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Abstract:  In this work, an alternative route to analyze a set of coherency 
matrices associated to a medium is addressed by means of the Independent 
Component Analysis (ICA) technique. We highlight the possibility of 
extracting an underlying structure of the medium in relation to a model of 
constituent components. The medium is considered as a mixture of 
unknown constituent components weighted by unknown but statistically 
independent random coefficients of thickness. The ICA technique can 
determine the number of components necessary to characterize a set of 
sample of the medium. An estimate of the value of these components and 
their respective weights is also determined. Analysis of random matrices 
generated by multiplying random diattenuators and depolarizers is presented 

to illustrate the proposed approach  and demonstrate its capabilities.   
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1 - Introduction 
 

 Mueller matrix as linear mapping between the input and output Stokes vectors of 
light interacting with  media, is a very powerful tool for polarimetric characterization of linear 
media. Though Mueller matrix may be viewed as a full representation of the polarimetric 
properties of a material medium, extracting these properties from the expression of the rough 
Mueller matrix, is not straightforward. This the reason while the Mueller matrices are usually 
interpreted by decomposing it into elementary components related to basic optical quantities 
(diattenuation, retardance and depolarizance for instance).  

The most popularized technique is a factorization one based on the polar-decomposition. 
This decomposition  of an arbitrary Mueller matrix was first proposed by Lu and Chipman 
[1]. Since this seminal article, a lot of papers have been published completing this approach. 
Some limitations of this decomposition have been underlined [2] and the forward and reverse 
decompositions concept has been proposed [3] to solve this question. Others works have tried 
to limit the “asymmetry” of the initial polar decomposition. A symmetric decomposition has 
been proposed [4]. This approach leads to a straightforward Mueller matrix interpretation in 
terms of an arrangement of five factors: a diagonal depolarizer stacked between two retarder 
and diattenuator pairs.  Most of these works are in fact related to the question of the influence 
of the order in which the elementary matrices are multiplied, since they do not commute. 
Finding different values for the basic optical properties estimated from a single Mueller 
matrix is a straightforward consequence of this non commuting product. It follows that this set 
of decompositions is well appropriate to synthesize an optical system with a given Mueller 
matrix from classically available optical components. The issue of analysing the basic optical 
properties with this approach seems to be more problematic. There is no reason to presume 
that the birefringence effect for instance is placed first or even it is localised at a specific place 
in the medium without a priori  knowledge on this medium under analysis. 

 
A second approach to decompose a Mueller matrix into elementary components may be 

related to the work of Cloude [5] who demonstrated the possibility to decompose such a 
matrix as a convex sum of up to four Mueller-Jones matrices. This demonstration is related to 
the spectral decomposition theorem applied to the coherency matrix associated to the Mueller 
matrix. Coherency matrix H is related to the Mueller matrix elements mij and Kronecker 

product of Pauli matrices (σσσσi) by : 

 

( )*

ij i j

ij

m= ⊗∑H σ σ                                                (1) 

 
It is worth noticing that we assimilate H to the coherency matrix although the classical 

definition is related to a matrix which differs from H by an unitary transformation. In fact, as 

demonstrated by Aiello [6], the definition of H is related to the basis of C
4x4

 that is 

considered.  



 

Coherency matrix is thus another possibility of representation of the polarimetric properties of 
a material medium. But this parallel incoherent decomposition (the emerging light is a sum of 
several incoherent contributions) of coherency matrices is not the only one like it. Other 
parallel decompositions may be found in the review paper of Gil [7] for instance. Once again, 
this tool does not lead to a straightforward characterisation of optical properties of the 
medium since we only access to an equivalent parallel model.  

 
The third approach to analyse the polarimetric properties of a medium is chronologically 

the first proposed method since it is related to the layered-medium interpretation proposed by 
Jones in the seventh paper of his series [8]. Introducing the notion of N matrices based on this 
layered-medium interpretation, Jones described the state of the light at every point z in an 
optical system along the light path but characterized the optical properties of the medium too. 

