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Definition of a parametric form of non singular Mueller matrices

Introduction

Mueller matrices are very important tools for polarization optics since they describe the modifications of polarization of light after a linear interaction with a sample under interest. A 4x4 real matrix M is subject to verify a set of constraints between its elements to be defined as a Mueller matrix. In the previous literature, we can distinguish between two possible definitions according to the set of constraints verified by these matrices. So, a first family of matrices transforming Stokes vectors into Stokes vectors (called "Stokes criterion ") has been studied [START_REF] Sridhar | Normal form for Mueller matrices in polarization optics[END_REF][START_REF] Xing | On the deterministic and non-deterministic Mueller matrix[END_REF][START_REF] Van Der Mee | An eigenvalue criterion for matrices transforming Stokes parameters[END_REF][START_REF] Hovenier | Structure of a general pure Mueller matrix[END_REF][START_REF] Gopala | On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix[END_REF][START_REF] Kumar | Characterization of Mueller matrices in polarization optics[END_REF][START_REF] Kostinski | Constraints on Mueller matrices of polarization optics[END_REF] and there exist a complete characterization of such matrices. Givens and Kostinski [START_REF] Givens | A simple necessary and sufficient condition on physically realizable Mueller matrices[END_REF] and van der Mee [START_REF] Van Der Mee | An eigenvalue criterion for matrices transforming Stokes parameters[END_REF] conclude that if G stands for the Lorentz metric G =diag[ 1, -1, -1, -1], M corresponds to this definition of Mueller matrices if and only if the spectrum of GM T GM is real and the eigenvector associated with the largest eigenvalue is a physical Stokes vector. R. Sridhar and R. Simon [START_REF] Sridhar | Normal form for Mueller matrices in polarization optics[END_REF] derived also properties for set of matrices and prove for non singular matrices a canonical form M= L' ΛL where L' and L are elements of the proper orthochronous Lorentz group and Λ is a diagonal matrix.

The second family of matrices, define a Mueller matrix as an ensemble average of pure Mueller matrices or Mueller-Jones matrices ( the properties of these Mueller-Jones matrices were also extensively study and different possible interrelations for the elements of a general Mueller-Jones matrix are derived in the literature [START_REF] Hovenier | Structure of a general pure Mueller matrix[END_REF][START_REF] Espinosa-Luna | Transformation matrices for the Mueller-Jones formalism[END_REF][START_REF] Simon | The connection between Mueller and Jones matrices of polarization optics[END_REF][START_REF] Anderson | Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix[END_REF][START_REF] Brosseau | Generalized trace condition on the Mueller-Jones polarization matrix[END_REF] ). This second family of Mueller matrices was also studied [START_REF] Cloude | Group theory and polarisation algebra[END_REF][START_REF] Kim | Relationship between Jones and Mueller matrices for random media[END_REF][START_REF] Gil | Characteristic properties of Mueller matrices[END_REF] and Cloude [START_REF] Cloude | Group theory and polarisation algebra[END_REF] has proved that a 4x4 real matrix M is a Mueller matrix with respect to this definition if and only if the corresponding coherency matrix constructed from M has only nonnegative eigenvalues. Obviously these two families are not independent. A matrix of the second family is a matrix of the first one, but in general, the converse is not true. How to decompose these Mueller matrices has been studied in the previous literature [START_REF] Sridhar | Normal form for Mueller matrices in polarization optics[END_REF][START_REF] Xing | On the deterministic and non-deterministic Mueller matrix[END_REF][START_REF] Gil | Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the decomposition of its Mueller matrix[END_REF][START_REF] Lu | Interpretation of Mueller matrices based on polar decomposition[END_REF][START_REF] Ossikovski | Interpretation of nondepolarizing Mueller matrices based on singular-value decomposition[END_REF] too. Lu and Chipman [START_REF] Lu | Interpretation of Mueller matrices based on polar decomposition[END_REF] for instance, proposed a three factors decomposition widely used in the interpretation of experimental Mueller matrices [START_REF] Laude-Boulesteix | Mueller Polarimetric Imaging System with Liquid Crystals[END_REF][START_REF] Wolfe | Polarimetric characterization of liquid-crystal-on-silicon panels[END_REF]. Among the tools used to analyse the mathematical properties of these matrices, most of them were derived from the linear algebra and produce algebraic representations [START_REF] Gopala | On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix[END_REF] or more geometrical representation as the quaternionic formalism [START_REF] Finet | Geometrical approach to polarization optics: quaternionic representation of the polarized light[END_REF].

