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1. Introduction

Mueller matrices are very important tools for polarization optics since they describe the 
modifications  of  polarization  of  light  after  a  linear  interaction  with  a  sample  under 
interest.  A 4x4  real  matrix  M is  subject  to  verify  a  set  of  constraints  between  its 
elements to be defined as a Mueller matrix. In the previous literature, we can distinguish 
between two possible definitions according to the set of constraints verified by these 
matrices. So, a first family of matrices transforming Stokes vectors into Stokes vectors 
(called “Stokes criterion ”)  has been studied [1,2,3,4,5,6,7] and there exist a complete 
characterization  of  such  matrices.  Givens  and  Kostinski  [8]  and  van  der  Mee  [3] 
conclude that if G stands for the Lorentz metric G =diag[ 1, - 1, - 1, - 1], M corresponds 
to this definition of Mueller matrices if and only if the spectrum of GMTGM is real and 
the eigenvector associated with the largest eigenvalue is a physical Stokes vector. R. 
Sridhar and R. Simon [1] derived also properties for set of matrices and prove for non 
singular matrices a canonical form M= L' ΛL where L' and L are elements of the proper 
orthochronous Lorentz group and Λ is a diagonal matrix.

The second family of matrices, define a Mueller matrix as an ensemble average of pure 
Mueller  matrices  or  Mueller-Jones  matrices  (  the  properties  of  these  Mueller-Jones 
matrices  were  also  extensively  study  and  different  possible  interrelations  for  the 
elements of a general Mueller-Jones matrix are derived in the literature [4,9,10,11,12] ). 
This second family of Mueller matrices was also studied [13,14,15] and Cloude [13] has 
proved that a  4x4 real matrix M is a Mueller matrix with respect to this definition if and 
only if the corresponding coherency matrix constructed from M has only nonnegative 
eigenvalues. 
Obviously these two families are not independent. A matrix of the second family is a 
matrix of the first one, but in general, the converse is not true. 

How to decompose these Mueller matrices  has been studied in the previous literature 
[1,2,16,17,18] too.  Lu  and  Chipman  [17]  for  instance,  proposed  a  three  factors 
decomposition  widely  used  in  the  interpretation  of  experimental  Mueller  matrices 
[19,20]. 
Among the tools used to analyse the mathematical properties of these matrices,  most of 
them were derived from the linear algebra and produce algebraic representations [5] or 
more geometrical representation as the quaternionic formalism  [21].  



Group theory has been also used to study polarization [13,22,23,24] and it is well known 
that non depolarizing optics can be formulated in terms of four by four representations 
of Lorentz group since the four components Stokes parameters may be assimilated to 
the Minkowskian four vectors [25]. 
But probably because the set of all Mueller matrices is not a group, an attempt to define 
a generic form for Mueller matrix is always a field of research. 
Our goal in this contribution is to define a parametric form for non singular Mueller 
matrices. This set of matrices is not a group but a semi-group applied on a 4-dimensions 
space. We propose to address this problem in a space with more than 4 dimensions in 
order  to  introduce  a  group of  transformations  with  the  same number  of  degrees  of 
freedom.  After  a  recalling  of  the  relations  between  non  depolarizing  matrices  and 
Lorentz transformation group, we explain why sub-sets of O(5,1), the orthogonal group 
associated with 6-dimensions Minkowski  space,  is  a  physical  admissible  solution to 
solve this question. Generators of this group are used to define possible expressions of 
an arbitrary  non-singular Mueller matrix. The link with previous expressions about non 
depolarizing Mueller matrices is established.  Eventually, the problem of decomposition 
of  these  matrices  is  addressed  and  we  show  that  the  “reverse”  and  “forward” 
decomposition concepts recently introduced [26] may be inferred from the formalism 
we proposed.