Later, Azzam extended this approach [9] to the partially polarized light propagating through 
non depolarizing media and introduced the differential Mueller matrix m related to the  
Mueller matrix at distance z  into the medium by: 

 

( ) ( )
d

 
d

=
M

m M
z

z
z

                                                  (2) 

Azzam also derived the relations between the entries of N and m differential matrices for non 
depolarizing media. However, the formal relation between these both matrices was formulated 

by Barakat    [10] from the concept of exponential versions of the Mueller-Jones matrices.   
 

 In a recent paper [11], we addressed the question of interpolation of the coherency 
matrix. For the denoted Log-Euclidean (LE) process, we demonstrated the physical meaning 
of this interpolation process is founded on a very similar approach to the layered-medium 
interpretation proposed by Jones. The medium associated to the coherency matrix H(t) is 
considered as a sandwich of thin laminae. Interpolating from H1=H(0) to H2=H(1) consists in 
changing the proportion of both the elements D1 = log(H1) and D2=log(H2) constituting the 
thin laminae. The basic point that we wish to stress is that D1 and D2 may be considered as 
constituent components of the set of matrices H(t) and thus of the related media. This point is 
developed in the following and the questions of how determine these components and how 
many components are needed to describe a set of coherency matrices are addressed by means 
of Independent Component Analysis (ICA) technique.    
 

The paper is thus organized as follows. After a reminder of definitions and relations 
associated with coherency matrix and LE process, we derive the hypothesis of our approach 
and  describe the ICA processing over the space of coherency matrices. The case of random 
matrices generated by multiplying random diattenuators and depolarizers is eventually 
presented for illustrating the proposed approach.  

 

2 – Coherency matrix space and LE metrics.  

 

2.1. Mueller and coherency matrix definition. 

 
 Following [12][13], we define a Mueller matrix M as a convex sum of so-called 

Mueller-Jones matrices. From this definition, it is possible to extract from M a semi definite 
Hermitian matrix H that is related to the Mueller matrix elements mij by Eq. (1). If the set of 
coherency matrices is restricted to HPD(4), the manifold of Hermitian Positive Definite 
matrices of dimension 4, a Lie group structure can be associated to HPD(4) (see [14] for 
demonstration). The group product is defined by: 



 

 

( ) ( )1 2 1 2exp Log Log⊕ =  +  H H H H                                  (3) 

where exp and log are the classical matrix exponential and logarithm mappings respectively. It 
is clear that neither the Mueller-Jones matrices nor the Mueller matrices corresponding to a 
coherency matrix with 1 or 2 null eigenvalues are elements of HPD(4). So, we do not take 
them into account in this paper. 

 

2.2. Log-Euclidean distance on coherency matrix space. 

 
 

 When considering HPD(4) matrices as a smooth manifold, it is also possible to 
define a Riemannian framework on this set of matrices. This is the way used by Arsigny [14] 
to define the LE distance on Symmetric Positive Definite matrices. Proving that this distance 
can easily be extended to HPD(4) matrices and is well adapted to coherency matrix 
interpolation was done in [11].  

Following the definition of the LE distance, interpolating from H1=H(0) to H2=H(1) 
consists in changing the proportion of both the elements D1=log(H1) and D2=log(H2) 
constituting the thin laminae (see [11] for more details). This medium is thus characterized by 
an infinitesimal generator D = (1-t).D1+ t.D2. This is a sandwich of both the previous media 
with proportions (1-t) and t respectively. It is worth noticing that this result is independent of 
the order in which both the sections are placed since matrix summation is commutative. Thus 
constituent components are not localised into the medium but may be regarded as distributed 
contributions along the light path.  

 
This approach can be extended when defining the logarithmic scalar multiplication of a 

HPD matrix H by a scalar α∈R in the same way as Arsigny proposed for symmetric matrix 

[14]. This multiplication is defined by:   

 

( ) ( )α exp α Log• =   H H                                           (4) 

With both the operations defined by Eq. (3) and (4), V = (HPD(4), ⊕, �) can be viewed as a 
vector space when a HDP matrix is identified with its logarithm. The reader is referred to [14] 
for the demonstration of this property with Symmetric Positive Definite matrices.  

A straightforward consequence is that H can be written as a linear mixtures of vectors { G1, 
G2, …, GN} of this space V. 