Group theory has been also used to study polarization [START_REF] Cloude | Group theory and polarisation algebra[END_REF][START_REF] Baskal | de Sitter group as a symmetry for optical decoherence[END_REF][START_REF] Takenaka | A unified formalism for polarization optics by using group theory[END_REF][START_REF] Sudha | Polarization elements, a group theoretical study[END_REF] and it is well known that non depolarizing optics can be formulated in terms of four by four representations of Lorentz group since the four components Stokes parameters may be assimilated to the Minkowskian four vectors [START_REF] Han | Stokes Parameters as Minkowskian Four-vectors[END_REF]. But probably because the set of all Mueller matrices is not a group, an attempt to define a generic form for Mueller matrix is always a field of research. Our goal in this contribution is to define a parametric form for non singular Mueller matrices. This set of matrices is not a group but a semi-group applied on a 4-dimensions space. We propose to address this problem in a space with more than 4 dimensions in order to introduce a group of transformations with the same number of degrees of freedom. After a recalling of the relations between non depolarizing matrices and Lorentz transformation group, we explain why sub-sets of O [START_REF] Gopala | On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix[END_REF][START_REF] Sridhar | Normal form for Mueller matrices in polarization optics[END_REF], the orthogonal group associated with 6-dimensions Minkowski space, is a physical admissible solution to solve this question. Generators of this group are used to define possible expressions of an arbitrary non-singular Mueller matrix. The link with previous expressions about non depolarizing Mueller matrices is established. Eventually, the problem of decomposition of these matrices is addressed and we show that the "reverse" and "forward" decomposition concepts recently introduced [START_REF] Ossikovski | Forward and reverse product decompositions of depolarizing Mueller matrices[END_REF] may be inferred from the formalism we proposed.

Non depolarizing Mueller matrices

The four-dimensional Minkowskian [START_REF] Sternberg | Group theory and physics[END_REF] space with (x 0 ,x 1 ,x 2 ,x 3 ) coordinates -where x 0 is a time-like coordinate and (x 1 ,x 2 ,x 3 ) are space-like coordinates -is the four vectors space associated with the Minkowski metric. This metric is defined by the metric tensor g µν with the signature (1,-1,-1,-1) and the definition of the "length" of a 4-vector x can be written as

[ x , x ]=g  x  x  (1)
where [ . , . ] stands for the indefinite scalar product [START_REF] Van Der Mee | An eigenvalue criterion for matrices transforming Stokes parameters[END_REF][START_REF] Bognar | Indefinite Inner Product Spaces[END_REF][START_REF] Gohberg | Matrices and Indefinite Scalar Products[END_REF] and where the classical implicit summations (Einstein notation ) extend over all 4 components. First, we recall here the connections between linear transformations of the Minkowski space which preserve the "length" of the 4-vectors and the non singular-nondepolarizing Mueller matrices. Those matrices describe elements that convert completely polarized light into completely polarized light and they have equivalent nonsingular Jones matrices [START_REF] Lu | Interpretation of Mueller matrices based on polar decomposition[END_REF]. It is well known [START_REF] Xing | On the deterministic and non-deterministic Mueller matrix[END_REF][START_REF] Van Der Mee | An eigenvalue criterion for matrices transforming Stokes parameters[END_REF][START_REF] Hovenier | Structure of a general pure Mueller matrix[END_REF]] that a real invertible 4x4 matrix is a non-depolarizing Mueller matrix if and only if it is a positive multiple of an element within the group of restricted linear transformations of the Minkowski space which preserve the length of the Stokes 4-vectors S = (S 0 S 1 S 2 S 3 ). The set of transformations which preserve the length of the 4-vectors is known as the Lorentz group. Combining length conservation equation and the basic relation between a Lorentz transformation Γ and the input and output 4-vectors x out

 =    x 
in , the condition on Lorentz transformation can be reformulated as :

g        =g   or       g  =g   (2) 
We note that, setting λ = σ in the first expression, we find the condition :

 0 0  2 -∑ i   0 i  2 =1 which implies  0 0  2 1
and taking the determinant on both sides of Eq. ( 2), we obtain det(Γ ) 2 =1. It follows that the Lorentz group is the union of four disconnected pieces [START_REF] Sattiger | Lie Group and Algebras with Applications to Physics, Geometry and Mechanics[END_REF]. The restriction to those transformations which are continuously connected to the identity transformation (called the proper orthochronous Lorentz transformations and denoted SO [START_REF] Van Der Mee | An eigenvalue criterion for matrices transforming Stokes parameters[END_REF][START_REF] Sridhar | Normal form for Mueller matrices in polarization optics[END_REF] e as the identity component of SO [START_REF] Van Der Mee | An eigenvalue criterion for matrices transforming Stokes parameters[END_REF][START_REF] Sridhar | Normal form for Mueller matrices in polarization optics[END_REF] 