2. Non depolarizing Mueller matrices 

The  four-dimensional Minkowskian [27] space with (x0 ,x1 ,x2 ,x3 ) coordinates - where 
x0 is a time-like coordinate and (x1 ,x2 ,x3 ) are space-like coordinates -  is the four 
vectors  space  associated  with  the  Minkowski  metric.  This  metric  is  defined by the 
metric tensor gµν  with the signature (1,-1,-1,-1) and the definition of the “length” of a 
4-vector x can be written as 

[x ,x ]=g x x                                               (1) 

where [ . , . ] stands for the indefinite scalar product [3,28,29] and where the classical 
implicit summations (Einstein notation ) extend over all 4 components. 
First, we recall here the connections between linear transformations of the Minkowski 
space  which  preserve  the  “length” of  the  4-vectors  and  the  non  singular-non-
depolarizing  Mueller  matrices.  Those  matrices  describe  elements  that  convert 
completely polarized light into completely polarized light and they have equivalent non-
singular Jones matrices [17].  It is well known [2,3,4] that a real invertible 4x4 matrix is 
a non-depolarizing Mueller matrix if and only if it is a positive multiple of an element 
within the group of restricted linear  transformations  of the Minkowski  space which 
preserve the length of the Stokes 4-vectors S = (S0 S1 S2 S3).  
The set of transformations which preserve the length of the 4-vectors is known as the 
Lorentz group. Combining length conservation equation and the basic relation between 
a Lorentz transformation  Γ and the input and output 4-vectors xout

 = 
 x

in ,  the 
condition on Lorentz transformation can be reformulated as : 

g 


=g   or  


 g=g                                   (2)
 
We note that, setting λ = σ  in the first expression, we find the condition :
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0
02−∑

i
0

i 2=1  which implies  0
021 and taking the determinant  on both 

sides of Eq. (2), we obtain det(Γ )2 =1.  It follows that the Lorentz group is the union of 
four  disconnected  pieces  [30].  The  restriction  to  those  transformations  which  are 
continuously connected to the identity transformation (called the proper orthochronous 
Lorentz transformations and denoted SO(3,1)e as the identity component of SO(3,1), the 
associated special orthogonal group. ) requires that 0

01  and det  =1 . 

Under this restriction, the nonsingular nondepolarizing Mueller matrices are the positive 
multiples of Lorentz group matrices with positive left upper corner element and positive 
determinant. These group of matrices is the nonsingular nondepolarizing matrices group 
with  respect  to  the  definition  of  Mueller  matrices  as  an  ensemble  average  of  pure 
Mueller matrices. The nonsingular nondepolarizing matrices with respect to the “Stokes 
criterion” definition, are the positive multiples of Lorentz group matrices with positive 
left upper corner element. Then, corresponding sub-group is given [30] by  {SO(3,1)e } 
∪  {G .SO(3,1)e  } with G = diag(1,-1,-1,-1).  So,  the characterisation of matrices of 
SO(3,1)e completely describes the two sub-groups.

Two examples of  transformations of  SO(3,1)e  are the 3-dimensions rotations and the 
Lorentz boost. Rotations in the 3 spatial dimensions are of the form:

R= 1 [0 ]
[0]T [ r ]                                               ( 3)

where r denotes ordinary 3x3 rotation matrices and [0] is for  [0 0 0] vector. As the 3-
dimensions  rotations  depend  on  3  parameters  (Euler  angles  φ,θ,ψ  for  instance), 
R  =  R(φ,θ,ψ )  denotes  the  corresponding  rotation  in  the  Lorentz  group  with: 
R(φ,θ,ψ ) = R3(φ )R2(θ )R3(ψ ). Thus in terms of the Euler angles, every rotation can be 
decomposed into a product of elementary rotations around the fixed axes of x2 and x3. 
The  second  example  of  these  Lorentz  transformations  is  the  Lorentz  boost.  Such 
transformations  mix  space-like  coordinates  with  the  time-like  coordinate.  A simple 
example of these boosts is the Lorentz boost along the x3 coordinate with the associated 
matrix L3(u) (corresponding expressions for the boost along the x1 and x2 coordinate can 
be derived from Ref. [25] ):

L3u =cosh u 0 0 sinhu
0 1 0 0
0 0 1 0

sinh u  0 0 cosh u                                 (4)