 

( ) ( ) ( ) ( )
N

1 1 2 2 N N i i

i=1

α α α exp α  Log
 

• ⊕ • ⊕ ⊕ • =  
 
∑H = G G G G⋯            (5) 

Following the same approach used to exhibit the physical meaning of LE interpolation 
process, H may be considered a sandwich of constituent components Di = log(Gi) with the 

corresponding thickness αi. Decomposing H over a set of basis vectors of V could be a first 
available solution. It could be also possible to choose the constituent components Di in such a 

way that the corresponding coefficients αi are homogeneous to optical quantities like for N 
matrix defined by Jones.  

 
However, we propose to explore an alternative route by exhibiting polarimetric structure 

of the medium directly from the data in relation to a predefined analysis model. If we consider 
the medium to be described by the coherency matrix H at any point in the space (or any 



 

instant of time for temporal variations), we wish to be able to identify the presence of a set of 
constituent components Di. This set of constituent components may be considered a signature 
of the medium. The fluctuations of H are thus supposed to be only related to variations of the 

thickness αi of these components. The problem are then: How many constituent components 
Di are needed to characterize the medium and what are these constituent components and their 
weighting coefficients ?  

 

3 – Analysis of a medium by a constituent components model 

 
Without any supplementary information, we are  just able to tell that N=16 components 

are obviously needed to represent the most general medium since H has 16 degrees of 
freedom.  

Nevertheless, one approach to solving this problem could be to assume some statistical 
properties of the quantities to estimate. If the medium may be considered as a mixture of 
unknown constituent components weighted by unknown but statistically independent random 

coefficients of thickness αi, the Independent Component Analysis (ICA) technique can be used 
to estimate the Di.  

 

3.1. ICA model used for coherency matrix of a medium. 

 
It is beyond the scope of this paper to develop a general presentation of this method and 

the reader is  referred to the literature on this topic, see [15] for instance. We just develop the 
classical formalism of ICA technique and explain how this approach can be used for our 
problem  

From Eq. (5) at any point in the space or any instant of time, we have a coherency matrix 
H and we can write : 

N

j j

j=1

log( ) α  = = ∑LH  H  D                                            (6) 

It is worth noticing that it is equivalent to speak about H a Coherency matrix, LH the 
logarithm of this matrix or M the associated Mueller matrix. There is no ambiguity between 
the three notations.  

Eq. (6) defined αj as the realization of a random variable. The random thickness αi are the 
latent variables of our problem since they cannot be directly observed and the Dj may be 
considered as mixing elements. It is possible to derive a more explicit expression of these 

mixtures. Since H ∈ HPD(4), Dj is necessarily a Hermitian matrix and we have only 16 
unknown entries for each Dj matrix : 

 
j j j j j j j
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j j j j j
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j j jj
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j

4
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D                                  (7) 

 
A similar description is available for the LH matrices with 16 estimated entries lhi. The 

matrix  A = (aij) with aij = d
j
i  is thus a 16 rows and N columns matrix. X = ( lhi ) is a 16 rows 

and 1 column matrix and S = (αj) a  N rows and 1 column matrix. We may write using a 
vector-matrix notation X = A S.  For the classical formalism of ICA technique, A stands for 
the mixing matrix. The problem is then to recover the S components using the input data X. 
When A is known, we can solve this linear equation by classical methods. If the mixing 
matrix is assumed to be unknown too, this problem can nevertheless be solved but assuming 



 

that the random components αj are statistically independent variables. This is the starting point 
for ICA method. All we observe is the random vector X and ICA algorithm performs an 
unsupervised estimation of N, the number of independent components and a joint estimation 
of A and S. How this algorithm works can be related to a minimization of mutual information 
process. Mutual information is a natural information measure of the independence of random 
variables. The ICA of the random vector X is defined as the invertible transformation S = WX 
where the matrix W is determined so that the mutual information of the S components is 
minimized [15]. Various algorithms have been derived in the literature to perform this task.  
FastICA [16] is one of these algorithms and it will be used below. This algorithm assumes that 
the data is preprocessed by centering. Consequently, we have the following relation between 
the input data X and the estimated S and A : 
 

( )= − +X A S S X                                           (8) 

 
(See Appendix A for the proof) where <.> denotes the ensemble average. 
It is worth noticing that <X> represents the mean value of LH matrices and corresponds  
exactly to the mean value of coherency matrices according to the LE distance : 
 

K

LE
j=1

1
exp log( )

K

 
=  

 
∑ jH   H                                             (9) 

 
See [11][14] for more details on this definition. The A matrix of Eq. (8) and the corresponding 
constituent components Di may be viewed as a characterization of fluctuations around this 
mean value. Thus we are exhibiting polarimetric structure of the medium directly from the 
data itself in which case the feature extraction process can be regarded as well suited to data 
which is being processed.  
 

