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1 - Introduction

Mueller matrix as linear mapping between the input and output Stokes vectors of light interacting  
with  media, is a very powerful tool for polarimetric characterization of linear media. The measurement of  
the Mueller matrix entries attached to each pixel in an image is named Mueller imaging. The development of 
optical  devices  and  systems  [1],  calibration  procedures  [2] and  measurement  inversion  methods  [3][4] 
produced Mueller imaging systems with low noise measurement where the physical constraints on Mueller 
matrices are taken into account. These works contributed to popularize this imaging approach and examples 
of Mueller matrix imaging can be found for characterizing biological objects [5] or scattering media [6], with 
applications in dermatology [7],  ophthalmology [8] or physics [9][10] for instance.  

Since polarimetric information is  now available under image format,  there is  a growing need to 
understand the underlying physical model associated with the classical image processing tools applied on 
Mueller imaging. 

In this paper, we address the basic question of the physical meaning of Mueller matrix average.  
Though  the  mean  value  of  two  Mueller  matrices  is  one  of  the  most  elementary  operations,  the 
comprehension of the physical meaning and related properties of this operation is of great importance since  
most of the image processing tools involve averaging procedures. Computing the mean value of two Mueller  
matrices  can  be  reformulated  as  the  more  general  question  of  interpolation  over  the  space  of  Mueller 
matrices since the mean value is just one particular point of the path interpolating two points of the space. A 
well posed approach to define this path of interpolation between two points of a space, is the notion of  
geodesic curve.  A curve is called a  geodesic  [11] for an associated distance defined on the space, if the 
length of the curve is exactly the distance between its end points. This definition implies that it is also the 
shortest curve between any two of its points which obviously is a desirable property for interpolation curves. 

But it is clear that we have as many solutions as we have distance definitions on the space. The 
question of the physical meaning of the averaging operation is then related to the physical meaning of the  
distance associated to the geodesic curves.

After  a reminder  of definitions and relations associated with Mueller  and coherency matrix,  we  
derive the expressions of two distances in an Euclidean and Riemannian context over the space of coherency 
matrices.  The  associated  interpolation  procedures  are  depicted  with  the  underlying  physical  model. 
Eventually, properties of both the solutions are presented. 

2 – Distances on Mueller and coherency matrix space. 

2.1. Mueller and coherency matrix definition.

Following Kim et al. [12], we define a Mueller matrix M as a convex sum of so-called Mueller-Jones 
matrices also named pure Mueller matrices or nondepolarizing Mueller matrices These matrices are obtained 
by writing the equation E' = JE, mapping an input electric field vector E into an output electric field vector 
E' by means of the (generally complex) 2×2 Jones matrix J, in terms of a relation between the corresponding 
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vectors of Stokes parameters. There exist complete characterizations of such a class of real 4 × 4 matrices.  
For instance, Cloude [13] proved that a real 4×4 matrix M is a Mueller matrix with respect to the previous 
definition if and only if the (complex hermitian) 4 × 4 coherency matrix  C constructed from M by linear 
operations has only nonnegative eigenvalues. 

The underlying physical model associated to this definition, is obtained by considering the optical 
system with Mueller matrix M, as an ensemble. Each realization “k” is characterized by a Jones matrix J(k) 
occurring with a probability p(k).It is also possible to consider the optical system as composed of a set of 
parallel elements characterized by a deterministic Jones matrix J(k) in such a manner that the light beam is 
shared among these elements according to a ratio p(k) = I(k)/I where I(k) is the intensity of the portion of  
light interacting with element k and I is the intensity of the whole beam [14]. 
A straightforward application of the physical model considering the system as an ensemble, gives [12] the 
following relations:

    (1)

where F is defined as the average value of Kronecker product of the J matrix and its conjugate J*    († and * 
stand for a Hermitian and complex conjugate respectively). 

