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Finite element simulation of 3D mechanical behaviour
of NiTi shape memory alloys (*)

G.RIO, P.Y.MANACH (GUIDEL) and D.FAVIER (GRENOBLE)

A THREE-DEVELOPED finite element model of the isothermal deformation of shape memory alloys
has been used in order to analyze and predict the mechanical behaviour of NiTt alloys. A generaf
3D kinematics has been studied. The constitutive behaviour is written using an elastolwsteresis
tensorial scheme; it is based on the splitting of the Cauchy stress tensor into two fundamental stress

coatributions of hyperelastic and pure hysteresis types, respectively. The equilibrium equations are
then discretized by the finite element method. The validity of this formulation is cstablished in the

case of three-dimensional plate bending behaviour of NiTi shape memory alioys.

(0,L,) orthonormal fixed reference frame {2 = 1,2,3),
) t absolute time,
8/3t partial derivative with respect to time,
M material point,
¢ curvilinear convected material coordinates (i = 1,2, 3),
M position of point M,
G; initiz) reference frame associated with the §*,
G;; (initial covariant components of the metric tensor G,
current reférence frame associated with the &°,
curent covariant components of the metric tensor G,
current density of metric volume per unit of material volume with ¢ = det g:;],
strain rate tensor (2D; = 8y, /8t),
deviatoric part of the strain rate tensor,
inversion time associated with an inversion point,
Cauchy strain tensor .. G = Gi;{t,) g' ® ¢,
Almansi strain tensor Af..e = Ae=1/2{G — .. {G),
deviatoric part of the Almansi strain tensor,
Cauchy stress tensor,
deviatoric part of o and of its variation,
invariants used for strain tensors: ¢}, 1/2 £5#7; L 13 i» respectively,
internal energy density,
. & intrinsic dissipation rate,
W help function,
S0,Qo mhﬁxspamnelers(lunnshwsmsamdmdms(?u V25s,
of the von Mises cylinder),
w@r interpolation functions,
&  Kronecker symbol,
w Masing functional (w = 1 or 2).

{*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994,
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1. Introduction

THE SHAPE MEMORY ALLOY (SMA) specific propertics lead to many projects of in-
dustrial applications such as, for example, electrical and mechanical connections
or thermal regulation {1, 2]. However, most of these projects did not succeed
due to several metallurgical and mechanical reasons. Among these reasons, the
fact that no numerical tool (such as Computer Assisted Design (CAD) programs)
adapted to these materials exists is an important obstacle to their industrial de-
velopment. Thus, even if SMA crystallographic structure and microscopic prop-
erties {i.e. the martensitic transformation and related phenomena) have been
extensively studied, it becomes essential to deepen the modelling of their ther-
momechanical behaviour and then to propose a numerical formulation of this
behaviour adapted to an integration into CAD programs.

Up to now several authors have intended to model the thermomechanical
behaviour of SMA. Some of these models are monodimensional ones [3--6]
and are indeed devoided of interest to model the deformation behaviour of
three-dimensional bodies. At the same time several theoretical tensorial schemes
have also been developed [7-9] but as far as we know, none of these constitutive
laws resulted in industrial programs or applications; for example, the program re-
cently developed by BRINSON et al. [10] takes into account only monodimensional
effects. -

This paper is devoted to a three-dimensional finite element model of the
isothermal deformation of SMA, in order to analyze and predict the mechanical
behaviour of NiTi alloys. The formulation of this model is developed for large
geometrical transformations including large deformations. In this context, a gen-
eral 3D kinematics has been studied. The constitutive behaviour is defined using
an elastohysteresis tensorial scheme which is based on the splitting of the Cauchy
stress tensor into two fundamental stress contributions of hyperelastic and pure
hysteresis types, respectively. Such a constitutive law has already shown its ap-
plicability for SMA [11-13]. The equilibrium equations are then deduced using
the principle of virtual power, the system of nonlinear algebraic equations being
solved by the Newton - Raphson method.