Both S and A being unknown, any scalar multiplier in one of the thickness αi could be 
cancelled by dividing the corresponding column of A by the same scalar. This is a well-
known ambiguity of the ICA model. Normalizing the Dj matrices of constituent components, 

is the way we choose to fix the magnitudes of the thickness αj. After this step of 
normalization, Tr( Dj Dj

†
) = 1 where † stands for a Hermitian conjugate and Tr(.) denotes the 

trace of the matrix. Nevertheless, there is always the ambiguity of the sign. Since αi are 

presumed to be homogeneous to thickness, we can always multiply the αj and the 
corresponding Dj matrix by -1 without affecting the model in order to have positive quantities 
for the thickness.  

 
Obviously, the major assumption of this approach is on the actual existence of 

statistically independent coefficients αj. This is not an so unrealistic assumption in many 
cases. Considering a Mueller matrix as a mixing of independent physical quantities 
(birefringence or dichroïsm for instance) is one example. Since these quantities can have 
different values from one moment to another or from one location to another, a set of matrices 
with independent latent variables can be measured and analyzed according to the proposed 
approach. Illustrating this issue is exactly what we will do with the example below. 
 

3.2.  The example of  matrices with random diattenuation and depolarization values 
 

We consider the example of a medium characterized by its Mueller matrix M. According 
to Lu and Chipman [1], M can be decomposed as MRMDMDEP where MR stands for a 
retardance matrix, MD stands for the diattenuation one and MDEP for the depolarizing one. For 



 

the sake of simplicity we will suppose MR to be the identity matrix in order to limit the 
number of independent components, but this is absolutely not a limitation of the approach. 

 
The MDEP matrix can be expressed as : 

1
0 0 0
0 0 0
0 0 0

 
 =  
  

DEPM

p q r
a

b
c

                                              (10) 

 
We assume  a, b, p uniformly distributed random variables with <a> = 0.3, <b> = 0.4 and 

<p> = 0.1. c , q and r are fixed at 0.12, 0 and 0 respectively. Similarly, a MD matrix is 
completely defined by its diattenuation vector DV =[ f g h ].  f and g are fixed to 0.2 and -0.14 
respectively and h is assumed uniformly distributed random variable  with <h> = 0.12. All 
these values are arbitrarily chosen but in order to have physical Mueller matrices. A set of 
random Mueller matrices is then generated by multiplying these random diattenuators and 
depolarizers 

Two examples of the diattenuation and depolarization matrices are listed in Tab. 1 with 
the  corresponding generated matrices M. 

Table. 1 : Examples of generated Mueller matrices. First column : MD values,  second column: MDEP values , third 
column: M= MD MDEP 

 1.0000   0.2000 -0.1400   0.1283 

 0.2000   0.9816 -0.0143   0.0131 

-0.1400 -0.0143   0.9712 -0.0092 

 0.1283   0.0131 -0.0092   0.9696 

1.0000  0.0903  0.0000  0.0000 

0.0000  0.2938  0.0000  0.0000 

0.0000  0.0000  0.3932  0.0000 

0.0000  0.0000  0.0000  0.1200 

 1.0000  0.1491 -0.0551   0.0154 

 0.2000  0.3065 -0.0056   0.0016 

-0.1400 -0.0168  0.3819 -0.0011 

 0.1283   0.0154 -0.0036  0.1164 

 1.0000   0.2000 -0.1400   0.1254 

 0.2000   0.9820 -0.0143   0.0128 

-0.1400 -0.0143   0.9716 -0.0089 

 0.1254   0.0128 -0.0089   0.9696 

1.0000  0.1079  0.0000  0.0000 

0.0000  0.3098  0.0000  0.0000 

0.0000  0.0000  0.4064  0.0000 

0.0000  0.0000  0.0000  0.1200 

 1.0000   0.1699 -0.0569   0.0150 

 0.2000   0.3258 -0.0058   0.0015 

-0.1400 -0.0195   0.3948 -0.0011 

 0.1254   0.0175 -0.0036   0.1164 

   
All these 4 random variables are supposed to be independent. This is not an unrealistic 

assumption since diattenuation and depolarization can be regarded as derived from different 
physical properties and their components are specifically introduced as degrees of freedom of 
Mueller matrices in the Lu and Chipman decomposition.  