It is straightforward to prove [3,22] that these Lorentz transformations matrices may be 
regarded as the translation into the four by four formalism of Jones matrices: Jones 
matrices of elliptical retarders (or phase shifters) and elliptical diattenuators (or partial 
polarizers) respectively. 
Since a general element Γ of the proper orthochronous Lorentz group can be uniquely 
written in the factorized form ( Ref. [27] contains a generic form of this factorization. 
Eq. (5) can be derived from the prof of this property by just  noting that the rotation 
which brings an arbitrary vector to the z axis is the result of a first rotation around the z 
axis by angle α followed by a rotation around the y axis by angle β, see [27] pp.11-12 
for notation):
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=R  , ,L3u R
−1 , , 0                                    (5)

a  non-depolarizing  Mueller  matrix  M  (with  respect  to  second  definition  family), 
proportional  (with  a  positive  constant  k)  to  a  Lorentz  transformation  Γ  ,  may  be 
factorized in two terms, a pure rotation and a pure Lorentz boost and from Eq.(5)  we 
have: 

M= k [R  , , L30R−1 , , 0] [R  ,  , 0L3u R−1 , , 0]  (6)

where  the pure rotation and  pure Lorentz boost are the first and the second bracketed 
factor, respectively. And arbitrary elements of the group can be written as the product of 
those two matrices but  for suitable u,α,β,ϕ,θ and ψ  since the matrix multiplication is 
not commutative.
These non-depolarizing matrices have only 7 degrees of freedom [31]. So, there are nine 
relations  between  the  16  matrix  elements.  These  nine  relations  have  already  been 
derived explicitly in [32,33] for instance.  This result is obvious when we observe Eq.
(6 ) but it could be also predicted as can be seen as follows: a general 4x4 real matrix 
has 16 arbitrary elements but Eq.(2) contains 10 independent constraints. The result is 
then  only 6  degrees  of  freedom for  a  Lorentz  transformation.  For  non-depolarizing 
Mueller matrices, one degree of freedom is added by the proportionality constant k of 
Eq.(6).

3. Non singular Mueller matrices 

This approach is very interesting to define a mathematical framework to investigate the 
most general expression of non singular Mueller matrices. This set of matrices is not a 
group ( in fact it is a semi-group) – the inverse matrix of a pure depolarizer for instance 
is not a Mueller matrix – but this difficulty may be overcome if we consider a group of 
transformations continuously connected to the identity transformation and preserving a 
N-vectors norm such as the proper Lorentz transformations with the 4-vectors of the 
Minkowski space.   
The problems with such approach are : how do we determine N, the space dimension 
and how do we chose the appropriate norm? For a N dimensions space, the general rule 
gives the  number of degrees of freedom D = N2 – N(N+1)/2 = N(N-1)/2. So it is easy to 
find out that with N=6 we reach the  total of 15 degrees of freedom ( 36 elements but 21 
independent  constraints)  which  is  the  number  of  degrees  of  freedom  of  a  general 
Mueller  matrix  (after  normalization by the  first  coefficient  for  instance).   A similar 
approach  was  already used  by Cloude  [13] to  develop  an  homomorphism between 
SU(4)  (the  Special  Unitary group)  and O+(6)  (the  Real  Orthogonal  group)  used  for 
describing the interaction of polarized waves with targets. 
Following a similar approach proposed in [13,22], we introduce a 6-dimensions space 
in  order  to  deal  with  this  problem.  This  6-dimensions  space  has  6  coordinates 
(x0 ,x1 ,x2 ,x3, x4, x5 ).  The proposed space should contain a Minkowskian subspace 
associated  with  the  four  first  components  for  instance.  Then,  this  subspace  can  be 
assimilated with the polarization space (it means (x0 ,x1 ,x2 ,x3) = (S0 S1 S2 S3) ). An 
associated metric is defined by the metric tensor gµν with the signature (1,-1,-1,-1, g44 , 
g55)  and  the  study  of  the  previous  paragraph  allows  to  maintain  that  the  linear 
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transformations  of  this  space  which  preserve  the  length  of  these  6-vectors  have  15 
degrees of freedom. 
In order to find out the sign of the both unknown values of the metric tensor, we note 
that setting µ=ν=0 in the second equation (2), we obtain the condition:

0
02−∑

i=1

3

 i
02g444

02g555
02=1                              (7)

We consider now the case of unpolarized incident state. The exiting state is determined 
only by the first column of the Mueller matrix and the degree of polarisation of this 
light  resulting  from the  unpolarized  input  is  called  [17,34]  the  polarizance  P.  This 
polarizance is given by:

P=1
022

023
02

0
0                                         (8)

Combining Eqs. (7)- (8), we obtain the expression:

P2 = 1 −
1−g444

02−g555
02

0
02

                                 (9)

As the degree of polarization of the exiting beam cannot be greater than 1, it is clear 
from (9) that we must have g44 = g55 = -1 in order to deal with a physical meaning 
solution.  So, we are now considering the group O(5,1) and more precisely its identity 
component  SO(5,1)e.  Matrices  with  unit  determinant  and  positive  left  upper  corner 
element are the SO(5,1)e subgroup elements. Matrices with unit square determinant and 
positive  left  upper  corner  element  are  the  {SO(5,1)e }  ∪ {G  .SO(5,1)e  } subgroup 
elements. As with  SO(3,1)e and the nondepolarizing matrices, the characterisation of 
matrices of SO(5,1)e completely describes the two sub-groups. But what was impossible 
to deal in the 4-dimensions space with the SO(3,1)e transformations (change the value of 
the  norm of  the  Stokes  vector)  will  be  now  possible  in  the  full  space  where  this  
subspace  is  included  and  the  4x4  matrix  (associated  with  the  polarization  space 
(x0 ,x1 ,x2 ,x3) will be  always a physical Mueller matrix. 
As  SO(5,1)e is  a  matrix  Lie  group  with  15  degrees  of  freedom,  we can  focus  our 
attention on the 15 generators of the group rather than the infinite number of group 
elements. These generators are elements of the Lie algebra [35] of the group SO(5,1)e – 
The Lie algebra of a matrix Lie group LG  is the set of all matrices X such that e i t X is 
in LG for all real number t – Once the generators are known, the group elements can all 
be determined since this set of generators is a basis for the Lie algebra that is also a 
vector space. Six of these generators may be regarded as the translation of well known 
Lorentz  group  generators   in  the  6-dimensions  space.  We  can  dissociate  these  6 
generators in terms of more familiar quantities: 3 rotations generators: J23, J13, J12  stand 
for  the  generators  of   rotation  of  the  (x1 ,x2 ,x3)  space-like  components;  3  boost 
generators: J01, J02, J03 stand for the generators of boosts mixing space-like coordinate xj 

(j = 1,2,3) with the time-like coordinate x0 . In the 6 dimensions space, we have now two 
other boost generators J04, J05 and 7 other rotation generators J14 , J24 , J34, J15 , J25 , J35 , 
J45. 
Eq.(10) shows examples of these generators and the associated matrices. The generators 

4



(J01, J02, J04, J05) may be deduced from the expression of J03, (J34, J45, J14, J25  )  from J12 

and (J24, J35, J15 ) from J13. 

(10)

According to the matrix Lie group theory, we can deduce a formal expression for an 
arbitrary element T of SO(5,1)e (with the Einstein notation): 

T = e
−i

2
mn Jmn                                              (11)

where  αmn  is  a  15  parameters  anti-symmetric  second  rank  tensor  (15  parameters 
corresponding to the 15 degrees of freedom). 
So, an arbitrary non-singular Mueller matrix is given by the 4x4 sub-matrix extracted 
from the T matrix of Eq.(11). This first expression for a non-singular Mueller matrix is 
not necessarily the most practical one for analysing the physical phenomena expressed 
by these matrices. For instance, the previous expression of non-depolarizing matrices 
derived  from  the  Lorentz  transformations  can  not  be  readily  extracted  from  this 
expression since e AB ≠eA eB for non commuting matrices ( AB – BA = [A,B] ≠ 0, 
where [A,B] operator is termed the commutator or brackets of A,B matrices ). More 
useful expression can be derived from the commutation relations of the generators of 
this Lie algebra.
Commutation rules associated with this Lie algebra are given by two sets of relations 
(explicit calculations of the matrix products give the following results) : 