(2)

Although Mueller matrix has not any particular symmetry property, it is possible to extract from it an 
Hermitian matrix H by doing a partial exchange of the F rows. This mapping H = Per(F), (see Appendix A 
for the definition of this mapping ) transforming F matrix into H is related to the Mueller matrix elements mij 

and the Pauli matrices (σi) by:

(3)

The corresponding mapping from Mueller matrix space to Hermitian matrix space, is noted by :  
ϕ(M) = H. Its inverse is noted ψ(H) = M = Λ† Per(H) Λ  since (Per)-1 = Per. 

The coherency matrix C is related to H by:

(4)

In fact, as demonstrated by Aiello et al. [15], there are infinitely many Hermitian matrices generated 
by M which differ from H by an unitary transformation. Each of these Hermitian matrices is related to the  
coefficients of the decomposition of matrix F on a specific basis of  4x4. H is related to the  standard basis 

for instance and C to the basis derived from the Kronecker product of Pauli matrices.

2.2. Distances on Mueller or coherency matrix space.

Before defining a distance on a space, the first step is to define the space under analysis. It is worth 
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noticing that many experimental coherency matrices of media exhibited in the literature are positive definite  
matrices (their four eigenvalues are strictly positive).Under this hypothesis, the set of coherency matrices  
may be restricted to HPD(4), the manifold of Hermitian Positive Definite matrices of dimension 4. It is clear 
that we don't  take into account the Mueller  matrices corresponding to a singular coherency matrix. The  
expression of coherency matrix in terms of the statistical parameters of Eq. (2) shows that its eigenvalues are 
related to the correlation between the Jones matrices coefficients. In polarization optics, these properties are  
depicted using the notion of structure polarimetric purity and parameters like degree of  purity or indices of  
purity  [16][17], giving a measurement of this  purity can be found in the literature.  Mueller  imaging of  
natural scene (this means for classical material media constituting the most frequently imaged objects) often  
leads to experimental matrices with low purity indices. It may become from the complexity of the natural 
media themselves but also from the accuracy of classical Mueller imaging systems where the temporal and  
spatial resolution of the measurement may be not precise enough. 

From the previous relations between Mueller and coherency matrix, it is clear that we can define 
distances on either one or the other space. As there are infinitely many Hermitian matrices generated by a 
Mueller matrix  which only differ by an unitary transformation, we can expect  as  a   desirable property of a 
distance  on  coherency matrix  space  to  be  invariant  by an  unitary  transformation  applied  on  coherency 
matrices. The choice of the basis of  4x4 used to decompose the matrix F on, has no physical meaning on 

polarimetric properties and must not influence the result of operations like average or interpolation. These 
points being noticed, we now analyse two examples of such distances and the corresponding interpolation  
procedures. 

2.2.1. Euclidean distance

Using  the  classical  Euclidean distance  on  the  space  of  Mueller  matrices,  is  a  first  solution  to 
interpolate Mueller matrices. Since the Mueller  matrix space forms a convex set  (a Mueller matrix is a 
positive  summation of  one to  four  Mueller-Jones  matrices  [13]),  the  summation of  Mueller  matrices  is 
always a Mueller one. The Euclidean distance between M1 and M2 matrices is defined by:

(5)

where Tr (A) denotes the trace of matrix A.

The straight lines are the geodesic curves in Euclidean space. Thus, the linear interpolation between 
two elements  M1 and M2 of Mueller matrix space, is the straight line between both the points.  Assuming 
normalized weights (sum of the weights equals 1), interpolation is a weighted mean following the relation: 

(6)

It is worth noticing that computing first the interpolation curve on the HPD(4) matrix space, is also possible: 

(7)

Then the ϕ mapping defined by Eq. (3), gives the corresponding Mueller matrix M(t ) of Eq. (6).