 
A set of 1000 matrices is built following the procedure previously described. The 

corresponding coherency matrices are computed and this set of matrices is the input data 
analyzed by ICA method. The algorithm estimates a number of independent components equal 
to 4. The mean value of LH matrices and the four components are also estimated. The 
Mueller matrix Mmean corresponding to this mean value of LH is listed in Tab. 2 with its polar 
decomposition. This is exactly the Mueller matrix with the mean values of the random 
variables used to generate the set of input data. It could be argued that if a Lu and Chipman 
decomposition was first applied on each random matrix and the classical Euclidean mean 
computed on the set of MD and MDEP respectively, the good mean value is then obtained by 
the multiplication of both these mean matrices. This is true but is only possible because the 
order of the decomposition is a priori known which is not generally the case in experimental 
measurements. 

 
In order to analyze the constituent components estimated by the algorithm, we compute 

the Mueller matrices denoted Mc(i), associated to the estimated constituent components when 



 

all the αj except one are set to 0. These matrices are thus computed from the N coherency 

matrices given for i∈{1;N} by : 
 

( )i i i LE
logα = + H   exp D H                                         (11) 

 

Tab. 3 shows an example of these N=4 Mueller matrices computed when the αj  are the 
estimated values corresponding to the Mueller matrix at the first line of Tab. 1. For each of 
these Mc(i)   matrices , the polar decomposition is computed and corresponding MD and MDEP 
matrices are shown.  

Table. 2 : Estimated mean Mueller matrix. First column : Mmean, second column: MD values, third column: MDEP 

values 

 0.9999   0.1602 -0.0560   0.0144 

 0.2000   0.3149 -0.0057   0.0015 

-0.1400 -0.0183   0.3890 -0.0010 

 0.1200   0.0157 -0.0034   0.1163 

 1.0000   0.2000 -0.1400   0.1200 

 0.2000   0.9827 -0.0143   0.0122 

-0.1400 -0.0143   0.9723 -0.0086 

 0.1200   0.0122 -0.0086   0.9696 

1.0000  0.1002  0.0000  0.0000 

0.0000  0.3001  0.0000  0.0000 

0.0000  0.0000  0.4002  0.0000 

0.0000  0.0000  0.0000  0.1200 

 

Table. 3 : Estimated Mc Mueller matrix associated to each component. First column : Mc(i), second column: MD(i) 
values, third column: MDEP(i) values 