 1 [0 ] [0] T [ r ]  ( 3) 
where r denotes ordinary 3x3 rotation matrices and [0] is for [0 0 0] vector. As the 3dimensions rotations depend on 3 parameters (Euler angles φ,θ,ψ for instance), R = R(φ,θ,ψ ) denotes the corresponding rotation in the Lorentz group with: R(φ,θ,ψ ) = R 3 (φ )R 2 (θ )R 3 (ψ ). Thus in terms of the Euler angles, every rotation can be decomposed into a product of elementary rotations around the fixed axes of x 2 and x 3 .

The second example of these Lorentz transformations is the Lorentz boost. Such transformations mix space-like coordinates with the time-like coordinate. A simple example of these boosts is the Lorentz boost along the x 3 coordinate with the associated matrix L 3 (u) (corresponding expressions for the boost along the x 1 and x 2 coordinate can be derived from Ref. [START_REF] Han | Stokes Parameters as Minkowskian Four-vectors[END_REF] ):

L 3 u =  cosh  u 0 0 sinh u 0 1 0 0 0 0 1 0 sinh u  0 0 cosh u   (4) 
It is straightforward to prove [START_REF] Van Der Mee | An eigenvalue criterion for matrices transforming Stokes parameters[END_REF][START_REF] Baskal | de Sitter group as a symmetry for optical decoherence[END_REF] that these Lorentz transformations matrices may be regarded as the translation into the four by four formalism of Jones matrices: Jones matrices of elliptical retarders (or phase shifters) and elliptical diattenuators (or partial polarizers) respectively. Since a general element Γ of the proper orthochronous Lorentz group can be uniquely written in the factorized form ( Ref. [START_REF] Sternberg | Group theory and physics[END_REF] contains a generic form of this factorization. Eq. ( 5) can be derived from the prof of this property by just noting that the rotation which brings an arbitrary vector to the z axis is the result of a first rotation around the z axis by angle α followed by a rotation around the y axis by angle β, see [START_REF] Sternberg | Group theory and physics[END_REF] pp.11-12 for notation):

=R , ,  L 3  u R -1  ,  , 0 (5) 
a non-depolarizing Mueller matrix M (with respect to second definition family), proportional (with a positive constant k) to a Lorentz transformation Γ , may be factorized in two terms, a pure rotation and a pure Lorentz boost and from Eq.( 5) we have:

M= k [R ,  , L 3 0 R -1  ,  , 0] [ R ,  , 0L 3  u R -1  ,  , 0] (6)
where the pure rotation and pure Lorentz boost are the first and the second bracketed factor, respectively. And arbitrary elements of the group can be written as the product of those two matrices but for suitable u,α,β,ϕ,θ and ψ since the matrix multiplication is not commutative. These non-depolarizing matrices have only 7 degrees of freedom [START_REF] Van De Hulst | Light Scattering by Small Particles[END_REF]. So, there are nine relations between the 16 matrix elements. These nine relations have already been derived explicitly in [START_REF] Abhyankar | Relations between the Elements of the Phase Matrix for Scattering[END_REF][START_REF] Barakat | Bilinear constraints between elements of the 4 x 4 Mueller -Jones transfer matrix of polarization theory[END_REF] for instance. This result is obvious when we observe Eq. ( 6) but it could be also predicted as can be seen as follows: a general 4x4 real matrix has 16 arbitrary elements but Eq.( 2) contains 10 independent constraints. The result is then only 6 degrees of freedom for a Lorentz transformation. For non-depolarizing Mueller matrices, one degree of freedom is added by the proportionality constant k of Eq.( 6).

Non singular Mueller matrices

This approach is very interesting to define a mathematical framework to investigate the most general expression of non singular Mueller matrices. This set of matrices is not a group ( in fact it is a semi-group) -the inverse matrix of a pure depolarizer for instance is not a Mueller matrix -but this difficulty may be overcome if we consider a group of transformations continuously connected to the identity transformation and preserving a N-vectors norm such as the proper Lorentz transformations with the 4-vectors of the Minkowski space.