5

J03=
0 0 0 i 0 0
0 0 0 0 0 0
0 0 0 0 0 0
i 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 L03u = e−i u J 03 =
cosh u  0 0 sinh u  0 0

0 1 0 0 0 0
0 0 1 0 0 0

sinh u  0 0 cosh u  0 0
0 0 0 0 1 0
0 0 0 0 0 1


J12=

0 0 0 0 0 0
0 0 −i 0 0 0
0 i 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ℜ12 = e−i  J12 =
1 0 0 0 0 0
0 cos  −sin   0 0 0
0 sin   cos  0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


J13=0 0 0 0 0 0

0 0 0 i 0 0
0 0 0 0 0 0
0 −i 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ℜ13 = e−i  J13 =
1 0 0 0 0 0
0 cos 0 sin   0 0
0 0 1 0 0 0
0 −sin  0 cos  0 0
0 0 0 0 1 0
0 0 0 0 0 1


J23=

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −i 0 0
0 0 i 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ℜ23 = e−i  J23 =
1 0 0 0 0 0
0 1 0 0 0 0
0 0 cos −sin  0 0
0 0 sin  cos 0 0
0 0 0 0 1 0
0 0 0 0 0 1





 (12)

[J h4 , Jkm ]=−ihkm Jm4 k ,h ,m∈{1,2 ,3}
[J h5 , Jkm ]=−ihkm Jm5 k ,h , m∈{1,2 ,3}
[J0h , Jkm ]=−ihkm J0m k ,h ,m∈{1,2 ,3}

                           (13)

where hkm is the totally anti-symmetric unit tensor of rank 3.
The two sets  of  relations  (12)  & (13)  show that  these  generators  are  closed  under 
brackets and immediate consequences of the Lie algebra associated with the generators 
of Eq. (13) are for j ∈{1,2,3}:

ℜJ j4ℜ
−1=Jk4ℜ j

k

ℜJ j5ℜ
−1=J k5ℜ j

k

ℜJ0j ℜ
−1=J0k ℜ j

k
                                                  (14)

where ℜ is  the 6-dimensions  matrix  ( ℜ j
k is  the  j-th  element  of  the  k-th  row of 

ℜ )  of  any  3-rotation  of  (x1 ,x2 ,x3)  space-like  coordinates  and  we  have
ℜ , , =ℜ12ℜ13ℜ12  where ℜij are defined in Eqs. (10) . It follows 

then from Eqs.(14) and the first set of Eqs. (12) that 

Jn 4 = ℜ J34ℜ
−1=J k4ℜ , ,03

k = Jk4 nk

Jn 5 = ℜJ35ℜ
−1=Jk5ℜ ,  ,03

k = Jk5 nk

J0n = ℜ J03ℜ
−1=J0k ℜ , ,0 3

k = J0k nk
                             (15)

where nk are the components of any (x1 ,x2 ,x3) arbitrary spatial directions n defined 
by the rotation ℜ , ,0 which brings basis vector of axis x3 to n  , .
A similar expression for the rotation of the spatial components (x1 ,x2 ,x3) can be derived 
from the first set of Eqs. (12):

Jn = ℜ J12ℜ
−1=Jk ℜ , ,03

k = Jk nk                           (16)

with J1 = J23, J2 = J12 and J3 = J13.

