to
obtain a precise segmentation. It can be seen that
the global shapes are correctly segmented but that
there are many spurious nodes. Finally, the right-
most two figures represent the result of the second
step, in which the less useful nodes are pruned. One
can see that the objects are accurately segmented
with a limited number of nodes. These accurate and
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Fig. 5. Stokes parameter images of two objects.

parsimonious shape estimates could be used in shape
recognition systems, for example.

D. Detection and Characterization of Regions of Interest

Let us now consider the detection of the three small
objects in the Stokes parameter image of Fig. 3. As
we said above, we are working on a vectorial three-
channel image composed of the Stokes components
Si, Sy, and S;. We apply the multiscale GLRT
defined in Eq. (6), where mask F is a rectangle of

39 X 13 pixels and four masks w,, k € [1, 4] are
considered: They are rectangles of sizes 5 X 3,
11 X 5,21 X 7,and 31 X 9. The GLRTSs adapted to
these masks are applied to the image, and the re-
sults are fused according to Eq. (6). The likelihood
ratio plane R(7) is represented in Fig. 7, together
with vertical and horizontal cross sections. The
positions of the three objects of interest appear
clearly in this image.

Once the regions of interest have been detected by

Fig. 6. Segmentation of the two objects in Fig. 5, in the reduced Stokes parameter images S = {S;, Sy, Ss}.

Left, initial shape (channel

S,); center, results of the first step of the segmentation process (segmentation with node adding); right, results of the second step of the

segmentation process (node pruning).
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Fig. 7. Plane %(7) obtained with the multitarget GLRT on the
image of Fig. 3; maximum of each column and of each line of this
plane.

the GLRT, it can be useful to determine their shapes
and to estimate their average polarization properties
to characterize the nature of the objects. We see
that the MDL-based snake algorithm can perform
this operation efficiently.

Let us consider 50 X 50 pixel subimages centered
on the detected regions of interest. The snake is
initialized as a rectangular shape on the corner of the
images, as shown in Fig. 8, upper row. The contour
then evolves to segment the object, as can be seen
from the bottom row of Fig. 8.

Once the shape of the object has been determined,
it can be used to estimate some parameters, such as
the average polarimetric properties. For example,
we have estimated the average Stokes parameters
within each object, and we have converted them into
another representation of the polarimetric parame-

ters: intensity I, degree of polarization %, and polar
angles ¢ and x of the Poincaré representation of the
principal polarization state of the light. It is well
known that the relation between this representation
and the Stokes parameter is the following2é:

I=38,,
P = (ST + 85+ 89?8,

¢ = stan (Sy/S)),

X = 3sin"(Sy/IP). (8)

Based on the segmentation results obtained in Fig. 8,
the estimated parameters of the objects and of their
surroundings are listed in Table 1. It can be seen
that the average intensities of the objects and of the
surrounding backgrounds are almost identical:
There is no intensity contrast between the objects
and the background. Furthermore, the principal po-
larization states in the objects and in the background
are similar. Indeed, the observed surfaces lie in ap-
proximately the same plane, and it can be conjectured
that the direction and ellipticity of the polarized part
of the light is due to the Fresnel reflection, whose
polarimetric characteristics are linked to the angle of
incidence of the light on the surface and to the dielec-
tric constant. In fact, it can be seen from Table 1
that the main contrast is due to the degree of polar-
ization. The objects, which are pieces of transparent
tape, depolarize the light less than does the coarser
cardboard.

The proposed method is thus able to detect and
segment objects based on their polarimetric proper-
ties. By construction, it takes as an input the last
three components of the Stokes vector and performs

Fig. 8. Result of the segmentation of the three objects detected in the scene of Fig. 3. Top, initial snake; bottom, result of the

segmentation.
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Table 1.

Average Polarimetric Parameters of the Objects Segmented in Fig. 8

Object 1 Object 2 Object 3
Polarimetric
Parameter Object Background Object Background Object Background
I 183 181 185 182 184 182
P 0.037 0.014 0.039 0.015 0.038 0.015
¢ (°) 73 82 74 81 73 81
x (®) 2.5 -2.9 2.35 -1.9 2.7 -2.1

“The parameters are averaged over the regions determined by the snake segmentation algorithm. Polarimetric parameters I (inten-
sity), % (degree of polarization), and ¢ and x (polar angles) are derived from the average Stokes vectors estimated from each region.

detection based on this information. One does not
need to know a priori in which Stokes parameter—or
in which combination of Stokes parameters—a con-
trast exists. In the example given here, it was de-
duced a posteriori (that is, after segmentation) that
the relevant information was the degree of polariza-
tion, but this information was not required for per-
forming the segmentation: The same algorithms
are also efficient if the contrast is in terms of polar-
ization direction or ellipticity.

4. Conclusions

We have presented a Stokes imaging system based on
a variable retardance scheme and liquid-crystal po-
larization modulators that acquires Stokes parame-
ter images at a standard video rate. Because of the
quality of the modulators, this system can detect
faint variations of the polarimetric properties of the
observed materials and thus reveal contrasts that do
not appear in standard intensity images. To extract
information efficiently from the vectorial Stokes pa-
rameter images we used statistics-based detectors
and segmentation algorithms based on statistical ac-
tive contours and the MDL principle. These algo-
rithms were adapted to the processing of such noisy
images, and we have shown some examples of their
performance with real-world data.

The global system composed of the Stokes imaging
system and of the processing algorithm can be used
for such applications as default detection in indus-
trial process control. Of course, it can be improved
in many ways. In particular, calibration is a key
point in such devices,® and work to automate this
operation is under way.

This research was performed in the framework of
Multi-Laboratory Project Team 8, “Polarization im-
agery, from the components to the processing,” of the
department of Sciences et Technologies de
IInformation et la Communication of the Centre Na-
tional de la Recherche Scientifique, whose support is
gratefully acknowledged. The authors thank Pierre
Ambs, Julien Charreyron, Philippe Réfrégier, and Ji-
had Zallat for fruitful discussions.
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