The problems with such approach are : how do we determine N, the space dimension and how do we chose the appropriate norm? For a N dimensions space, the general rule gives the number of degrees of freedom D = N 2 -N(N+1)/2 = N(N-1)/2. So it is easy to find out that with N=6 we reach the total of 15 degrees of freedom ( 36 elements but 21 independent constraints) which is the number of degrees of freedom of a general Mueller matrix (after normalization by the first coefficient for instance). A similar approach was already used by Cloude [START_REF] Cloude | Group theory and polarisation algebra[END_REF] to develop an homomorphism between SU(4) (the Special Unitary group) and O + (6) (the Real Orthogonal group) used for describing the interaction of polarized waves with targets. Following a similar approach proposed in [START_REF] Cloude | Group theory and polarisation algebra[END_REF][START_REF] Baskal | de Sitter group as a symmetry for optical decoherence[END_REF], we introduce a 6-dimensions space in order to deal with this problem. This 6-dimensions space has 6 coordinates (x 0 ,x 1 ,x 2 ,x 3 , x 4 , x 5 ). The proposed space should contain a Minkowskian subspace associated with the four first components for instance. Then, this subspace can be assimilated with the polarization space (it means (x 0 ,x 1 ,x 2 ,x 3 ) = (S 0 S 1 S 2 S 3 ) ). An associated metric is defined by the metric tensor g µν with the signature (1,-1,-1,-1, g 44 , g 55 ) and the study of the previous paragraph allows to maintain that the linear transformations of this space which preserve the length of these 6-vectors have 15 degrees of freedom.

In order to find out the sign of the both unknown values of the metric tensor, we note that setting µ=ν=0 in the second equation (2), we obtain the condition:

 0 0  2 -∑ i=1 3   i 0  2 g 4 4  4 0  2 g 5 5  5 0  2 =1 (7) 
We consider now the case of unpolarized incident state. The exiting state is determined only by the first column of the Mueller matrix and the degree of polarisation of this light resulting from the unpolarized input is called [START_REF] Lu | Interpretation of Mueller matrices based on polar decomposition[END_REF][START_REF] Shurcliff | Polarized light[END_REF] the polarizance P. This polarizance is given by:

P=    1 0  2  2 0  2  3 0  2  0 0 ( 8 
)
Combining Eqs. ( 7)-( 8), we obtain the expression:

P 2 = 1 - 1-g 44  4 0  2 -g 55   5 0  2  0 0  2 (9)
As the degree of polarization of the exiting beam cannot be greater than 1, it is clear from ( 9) that we must have g 44 = g 55 = -1 in order to deal with a physical meaning solution. So, we are now considering the group O(5,1) and more precisely its identity component SO [START_REF] Gopala | On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix[END_REF][START_REF] Sridhar | Normal form for Mueller matrices in polarization optics[END_REF] e . Matrices with unit determinant and positive left upper corner element are the SO(5,1) e subgroup elements. Matrices with unit square determinant and positive left upper corner element are the {SO(5,1) e } ∪ {G .SO(5,1) e } subgroup elements. As with SO(3,1) e and the nondepolarizing matrices, the characterisation of matrices of SO [START_REF] Gopala | On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix[END_REF][START_REF] Sridhar | Normal form for Mueller matrices in polarization optics[END_REF] e completely describes the two sub-groups. But what was impossible to deal in the 4-dimensions space with the SO(3,1) e transformations (change the value of the norm of the Stokes vector) will be now possible in the full space where this subspace is included and the 4x4 matrix (associated with the polarization space (x 0 ,x 1 ,x 2 ,x 3 ) will be always a physical Mueller matrix.

As SO [START_REF] Gopala | On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix[END_REF][START_REF] Sridhar | Normal form for Mueller matrices in polarization optics[END_REF] e is a matrix Lie group with 15 degrees of freedom, we can focus our attention on the 15 generators of the group rather than the infinite number of group elements. These generators are elements of the Lie algebra [START_REF] Sagle | Introduction to Lie groups and Lie algebras[END_REF] of the group SO(5,1) e -The Lie algebra of a matrix Lie group LG is the set of all matrices X such that e i t X is in LG for all real number t -Once the generators are known, the group elements can all be determined since this set of generators is a basis for the Lie algebra that is also a vector space. Six of these generators may be regarded as the translation of well known Lorentz group generators in the 6-dimensions space. We can dissociate these 6 generators in terms of more familiar quantities: 3 rotations generators: J 23 , J 13 , J 12 stand for the generators of rotation of the (x 1 ,x 2 ,x 3 ) space-like components; 3 boost generators: J 01 , J 02 , J 03 stand for the generators of boosts mixing space-like coordinate x j (j = 1,2,3) with the time-like coordinate x 0 . In the 6 dimensions space, we have now two other boost generators J 04 , J 05 and 7 other rotation generators J 14 , J 24 , J 34 , J 15 , J 25 , J 35 , J 45 .