Eq. (15) shows that {Jj4}, {Jj5}and {J0j} form basis for the generators Jn4 , Jn5 and
J0n  respectively and Eq. (16) shows that J23, J12 and J13 form a basis for the generators 
Jn .  Thus,  from  the  previous  properties  and  the  elementary  matrix  identity: 
ℜe−iGℜ−1 = e−iℜ G ℜ−1 , T may be decomposed as a product of five 6x6 matrices 

(in whatever order) for suitable parameters

(17)

6

[J12 , J13 ]=−i J23 [J12 , J23]= iJ13 [J13 , J23 ]=−i J12

[J04 , J05]=−i J45 [ J05 , J45 ]=i J04 [ J04 , J45 ]=−i J05

TR= [ℜ , ,0ℜ12ℜ−1 , ,0] TD= [ℜ , ,0L03u ℜ
−1  , ,0]

T 1234= [ℜ , , 0ℜ34ℜ
−1 , , 0] T 1235= [ℜ , , 0ℜ35ℜ

−1 , , 0]
T 045= [L04vℜ45L05w]



with TR resulting from Eq.(16), TD from the third equation of Eqs. (15), T∆1234 from the 
first equation of Eqs. (15), T∆1235 from the second equation of Eqs. (15) and T∆045 from 
the second line of Eqs. (12). So, a general transformation T of SO(5,1)e may be regarded 
as a combination of space-like coordinates rotation in a plane specified by a unit vector 
n  , and the x3 axis and with an angle of rotationψ , a boost with u as parameter 

mixing  the  time-like  coordinates  with   a  (x1 ,x2 ,x3)  spatial  direction n  , ,  a 
rotation in a plane specified by a unit vector n  , and x4 axis and an other one in a 
plane specified by a unit vector n  ,  and x5 axis. These latter rotations are with 
angles of rotation  µ and  ν  respectively. The last term is formed by the closed set of 
generators J04, J05 and J45.

4. Non singular Mueller matrix decomposition

It is then a straightforward calculation from Eq.(17) to show that the corresponding sub-
matrices associated with the polarization space (or Mueller matrices) may be regarded 
as a product of three matrices MR, MD and M∆. MR  (retardance ) and MD (diattenuation), 
related to TR and TD   are the non depolarizing Mueller matrices of the decomposition 
and M∆ ( related to T∆1234 , T∆1235  and T∆045  and denoted  T∆ ) stands for the depolarizing 
matrix. 
The first part (TR TD matrices) of the decomposition  may be regarded as the translation 
of Eq.(6) in the 6-dimensions space. It is straightforward from definitions of L30 and 
rotation matrices to prove that the product of these matrices has the form:
                                                                                               

TR TD = MR MD 0
0 I2 TD' TR ' = MD' MR ' 0

0 I2                   (18)

where MR and MD are matrices defined by Eqs.(6) and I2 is for the identity matrix of 
order two.
The second part of the decomposition formed by the product of  T∆1234 , T∆1235  and T∆045 

matrices taken in whatever order,  is written as

         T= M X
Y Z                                                  (19)

With the expressions  of matrices of  Eq.  (18)-(19),  a sub-matrix associated with the 
polarization space is then the product of MR, MD and M∆ in whatever order. The third 
factor M∆ standing for the depolarizing matrix has not a so straightforward interpretation 
as the first ones because of the commutation relations of the corresponding generators.

5 - Decomposition of depolarizing Mueller matrices

The great difference between the set of generators of the non depolarizing part (J01, J02, 
J03, J12   J13 and J23) and the set of generators of the depolarizing part ( J04, J05, J45, J14,  J24, 
J34,  J15  J25 and  J35)  comes  from closure  properties  under  the  bracket  operation.  The 

7



second set is not closed ( [J14 , J34] = -i.J13, for instance) and mixes indices from the 
polarization space (that is (x0 ,x1 ,x2 ,x3)) with the two other indices. In fact, we also 
have a closure relation with respect to indices 04, 05 and 45 ( second set of relations 
from Eqs.(12))  and  the  problem is  mainly concentrated  on  the  6  others  generators. 
Immediate consequences are:  we may have a non depolarizing part in the M∆ matrices 
and the Mueller matrix related to the product of  T∆1 and T∆2 is not necessary the product 
of the two matrices  M∆1 and  M∆2 extracted from T∆1  and T∆2 respectively (but it is a 
Mueller matrix). 