In a second part, the modelling ability of this formulation is presented in
the case of three-dimensional plate made of NiTi shape memory alloys under
bending. We focus at first on the influence of several boundary conditions on the
simulation of NiTi plate bending. A set of numerical data is then displayed and
compared with some simple elastic theoretical results found in the literature. Sec-
ondly, a simulation of the typical isothermal behaviours of shape memory alloys
(i.e. pseudoelasticity and rubber-like behaviour) of a simple 3D body subjected
to bending is proposed. This gives the first approach to the thermomechanical

» behaviour modelling of industrial shape memory alloy bodies.
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2. Theoretical formulation

The theoretical formulation of the model is written considering large geo-
metrical transformations including large deformations. As it was previously men-
tioned, a general 3D kinematics has been studied, no particular direction being
favoured. Such 2 formulation allows for example the study of mechanical cylin-
dric connections made of NiTi SMA. The definition of this kinematics in terms
of involvements in the finite element program is briefly detailed in this paper.

2.1. Three-dimensional kinematics

Due to the inczemental character of plastic constitutive laws, the description
of elastOplastlc deformation process is performed usmg an updated Lagrangian
scheme, i.e. the configuration of the material at time ¢ is taken as refeérence con-
figuration for the time interval [t,t + At]. At the end of the increment At, the
configuration of the material and the boundary conditions are updated, the new
configuration being chosen as reference configuration for the next time increment.
Let us consider a body {2, its configuration at time ¢ being the reference config-
uration. The equilibrium conditions are written in the final configuration, ie. at

I?lez
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F16. 1. Three-dimensional kinematics: definition of the convected material coordinates
and of the local natural frame G;.

time ¢ + At. The position of the body 2, see Fig. 1, is defined using convected
material coprdinates ¢*, so that at time ¢, its position can be written as

@1 M(#,0) = (¢, )L,

where the 1, vectors denote a fixed reference frame. The local frame (M, G;), -

!
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also called natural frame, is defined by the relation:

In the final configuration, the position of the body 2 at time ¢+ At can be written
in the form M(&, ¢ + At) = 22(8*, ¢ + At) L, the local frame g; being then defined

by

oM 8z°
23 = (—) = (——) .
@3) 8= 30 ) rn = \oF ) orme

From these definitions, the Almansi strain tensor is written as [14, 15] -
2.9) Alite. oi@ el = % (G —thar G) ]

$+4t | G represents a tensor, the components of which are those of the metric
tensor G in the natural frame at time ¢, convected without modification until the
time ¢ + At. Similarly, Ai*4%;; represents the two times covariant components
of the strain tensor between ttmcs t and t + At. For the remammg part of this
study, the strain tensor will be denoted by Ae.

For sake of simplicity, the map of material coordinate is taken as the map
of coordinate of the finite element discretization [16). Practically, this choice
imposes that the global integrals of volume should be divided into a sum of
integrals performed on each element; this choice is in fact natural in the case of
the finite element method.

Discretization of the kinematic fields. Let M be a material point of the body 2. Its
current position is defined by the relation:

(2.5) ' M=2L =2 L,

where the interpolation functions ¢, depend on a coordinate map £; on the refer-
ence element, i.e. v, = ©.(£;). Since the elements are assumed to be isoparamet-
tic , = 1, (¥, represents the interpolation of the functions), the displacement
field Au between times ¢ and ¢ + At may be written as:

(2.6) Au = Aul, = Au® ¢, 1.

The choice §; = 6; implies that ; corresp;)nds to the material coordinate of each
element.
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22. Constituiive behavioor

The thermomechanical behaviour of the alloys with shape-memory proper-
ties is the result of the action at a microscopical scale of reversible phenomena
in association with irreversible phenomena; the observable effect of irreversible
phenomena is the hysteresis loop [17] which can be universally spotted in many
fields of physics [18]. Such an observation is the starting point to elaborate a class
of thermomechanical schemes called elastohysteresis [11).