 0.9999  0.1600 -0.0550   0.0144 

 0.2000  0.3148 -0.0056   0.0015 

-0.1400 -0.0183  0.3822 -0.0010 

 0.1200  0.0157 -0.0034   0.1164 

 1.0000   0.2000 -0.1400   0.1200 

 0.2000   0.9827 -0.0143   0.0122 

-0.1400 -0.0143   0.9723 -0.0086 

 0.1200   0.0122 -0.0086   0.9696 

1.0000  0.1001  0.0000  0.0000 

0.0000  0.3000  0.0000  0.0000 

0.0000  0.0000  0.3931  0.0000 

0.0000  0.0000  0.0000  0.1200 

 1.0000   0.1505 -0.0560   0.0144 

 0.2000   0.3129 -0.0057   0.0015 

-0.1400 -0.0169   0.3892 -0.0010 

 0.1201   0.0145 -0.0034   0.1163 

 1.0000   0.2000 -0.1400  0.1201 

 0.2000   0.9827 -0.0143  0.0122 

-0.1400 -0.0143  0.9723 -0.0086 

 0.1201   0.0122 -0.0086  0.9696 

1.0000  0.0905  0.0000  0.0000 

0.0000  0.3000  0.0000  0.0000 

0.0000  0.0000  0.4003  0.0000 

0.0000  0.0000  0.0000  0.1200 

 0.9999   0.1589 -0.0560   0.0144 

 0.2000   0.3090 -0.0057   0.0015 

-0.1400 -0.0182   0.3891 -0.0010 

 0.1200   0.0156 -0.0034   0.1164 

 1.0000   0.2000 -0.1400   0.1200 

 0.2000   0.9827 -0.0143   0.0122 

-0.1400 -0.0143   0.9723 -0.0086 

 0.1200   0.0122 -0.0086   0.9696 

1.0000  0.1001  0.0000  0.0000 

0.0000  0.2941  0.0000  0.0000 

0.0000  0.0000  0.4002  0.0000 

0.0000  0.0000  0.0000  0.1200 

 1.0000   0.1602 -0.0560   0.0154 

 0.2000   0.3146 -0.0057   0.0016 

-0.1400 -0.0183   0.3887 -0.0011 

 0.1281   0.0168 -0.0037   0.1164 

 1.0000   0.2000 -0.1400   0.1281 

 0.2000   0.9816 -0.0143   0.0131 

-0.1400 -0.0143   0.9712 -0.0091 

 0.1281   0.0131 -0.0091   0.9696 

1.0000  0.1002  0.0000  0.0000 

0.0000  0.3001  0.0000  0.0000 

0.0000  0.0000  0.4002  0.0000 

0.0000  0.0000  0.0000  0.1200 
 

For each of the MD(i) and MDEP(i) matrices of Tab. 3, the matrix elements that differ from the 
average matrix elements of Tab. 2 are set in bold. It is thus clear that each of the matrices 
MC(i) carries the information corresponding to one and only one random variables. MC(1), 
MC(2) and MC(3) are related to three random variables we have introduced in the matrix of 
depolarization and MC(4) is on the fourth random variable that we introduced in the matrix of 

diattenuation. The αj  we used in this example are the estimated values corresponding to the 
Mueller matrix at the first line of Tab. 1. It is worth noticing that the entries (in bold font) of 
the MD(i) and MDEP(i) matrices corresponding to the action of the random variables, have the 
values of the entries (in bold font) of the depolarization and diattenuation matrices at the first 



 

line of Tab. 1. Similar results are obviously obtained with all matrices of the original set. 
Constituent components Di therefore characterized the polarimetric properties of the set of 
matrices under analysis. By ICA approach, it is possible to isolate these polarimetric features, 
each being carried by a constituent component Di. These examples demonstrate the potential 
of the method in terms of feature extraction of a set of Mueller or coherency matrices. 

 

4 - Conclusion 

 
 In this work, an alternative route to analyze a set of coherency matrices associated to 

a medium is addressed by means of the Independent Component Analysis technique. We 
highlight the possibility of extracting an underlying structure of the medium in relation to a 
model of constituent components. If we consider the medium to be described by the 
coherency matrix at any point in the space (or any instant of time for temporal variations), we 
are able to identify the presence of a set of constituent components. This set of constituent 
components may be considered a signature of the medium. The fluctuations of the coherency 
matrix are thus supposed to be only related to variations of the thickness of these components. 
The samples are considered as a mixture of unknown constituent components weighted by 
unknown but statistically independent random coefficients. The ICA technique can determine 
the number of components necessary to characterize this set of samples of the medium. An 
estimate of the value of these components and their respective weights is also determined.  

The case of random matrices generated by multiplying random diattenuators and 
depolarizers was presented to illustrate the proposed approach and demonstrate its 
capabilities. Applications of this method to the case of coherency matrix from experimental 
data are being analyzed. 

 

Appendix A 
 
From the ICA technique, we have an estimation of A and W in such a way that WA = Id but it 
is worth noticing that AW is not equal to the identity matrix. The algorithm assumes that the 
data is preprocessed by centering so we actually estimate: 
 

1=X - X AS                                                             (A1) 

 
then  

1 1 or = + = −S S  W X S  S W X                                      (A2) 

 
But from (A1), we have by a left multiplication by W: 

 

1 =S  WX - W X                                                       (A3) 

 
from (A3) and (A2) we have : S = W X and then:  
 

=S  W X                                                             (A4) 

 
Thus from (A1), (A2) and (A4) we eventually have X - <X> = A ( S - <S>) that gives Eq. (8). 
 

 