If we used for instance the previous decomposition of T∆ as a product of T∆1234, T∆1235 and 
T∆045, the associated Mueller matrices have the following expressions (from  Eq. (10) 
and (17) ):

M1234 =  1 [0]
[0]T m1234 M1235 =  1 [0]

[0]T m1235 M 045 =  a [0 ]
[0]T I3   (20)

where  m∆1234 and   m∆1235 are  symmetric  matrices  according  to  the  corresponding 
expressions  of ℜ34 and ℜ35 matrices.  M∆1234 and Μ∆1235  have  the  same  kind  of 
expression but with different parameters. Their product is not a symmetric matrix in the 
general case. So if we decompose this matrix by a polar decomposition (proposed by Lu 
& Chipman [17] ) in order to symmetrize it , a rotation matrix MR  will be extracted. 

Nevertheless,  instead  of  considering  the  matrices  T∆1234 ,  T∆1235  and  T∆045  and  their 
Mueller matrix counterparts, it is possible to directly construct a symmetric expression 
considering the matrices  T∆12345 generated by the following set of generators { J14, J24, 
J34, J15  J25,  J35}. The associated  Mueller matrices have the following expression (see 
appendix A for the proof):

M12345 =  1 [0]
[0]T m12345                                       (21)

where m∆12345 is a symmetric matrix. From the commutation relations of these generators 
- Eqs. (13) - and a similar approach previously used to derived Eqs. (17), it is possible 
to prove that T∆12345  has the following expression:

T 12345= [ℜ12ℜ13 ] [ℜ23ℜ45 ]ℜ34ℜ25 ...
..... [ℜ23ℜ45]−1 [ℜ12ℜ13 ]

−1    (22)

Since the expressions of Mueller matrices associated with ℜ34  and ℜ25 are already 
in  a  diagonalized  form (straightforward  from the  definition  of ℜ34 =e−i J 34 and 
ℜ25 =e−i J25 ),  with  eigenvalues  for  the  corresponding  3x3  m-matrices  {1,  1, 

cos(µ)} and {1, cos(ν), 1} respectively, it results from Eq. (22) that the eigenvalues of 
m∆12345   are given by {1, cos(µ), cos(ν)}.  The eigenvalues of this matrix are principal 
depolarization factors [17] (depolarization factors along the principal axis given by the 
eigenvectors of  m∆12345 ). 

Now, if we consider the matrices generated by the last three generators J04, J05, J45 of the 
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depolarizing part, from the third term of Eq.(20), the eigenvalues of the Mueller matrix 
Μ∆045  associated with T∆045 matrix are { 1, 1/a, 1/a, 1/a } after normalization to “a”. And 
we have from Eqs. (17) and the definitions of matrices L04(v), L05(w) and ℜ45 : 

    a = cosh(v) cosh(w)                                                 (23)

It is worth noting that the result of matrix factorisation leads us to describe the process 
of depolarization as a combination of an isotropic contraction of the Poincaré sphere 
(Μ∆045 matrix) and an non isotropic contraction ( M∆12345 matrix ) inducing a symmetry 
breaking. 
The  corresponding  sub-matrices  associated  with  the  polarization  space  verify  the 
following matrix multiplication rules:

T 12345 T045 = M 12345 G
H J M 045 K

N Q = M12345 M045GN X
Y Z    (24)

T 045T 12345 = M 045 K
N QM12345 G

H J  = M045M12345KH X '
Y ' Z '     (25)

M∆12345 and  M∆045 are  matrices  of  depolarizers,  but  are  not  sufficient  to  define  the 
resulting sub-matrix of the depolarizing part, since the total decomposition takes one of 
the  two  following  expressions  (this  is  an  illustration  of  the  previous  remark  about 
Mueller matrix resulting from a product that is not necessary the product of original 
Mueller matrices):    

M
f = M 12345 M 045GN                                         (26)