A straightforward application of Eq. (4) shows that this result does not depend on the specific basis 

3

1 2(t) (1 )     with 0 1= − + ≤ ≤M M Mt t t

( )† †
1 2

† †
1 2

1 2

( ) Per( (t) ) Per (1 ) )

       (1 )Per Per

       (1 )

 = Λ Λ = Λ − + Λ 
   = − Λ Λ + Λ Λ   

= − +

H M M M

M M

H H

t t t

t t

t t

( ) ( ) ( )
1/ 2†

E 1 2 1 2 1 2 1 2d , TrM M M - M M - M M - M  = =   



of 4x4 used to generate the HPD(4) matrices from the corresponding F matrices.  

2.2.2. Log-Euclidean distance

From algebraic properties and differential geometry properties of HPD(4) when considering HPD(4) 
matrices as a smooth manifold, it is also possible to define a Riemannian framework on this set of matrices.  
This is the way used by Arsigny et al.  [18] to define a distance on Symmetric Positive Definite matrices 
termed Log-Euclidean distance (LE distance). The definition and the properties of this distance can easily be 
extended to HPD(4) matrices. The reader is referred to [18]  for the demonstration of  these properties with 
Symmetric  Positive  Definite  matrices.  Proving that  these properties  are  well  adapted to  Mueller  matrix  
interpolation and deriving the underlying physical model, will be done below.

For two HPD(4) matrices, the LE distance is defined by:

(8)

where Tr (A) denotes the trace of matrix A.

Eq. (8) shows LE distance has an Euclidean distance on matrix logarithms. It is worth noticing that 
defining such a distance on the set of Mueller matrices, is not possible. The existence of matrix logarithm is  
not guaranteed with this set of matrices. 

This distance is  invariant by similarity (isometry plus scaling). Thus,  d(C1,C2) = d(H1,H2) for two 
couples  of  HPD(4)  matrices  Ck and  Hk generated  by  Mk (with  k=1,2)  which  differ  by  an  unitary 
transformation U. This means C1=U†H1U C2=U†H2U. Consequently, the LE distance (as the Euclidean one) 
does not depend on the  specific basis of  4x4 used to generate the HPD(4) matrices from the decomposition 

of matrix F. With scaling invariance property, a normalization of Mueller matrices by the coefficient m00 of 
one of them for instance, does not affect the interpolation procedure.  

Following the definition of the  LE distance, the geodesic curve or interpolation curve between  H1 

and H2, two elements of HPD(4), is given by:

(9)

The corresponding interpolation of Mueller matrices is given by using Eq. (3) but it is worth noticing 
that if H1 = ϕ(M1) and H2 = ϕ(M2), computing the M(t) interpolation curve as a weighted mean of M1 and 
M2,  is impossible.

3 – Physical significance and properties of interpolation processes. 

3.1. Euclidean interpolation

The  physical  meaning  of  the  first  interpolation  technique  based  on  the  Euclidean  distance,  is  
obvious. The interpolated matrix  M(t) of Eq. (6) may be considered as the Mueller matrix of an optical 
system exhibiting spatial heterogeneity over the area illuminated by the incident light. It is composed of two  
parallel elements characterized by a Mueller matrix  M1 and  M2.   The light beam is shared among these 
elements according to a ratio (1-t) and  t respectively and the emerging light is consequently composed of 
both these incoherent contributions. The parameter  t  may be considered as a quantity homogeneous to a 
surface. Fig.1-(a) illustrates this interpolating process with different values of the parameter.
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3.2. Log-Euclidean interpolation

Addressing the question of  the  physical  meaning of  this  latter  process  of  interpolation,  may be 
founded on a very similar approach to the layered-medium interpretation proposed by Jones in the seventh 
paper of his series [19] . 