Eq. [START_REF] Simon | The connection between Mueller and Jones matrices of polarization optics[END_REF] shows examples of these generators and the associated matrices. The generators (J 01 , J 02 , J 04 , J 05 ) may be deduced from the expression of J 03 , (J 34 , J 45 , J 14 , J 25 ) from J 12 and (J 24 , J 35 , J 15 ) from J 13 . [START_REF] Simon | The connection between Mueller and Jones matrices of polarization optics[END_REF] According to the matrix Lie group theory, we can deduce a formal expression for an arbitrary element T of SO(5,1) e (with the Einstein notation):

T = e - i 2
 mn J mn [START_REF] Anderson | Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix[END_REF] where α mn is a 15 parameters anti-symmetric second rank tensor (15 parameters corresponding to the 15 degrees of freedom).

So, an arbitrary non-singular Mueller matrix is given by the 4x4 sub-matrix extracted from the T matrix of Eq.( 11). This first expression for a non-singular Mueller matrix is not necessarily the most practical one for analysing the physical phenomena expressed by these matrices. For instance, the previous expression of non-depolarizing matrices derived from the Lorentz transformations can not be readily extracted from this expression since e  AB ≠e A e B for non commuting matrices ( AB -BA = [A,B] ≠ 0, where [A,B] operator is termed the commutator or brackets of A,B matrices ). More useful expression can be derived from the commutation relations of the generators of this Lie algebra.

Commutation rules associated with this Lie algebra are given by two sets of relations (explicit calculations of the matrix products give the following results) :

5 J 03 =  0 0 0 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  L 03 u = e -i u J 03 =  cosh u 0 0 sinh u 0 0 0 1 0 0 0 0 0 0 1 0 0 0 sinh u 0 0 cosh u 0 0 0 0 0 0 1 0 0 0 0 0 0 1  J 12 =  0 0 0 0 0 0 0 0 -i 0 0 0 0 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  ℜ 12  = e -i  J 12 =  1 0 0 0 0 0 0 cos  -sin   0 0 0 0 sin   cos  0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1  J 13 =  0 0 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0 0 0 -i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  ℜ 13  = e -i  J 13 = 

1 0 0 0 0 0 0 cos 0 sin   0 0 0 0 1 0 0 0 0 -sin  0 cos  0 0 0 0 0 0 1 0 0 0 0 0 0 1  J 23 =  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -i 0 0 0 0 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  ℜ 23  = e -i  J23 =  1 0 0 0 0 0 0 1 0 0 0 0 0 0 cos -sin  0 0 0 0 sin  cos 0 0 0 0 0 0 1 0 0 0 0 0 0 1  (12) 
[ J h4 , J km ] =-i hkm J m4 k , h , m∈{1,2 ,3} [ J h5 , J km ] =-i hkm J m5 k , h , m∈{1,2 ,3} [ J 0h , J km ] =-i hkm J 0m k , h , m∈{1,2 ,3}

where  hkm is the totally anti-symmetric unit tensor of rank 3.

The two sets of relations ( 12) & [START_REF] Cloude | Group theory and polarisation algebra[END_REF] show that these generators are closed under brackets and immediate consequences of the Lie algebra associated with the generators of Eq. ( 13) are for j ∈{1,2,3}:

ℜJ j4 ℜ -1 =J k4 ℜ j k ℜJ j5 ℜ -1 =J k5 ℜ j k ℜJ 0j ℜ -1 =J 0k ℜ j k ( 14 
)
where ℜ is the 6-dimensions matrix ( ℜ j k is the j-th element of the k-th row of ℜ ) of any 3-rotation of (x 1 ,x 2 ,x 3 ) space-like coordinates and we have ℜ,  , =ℜ 12  ℜ 13  ℜ 12   where ℜ ij are defined in Eqs. [START_REF] Simon | The connection between Mueller and Jones matrices of polarization optics[END_REF] . It follows then from Eqs. [START_REF] Kim | Relationship between Jones and Mueller matrices for random media[END_REF] and the first set of Eqs. ( 12) that