M
r = M045 M12345KH                                         (27)

and we have GN =  0 [0]
[P ]

T [0]3 and KH =  0 D

[0]T [0]3 where [0]3 is the null 

matrix of order three. Eventually, the definitions of matrices involved in Eq. (20) and 
Eq.(26) prove that the sub-matrix M∆ has one of the two forms: 

M
f = a [0 ]

[P ]
T m 12345 or  M

r = a D

[0]T m12345                        (28)

where m∆12345  denotes the symmetric 3x3 matrix previously introduced and [0] is for 
[0 0 0] vector. After normalization to “a”, the three principal depolarization factors of 
these matrices are :

 { 1
cosh vcosh w

, cos 
cosh vcosh w

, cos  
cosh v cosh w  }            (29)

So, the existence of a polarizance vector P∆ or a diattenuation vector D∆ for the non 
singular depolarizing matrices is resulting from the interaction between the isotropic 
contribution  and  non-isotropic  one  and  depends  on  the  position  of  the  isotropic 
contraction (or depolarization in optical terms) matrix relative to  the non-isotropic one. 
And the other hand, these both expressions Mf

∆ and Mr
∆ correspond with the reverse and 
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forward product decomposition concept proposed by Ossikovski & al. [26] as an answer 
to  the  difficulty  point  out   by  Morio  &  al.  [36]  about  the  Lu  & Chipman  matrix 
decomposition process. The “forward” and “reverse” families clearly appear from this 
two M∆ expressions since we have:

MD MR M
r =  a DD mR m

a DT DT DmD m R m
                        (30)

where we can always identify PT = DT as the element of the first column and 

M
f MR MD =  a a D

P
Tm mR DT P

T Dm mR mD                (31) 

where we can always identify D as the element of the first row. It is straightforward to 
demonstrate  that a  similar result is verified what ever order for MR in the product. So, 
we show that the “reverse” and “forward” decomposition concepts recently introduced 
[26] may be inferred from the formalism we proposed.

6 - Conclusion

We proposed a  general  parametric  form for  any non singular  Mueller  matrices.  We 
addressed this problem in a 6 dimension space in order to introduce a  group with the 
same  number  of  degrees  of  freedom  and  explained  why  SO(5,1)e is  a  physical 
admissible solution to solve this question. Generators of this group are used to define 
possible expressions of an arbitrary non-singular Mueller matrix. The link with previous 
expressions is established . Eventually, the problem of decomposition of these matrices 
is addressed and we show that the “reverse” and “forward” decomposition concepts 
recently introduced [26] may be inferred from the formalism we proposed. 

Appendix A:

We consider the J matrix defined by :

J = i∑i=1

3

i J i4∑
k=1

3

 k Jk5                                       (A1)

from the expressions of the generators, J has the following form: 

J =  [0 ]4 −AT

A [0]2 with A = 0 a12 a13 a14

0 a22 a23 a24 akl∈ℝ           (A2)

where [0]4 and [0]2 are respectively for null matrices of 4-dimensions and 2-dimensions.
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A direct computation of J2 gives the following expression:

J2 = −AT A [0 ]24
T

[0]24 A AT                                             (A3)

where ATA is a symmetric square matrix with the entries of the first raw and first column 
equal to 0. It is straightforward from a recursive computation to prove that the matrices 
J2k and J2k+1 have the following expressions:

J2k = −1kAT Ak [0]24
T

[0]24 −1k A ATk                

J 2k1 =  [0]4 −1k1AT A k AT

−1k A ATk A [0 ]2                              (A4)

The exponential of J is defined as the usual power series:

eJ = ∑
m=0

∞ Jm

m !
                                                     (A5)

Then, as a summation of symmetric matrices with the entries of the first raw and first 
column  equal  to  0  (except  for  m=0  since  J0 =  I  ),  the  resulting  sub-matrix  of  eJ 

associated with the polarization space has the form:

  1 [0]
[0]T m                                                     (A6)

where m denotes a symmetric 3x3 matrix.
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