We first note the following properties:

A -  As  a  consequence  of  Lie  group  structure  of  HPD(4)  with  the  group  product  defined  by 
(H1 ⊕ H2) = exp( log(H1)+log(H2) ), (see  [18]  for demonstration) the one parameter subgroups of HPD(4) 
are all of the form: 

(10)

where D is the infinitesimal generator of the subgroup and I is the unit matrix.
B - A pure depolarizing material medium has a Mueller matrix M0 with: 

(11)

If a very thin section of a medium is removed from this pure depolarizing element, the resulting Mueller 
matrix M1

e differs only slightly from the M0 matrix. The corresponding HPD matrix H1
e differs only slightly 

from the unit matrix since from Eq. (3), ϕ(M0) = I. 

Let the corresponding thickness and generator named  τ1 and  D1 respectively. From Eq.(  10), this 
HPD matrix  may be written :

(12)
where the term O(τ1

2) is for the terms of order higher than one. A second very thin section with parameters τ2 

and D2 gives another HPD matrix 

(13)

and a corresponding Mueller matrix M2
e.

 
Let the product Hs = H1

e. H2
e be now considered. From Eqs. (12 -13):

(14)

The matrix  Ms =  ψ  (Hs),  may be thus  considered as the  Mueller  matrix  of  a pure depolarizing 
element where a very thin section of a medium with a thickness τ  = τ1 +τ2 , has been removed (see the second 
part of Eq. (14)). This medium is characterized by an infinitesimal generator  D = (1-t).D1+ t.D2. This is a 
sandwich of both the previous media with proportions (1-t) and t respectively. It is worth noticing that this 
result is independent of the order in which both the sections are placed since H1

e. H2
e = H2

e . H1
e as proved by 

Eq. (14). 
Thus, using a classical approximation of the logarithm near the unity : log(I+B) = B+O(Β 2), we have:

(15)
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and if τ  approaches zero : 

(16)

Removing a medium of thickness z from a pure depolarizing element of thickness L, is the last step. 
This medium may be considered as a sandwich composed by q elements of the previous nature. Since qτ = z, 
we have from Eq. (16): 

(17)

Thus when τ  approaches zero and q becomes infinite since z is constant:

(18)

It is worth noticing that:

(19)

The corresponding Mueller matrix to H(z,t) is noted M(L-z,t).This means that 

(20)

with M(L,  t  ) = M0 and M(0,  t  )=I.  Fig.2 illustrates the medium and the corresponding Mueller matrix for 
different values of the z parameter. From the classical Mueller calculus, we have the  following relation: 

(21)

where Mrs stands for the Mueller matrix of the removed sandwich.

Deriving the expression of  Mrs(z2 - z1,  t  ) from Eq.(21) as Jones did  [19] (for  Jones  matrices or 
Barakat [20] for the Mueller-Jones matrices), is not possible. For general Mueller matrices, the inverse of M 
does not always exist. Nevertheless,  when  z2 = L, Eq. (21) gives Mrs(L - z1, t ) = M(L - z1, t ) = ψ(H(z1 , t ) ).

Thus,  ψ(H(z1 , t) may be also associated to a medium considered as a sandwich composed by an  
infinite number q of elements with a thickness τ . When τ approaches zero, qτ = z1.  

In his paper on exponential versions of Mueller-Jones matrices  [20] , Barakat asked «  whether a 
general Mueller matrix obeys the semigroup transformation property and thus possesses an infinitesimal  
generator matrix ».  It  is worth noticing that the approach we proposed,  may be considered as a partial  
answer to this question for the Mueller matrices associated to a definite positive coherency matrix.  

Since Eqs.  (9) and (18) are similar  for  D1 = log(H1),  D2=log(H2)  and  z1 = 1,  understanding the 
underlying physical meaning of Log-Euclidean interpolation process is straightforward with this latter result.  
The medium associated to the Mueller matrix M(t) is considered as a sandwich of thin laminae. Interpolating 
from M1 to M2 consists in changing the proportion of both the elements constituting the thin laminae. When t 
= 0, the thin laminae are composed by only one of the elements and by the other one when  t = 1. For all the 
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in-between  situations,  the  thin  laminae  are  a  mixture  of  both  the  elements.  The  parameter  t  may  be 
considered as a quantity homogeneous to a  thickness. Fig.1-(b) illustrates this interpolating process with 
different values of the parameter. 