J  n 4 = ℜ J 34 ℜ -1 =J k4 ℜ,  ,0 3 k = J k4 n k J  n 5 = ℜJ 35 ℜ -1 =J k5 ℜ,  ,0 3 k = J k5 n k J 0  n = ℜ J 03 ℜ -1 =J 0k ℜ,  ,0  3 k = J 0k n k ( 15 
)
where n k are the components of any (x 1 ,x 2 ,x 3 ) arbitrary spatial directions  n defined by the rotation ℜ,  ,0 which brings basis vector of axis x 3 to  n ,   . A similar expression for the rotation of the spatial components (x 1 ,x 2 ,x 3 ) can be derived from the first set of Eqs. ( 12):

J  n = ℜ J 12 ℜ -1 =J k ℜ,  ,0 3 k = J k n k (16) 
with J 1 = J 23 , J 2 = J 12 and J 3 = J 13 .

Eq. [START_REF] Gil | Characteristic properties of Mueller matrices[END_REF] shows that {J j4 }, {J j5 }and {J 0j } form basis for the generators J  n 4 , J  n 5 and J 0  n respectively and Eq. ( 16) shows that J 23 , J 12 and J 13 form a basis for the generators J  n . Thus, from the previous properties and the elementary matrix identity:

ℜe -i  G ℜ -1 = e -i  ℜ G ℜ -1 
, T may be decomposed as a product of five 6x6 matrices (in whatever order) for suitable parameters (17)

[ J 12 , J 13 ] =-i J 23 [ J 12 , J 23 ] =i J 13 [ J 13 , J 23 ] =-i J 12 [ J 04 , J 05 ] =-i J 45 [ J 05 , J 45 ] =i J 04 [ J 04 , J 45 ] =-i J 05 T R = [ℜ, ,0 ℜ 12   ℜ -1 ,  ,0] T D = [ℜ, ,0L 03 u  ℜ -1 ,  ,0] T  1234 = [ ℜ , , 0 ℜ 34  ℜ -1  , , 0 ] T  1235 = [ ℜ,  , 0 ℜ 35   ℜ -1 , , 0 ] T  045 = [ L 04  v ℜ 45  L 05 w ]
with T R resulting from Eq.( 16), T D from the third equation of Eqs. [START_REF] Gil | Characteristic properties of Mueller matrices[END_REF], T ∆1234 from the first equation of Eqs. [START_REF] Gil | Characteristic properties of Mueller matrices[END_REF], T ∆1235 from the second equation of Eqs. [START_REF] Gil | Characteristic properties of Mueller matrices[END_REF] and T ∆045 from the second line of Eqs. [START_REF] Brosseau | Generalized trace condition on the Mueller-Jones polarization matrix[END_REF]. So, a general transformation T of SO [START_REF] Gopala | On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix[END_REF][START_REF] Sridhar | Normal form for Mueller matrices in polarization optics[END_REF] e may be regarded as a combination of space-like coordinates rotation in a plane specified by a unit vector  n ,   and the x 3 axis and with an angle of rotationψ , a boost with u as parameter mixing the time-like coordinates with a (x 1 ,x 2 ,x 3 ) spatial direction  n ,   , a rotation in a plane specified by a unit vector  n  ,  and x 4 axis and an other one in a plane specified by a unit vector  n  ,  and x 5 axis. These latter rotations are with angles of rotation µ and ν respectively. The last term is formed by the closed set of generators J 04 , J 05 and J 45 .

Non singular Mueller matrix decomposition

It is then a straightforward calculation from Eq.( 17) to show that the corresponding submatrices associated with the polarization space (or Mueller matrices) may be regarded as a product of three matrices M R , M D and M ∆ . M R (retardance ) and M D (diattenuation), related to T R and T D are the non depolarizing Mueller matrices of the decomposition and M ∆ ( related to T ∆1234 , T ∆1235 and T ∆045 and denoted T ∆ ) stands for the depolarizing matrix. The first part (T R T D matrices) of the decomposition may be regarded as the translation of Eq.( 6) in the 6-dimensions space. It is straightforward from definitions of L 30 and rotation matrices to prove that the product of these matrices has the form:

T R T D =  M R M D 0 0 I 2  T D ' T R ' =  M D ' M R ' 0 0 I 2  (18) 
where M R and M D are matrices defined by Eqs.( 6) and I 2 is for the identity matrix of order two. The second part of the decomposition formed by the product of T ∆1234 , T ∆1235 and T ∆045 matrices taken in whatever order, is written as

T  =  M  X Y Z  (19) 
With the expressions of matrices of Eq. ( 18)-( 19), a sub-matrix associated with the polarization space is then the product of M R , M D and M ∆ in whatever order. The third factor M ∆ standing for the depolarizing matrix has not a so straightforward interpretation as the first ones because of the commutation relations of the corresponding generators.

second set is not closed ( [J 14 , J 34 ] = -i.J 13 , for instance) and mixes indices from the polarization space (that is (x 0 ,x 1 ,x 2 ,x 3 )) with the two other indices. In fact, we also have a closure relation with respect to indices 04, 05 and 45 ( second set of relations from Eqs. [START_REF] Brosseau | Generalized trace condition on the Mueller-Jones polarization matrix[END_REF]) and the problem is mainly concentrated on the 6 others generators.

Immediate consequences are: we may have a non depolarizing part in the M ∆ matrices and the Mueller matrix related to the product of T ∆1 and T ∆2 is not necessary the product of the two matrices M ∆1 and M ∆2 extracted from T ∆1 and T ∆2 respectively (but it is a Mueller matrix).

If we used for instance the previous decomposition of T ∆ as a product of T ∆1234 , T ∆1235 and T ∆045 , the associated Mueller matrices have the following expressions (from Eq. ( 10) and ( 17) ):

M  1234 =  1 [0] [0] T m  1234  M  1235 =  1 [0] [0] T m  1235  M  045 =  a [0 ]
[0] T I 3  (20) where m ∆1234 and m ∆1235 are symmetric matrices according to the corresponding expressions of ℜ 34 and ℜ 35 matrices. M ∆1234 and Μ ∆1235 have the same kind of expression but with different parameters. Their product is not a symmetric matrix in the general case. So if we decompose this matrix by a polar decomposition (proposed by Lu & Chipman [START_REF] Lu | Interpretation of Mueller matrices based on polar decomposition[END_REF] ) in order to symmetrize it , a rotation matrix M R will be extracted.

Nevertheless, instead of considering the matrices T ∆1234 , T ∆1235 and T ∆045 and their Mueller matrix counterparts, it is possible to directly construct a symmetric expression considering the matrices T ∆12345 generated by the following set of generators { J 14 , J 24 , J 34 , J 15 J 25 , J 35 }. The associated Mueller matrices have the following expression (see appendix A for the proof):

M  12345 =  1 [0] [0] T m  12345  (21) 
where m ∆12345 is a symmetric matrix. From the commutation relations of these generators -Eqs. ( 13) -and a similar approach previously used to derived Eqs. [START_REF] Lu | Interpretation of Mueller matrices based on polar decomposition[END_REF], it is possible to prove that T ∆12345 has the following expression:

T  12345 = [ ℜ 12  ℜ 13   ][ ℜ 23  ℜ 45   ] ℜ 34  ℜ 25  ... ..... [ ℜ 23  ℜ 45   ] -1 [ ℜ 12  ℜ 13   ] -1 (22) 
Since the expressions of Mueller matrices associated with ℜ 34 and ℜ 25 are already in a diagonalized form (straightforward from the definition of ℜ 34  =e -i J 34 and ℜ 25  =e -i  J 25 ), with eigenvalues for the corresponding 3x3 m-matrices {1, 1, cos(µ)} and {1, cos(ν), 1} respectively, it results from Eq. ( 22) that the eigenvalues of m ∆12345 are given by {1, cos(µ), cos(ν)}. The eigenvalues of this matrix are principal depolarization factors [START_REF] Lu | Interpretation of Mueller matrices based on polar decomposition[END_REF] (depolarization factors along the principal axis given by the eigenvectors of m ∆12345 ). Now, if we consider the matrices generated by the last three generators J 04 , J 05 , J 45 of the depolarizing part, from the third term of Eq.( 20), the eigenvalues of the Mueller matrix Μ ∆045 associated with T ∆045 matrix are { 1, 1/a, 1/a, 1/a } after normalization to "a". And we have from Eqs. [START_REF] Lu | Interpretation of Mueller matrices based on polar decomposition[END_REF] and the definitions of matrices L 04 (v), L 05 (w) and ℜ 45  : a = cosh(v) cosh(w) [START_REF] Takenaka | A unified formalism for polarization optics by using group theory[END_REF] It is worth noting that the result of matrix factorisation leads us to describe the process of depolarization as a combination of an isotropic contraction of the Poincaré sphere (Μ ∆045 matrix) and an non isotropic contraction ( M ∆12345 matrix ) inducing a symmetry breaking.