     
Fig.1- 

Interpolation process for 3 values of the t parameter. (a): Euclidean distance model. (b): Log-Euclidean 
distance model.

3.3. Properties of interpolation processes

The definition of the  Hermitian matrix  H shows that  its  elements are,  in  fact,  the  second-order 
moments of Jones matrix entries (see Eqs.(2)-(3)). Thus, H may be considered as the covariance matrix of 
the  random Jones matrix  entries.  With a  classical  hypothesis  of  Gaussian distributions  for  instance,  the 
determinant  of  a  covariance  matrix  is  a  direct  measure  of  the  dispersion  of  the  associated multivariate  
Gaussian. The reason is that the volumes of associated trust regions are proportional to the square root of this  
determinant [18]. For the Euclidean interpolation curve, the determinant of the interpolated HPD matrix can 
be strictly larger than the determinants of  its end points since the  induced interpolation of determinants is 
polynomial and not monotonic in general. Averaging two multivariate Gaussian with the same mean values 
can not produce a higher dispersion value.  Introducing more dispersion in the interpolated Jones matrix 
parameters seems consequently physically acceptable only if both the multivariate Gaussian associated to the 
end points of the interpolated curve, have not the same average values.  

For  the  Log-Euclidean  interpolation curve,  the  determinant  of  the  interpolated  HPD matrices  is 
always bounded by the values of the determinants of the end points (see Appendix B for the proof of this  
property). Thus, the previous restriction does not applied to the Log-Euclidean interpolation. 
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Consequently,  when no specific  information is  known about  the  statistical  characteristics  of  the 
variate  related  to  the  coherency matrix  (view  as  a  covariance  matrix),  the  Log-euclidean  interpolation 
process seems to be more appropriated than the Euclidean one. The choice between both these interpolation 
processes may thus depend on what the statistical situation is considered or what the underlying physical  
model is assumed. 

Fig.2- Medium and the corresponding Mueller matrix for 
different values of the z parameter.

4 - Conclusion

In this work, the question of physical significance of Mueller matrix average is addressed by means 
of analysis of interpolation processes. We draw a comparison between a first interpolation process related to 
the classical Euclidean metrics framework and a second one, based on the recently introduced Log-Euclidean 
metrics.

This second distance may be only defined on the sub-set of positive definite coherency matrices.  
Since experimental coherency matrices of media exhibited in the literature are nearly always positive definite  
matrices, this latter hypothesis seems to be acceptable from an experimentalist point of view. 

Both  the  associated  interpolation  procedures  are  depicted  with  their  underlying  physical  model. 
Addressing the question of the physical meaning of Log-Euclidean process of interpolation, is founded on a 
very similar approach to the layered-medium interpretation proposed by Jones in the seventh paper of his  
series. It is worth noticing that the approach we proposed for the Mueller matrices associated to a definite 
positive coherency matrix, may be also considered as a partial answer to the question of the existence of a 
semigroup transformation property formulated by Barakat.

Based on the analysis of their respective properties, we eventually shown that the choice between 
both these interpolation processes may depend on what the statistical situation is considered or what the  
underlying physical model is assumed.
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Appendix A

It is possible to extract from F an Hermitian matrix  H by doing a partial exchange of the rows of  F.  This 
mapping H = Per(F) is defined by:

The exchanged entries of  F (see Eq. (2)) are in bold font. 

Appendix B

For a matrix X, we have the following relation:

(B.1)

where Tr(X) and det(X) are for the trace and the determinant of X, respectively.

From Eq.(9), we have:

(B.2)

Thus, for 0 ≤  t ≤ 1, we have: min [det(H(0)),det(H(1))] ≤  det(H( t ))≤  max [det(H(0)),det(H(1))]
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