The corresponding sub-matrices associated with the polarization space verify the following matrix multiplication rules:

T  12345 T  045 =  M  12345 G H J  M  045 K N Q  =  M  12345 M  045 GN X Y Z  (24) T  045 T  12345 =  M  045 K N Q  M  12345 G H J  =  M  045 M  12345 KH X ' Y '
Z '  (25) M ∆12345 and M ∆045 are matrices of depolarizers, but are not sufficient to define the resulting sub-matrix of the depolarizing part, since the total decomposition takes one of the two following expressions (this is an illustration of the previous remark about Mueller matrix resulting from a product that is not necessary the product of original Mueller matrices):

M  f = M  12345 M  045 GN (26) M  r = M  045 M  12345 KH (27) 
and we have GN =  0 [ 0]

[ P  ] T [ 0] 3  and KH =  0 D  [0]
T [0] 3  where [0] 3 is the null matrix of order three. Eventually, the definitions of matrices involved in Eq. ( 20) and Eq.( 26) prove that the sub-matrix M ∆ has one of the two forms:

M  f =  a [0 ] [P  ] T m  12345  or M  r =  a D  [0] T m  12345  (28) 
where m ∆12345 denotes the symmetric 3x3 matrix previously introduced and [0] is for [0 0 0] vector. After normalization to "a", the three principal depolarization factors of these matrices are :

{ 1 cosh  v cosh  w , cos  cosh  v cosh w , cos   cosh v cosh w } (29) So, the existence of a polarizance vector P ∆ or a diattenuation vector D ∆ for the non singular depolarizing matrices is resulting from the interaction between the isotropic contribution and non-isotropic one and depends on the position of the isotropic contraction (or depolarization in optical terms) matrix relative to the non-isotropic one. And the other hand, these both expressions M f ∆ and M r ∆ correspond with the reverse and forward product decomposition concept proposed by Ossikovski & al. [26] as an answer to the difficulty point out by Morio & al. [36] about the Lu & Chipman matrix decomposition process. The "forward" and "reverse" families clearly appear from this two M ∆ expressions since we have:

M D M R M  r =  a D  D m R m  a D T D T D  m D m R m   (30) 
where we can always identify P T = D T as the element of the first column and

M  f M R M D =  a a D P  T m  m R D T P  T Dm  m R m D  (31) 
where we can always identify D as the element of the first row. It is straightforward to demonstrate that a similar result is verified what ever order for M R in the product. So, we show that the "reverse" and "forward" decomposition concepts recently introduced [START_REF] Ossikovski | Forward and reverse product decompositions of depolarizing Mueller matrices[END_REF] may be inferred from the formalism we proposed.

-Conclusion

We proposed a general parametric form for any non singular Mueller matrices. We addressed this problem in a 6 dimension space in order to introduce a group with the same number of degrees of freedom and explained why SO [START_REF] Gopala | On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix[END_REF][START_REF] Sridhar | Normal form for Mueller matrices in polarization optics[END_REF] e is a physical admissible solution to solve this question. Generators of this group are used to define possible expressions of an arbitrary non-singular Mueller matrix. The link with previous expressions is established . Eventually, the problem of decomposition of these matrices is addressed and we show that the "reverse" and "forward" decomposition concepts recently introduced [START_REF] Ossikovski | Forward and reverse product decompositions of depolarizing Mueller matrices[END_REF] may be inferred from the formalism we proposed.

-Decomposition of depolarizing Mueller matrices

The great difference between the set of generators of the non depolarizing part (J 01 , J 02 , J 03 , J 12 J 13 and J 23 ) and the set of generators of the depolarizing part ( J 04 , J 05 , J 45 , J 14 , J 24 , J 34 , J 15 J 25 and J 35 ) comes from closure properties under the bracket operation. The

Appendix A:

We consider the J matrix defined by :

from the expressions of the generators, J has the following form:

[0] 2  with A =  0 a 12 a 13 a 14 0 a 22 a 23 a 24  a kl ∈ℝ (A2) where [0] 4 and [0] 2 are respectively for null matrices of 4-dimensions and 2-dimensions.

A direct computation of J 2 gives the following expression:

where A T A is a symmetric square matrix with the entries of the first raw and first column equal to 0. It is straightforward from a recursive computation to prove that the matrices J 2k and J 2k+1 have the following expressions:

The exponential of J is defined as the usual power series:

Then, as a summation of symmetric matrices with the entries of the first raw and first column equal to 0 (except for m=0 since J 0 = I ), the resulting sub-matrix of e J associated with the polarization space has the form:

where m denotes a symmetric 3x3 matrix.