For SMA, the permanence of the simultaneous existence of reversible pro-
cesses and hysteresis suggests to express the Cauchy stress tensor o as the ad-
dition of two partial stresses, the first one being hyperelastic o, [11), while the
second one is related to hysteresis of elastoplastic type o), {19, 20, 21]. This ap-
proach leads to the studies of two tensorial schemes of isothermal hyperelasticity
and hysteresic behaviour, respectively. The last one which may be pure hysteresis
(periodic under periodic loading) or evolutional hysteresis is non-standard and
belongs to the discrete memory type {19, 22]. Both hyperelastic and hysteresis
schemes allow the introduction of a particular formalism, the choice of which is
driven by the physical processes involved in the thermomechanical behaviour of
SMA. The pure elastohysteresis scheme allows the description of isothermal ef-
fects (i.e. superelasticity and pseudoelasticity) as well as shape memory effect [11].

22.1. Hyperelastic bebaviour. For an isotropic body the hyperelastic stress is deter-
mined if one defines a density of elastic energy depending on three variables, i.e.

three strain invariants. The thermomechanical properties of shape memory alloys
are related to the thermoelastic martensitic transformation which occurs mamly
by a shear-like mechanism. Macroscopically, if the material is assumed isotropic,
the choice 'of the intensity of the deviatoric strain II; as the first variable of the
density of elastic energy, is thus physically meaningful [11, 12]. The set of variables
is completed by the ratio of elementary material volumes » and by the phase of
the deviatoric strain tensor ;. Let us denote by ¢ = det| g;;| and G = det | G;; |,
the ratio of elementary volumes is then defined by the relation v = (¢/G)'/2
Denoting by £ the deviatoric part of the Almansi strain tensor defined between
the initial neutral state and the current state, the last variable can be expressed

as;

@7 cos3pr = 3v6 —35 2%2 ,

where TIT; denotes the third invariant of the deviatoric strain tensor.
Let E Ve the density of elastic energy. The reversible stress contribution o,
is defined, for an isothermal evolution, by the rate form

3E _
u
(2.8) = Dji.

4



542 G. Rio, P.Y. ManAciH AND D. Favier

D denotes the strain rate tensor for which 2D;; = dg;;/0t and in the isothermal
case, E is simply the Heimholtz free energy. One obtains then by identifying all
terms [11]:

29) o, = agg + a1 Afe + a3 A€ - Aje,

where the coefficients o; are functions of v, TT, ¢z, 8E /8v, 0E /9TTz and 8E/d¢-.
In the case of shape memory alloys, a simple form for E is chosen as follows
[11, 12):

o 5 B (V) e

where k,, @,, # and g, are the parameters of this law and depend on the alloy
and on the temperature. At this step, the variation of the hyperelastic constitutive
law is needed to calculate the stiffness matrix; but for sake of clarity, the variation
of strain and metric tensors, patural frame vectors as weli as the variation of this
law with respect to the degrees of freedom will not be detailed in this paper.

22.2. Pure hysteresls behaviour. The hysteresis contribution has the property of be-
ing always irreversible as it is related to the intervention of microstructural phe-
nomena of dry friction type (strain rate-independent). It is different from a purely
frictional stress due to the presence of some physical phenomena which are also
able to store elastic energy. Rheological models containing elastic and slip ei-
ements have been considered {0 establish general pure hysteresis model [19].
From this analysis it has been shown that the internal energy and other thermo-
mechanical quantities associated with the pure hysteresis contribution depends on
the current state but also on the previous thermodynamical history through the
- memorisation of some discrete memory states. The material is assumed isotropic
~ and the hysteresis contribution is only deviatoric. The basic hypotheses are the

non-coupling volumetric-deviatoric behaviour and the isotropic plasticity evolu-
tion limited by the von Mises criterion which is directly included in the rate-form
formulation of §; such hypotheses can be easily justified in the case of metallic
materials. The constitutive law is then written in the form:

-% |415% ] = 200 D + Be 3 AL

The term §' is related to the deviatoric stress tensor § through the refation (2.14)
and D denotes the deviatoric strain rate tensor. The subscript r represents a
reference situation which corresponds to the initial state for the first loading and
to the last inversion state for the other cases, as long as any crossing point is not
detected as it will be described in the next section [20]. The variable £, analogous
to the time, is used to describe an evolution, and the parameter g; corresponds

(2.11)
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to the Lamé’s oocﬂi(:lent, while for a radial path, g4 is defined by:

_HBh
w? S&

where the similarity function of Masing « is equal to 1 for the first loading and
to 2 for the others. Sy denotes the limit shear stress for the pure hysteresis
contribution. The main advantage of this definition is that the identification of
the parameters can be easily performed with only a tensile and a simple shear
test [23] The term ¢ represents the intrinsic dissipation rate during an evolution
and is defined on a radial path by the relation:

(2.13) PEALLY

The definition of the constitutive equation (2.11) is performed by using a mixed
transportation scheme, The symmetneal components of § are obtained from those
of & by the relation:

2.12)  Ba=-

@.14) 59 = 2 (8% %+ 8% 4) .

It can be noticed that the constitutive equation (2.11) defines the Lie derivative
one time contravariant and one time covariant of the tensor S, while the previous
relation can be interpreted as the integration of the Jaumann derivative of this

tensor.

Resalution of the constitntive equation.” The constitutive equation is a first order partial
differential equation, the values of which are known at time ¢. It-is then necessary
to integrate this equation between times ¢ and 1 -+ At and two simple integration
methods can be used. On the one hand, the equation can be linearized and
then directly integrated by an implicit Newton method; on the other hand, it
can be integrated by a Runge-Kutta explicit method [15]. In this last case, it
implies that the calculation of all different values is made at several intermediate
points while the first method necessitates only a calculation at time t + At. For
the sake of simplicity and in order to be consistent with the resolution of other
numerical problems (e.g. determination of inversion points), the first method has
been retained here.

From these hypotheses, the derivative of §' with respect to time is linearized;
denoting T = ¢ + At, one obtains the constitutive equation in the form:

@15) 384 [A7S", ¢ + A7S"™ M| D A7S% - AIS% 4+ 2 D5 = 0
with

(2.16) ATS" = ATSY, — ALSY . |

This equation, quadratic in A7S$", is then solved by a first order Newton method.
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Determination of inversion and crossing points. The necessity of introducing discrete
memory concept can be observed in the mono-dimensional case such as the one
presented in Fig. 2. It can be seen in this figure that the third branch BC can not be
continued along the path CIY but along the path CD which is the continuation of
the first loading branch. This shows that along the path ABG, it is necessary to
keep the memory of point A, memory which is erased along the path CD for after
C, the behaviour is identical as if the path ABC has not been performed. Along
the paths OA, then AB, BC and CD, one must keep successively the memory of
points O, then O and A, then O, A and B and finally O only. Points such as A and
B are called inversion points while points such as C are called crossing points,

500 |- ¥
/
o ‘/
] e ?
2]
n
Ezso -
1.3
-
&
n
B
8 FIOF A% I B B R B B A B N S S e NP i | PP P
"0.000 ¢.020 0.040 0.080
SHEAR STRAIN

FiG. 2. Quasi-monodimensional simpleshearmdcﬁniﬁonbfapurehysteresisbehmu
and of the inversion and crossing points.

The management of inversion points is performed by using the intrinsic dis-
sipation rate function ¢ presented in equation (2.13). This value is related to a
volume element and must always be positive. The state at time ¢ is an inversion
point when the function ¢ becomes negative. Furthermore the management of
crossing points is performed by using an associate function W called help function
and defined on a radial path by the relation [19, 21]:

@17) W= éfa(r) dr.

After each inversion point, the level reached by the W function is memorized and
W is set to zero for the next evolution. This function represents a measurement
of dissipated energy along the path between two inversion points. A crossing
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point is then observed when the current level of exchanged energy reaches a
previously memorized level of W, reached on a previous branch. The crossing
point represents the closure of a cycle which can then be erased. For non-radial
path, the expression of relation (2.17) is rather more complicated [21]. It can
be noticed that the crossing point has to be determined accurately, in order
to avoid a numerical drift when performing a succession of centred cycles or
loading-unloading loops.

1.3, Variational formulation

Let 2 be the region occupied by the material and ¥ its boundary. The weak
formulation of the boundary-value problem defined by the boundary conditions
and by the equilibrium equations is obtained by using the principle of virtual
power. In fact, it may be shown that this boundary-value problem is satisfied at
time ¢ + At if and oaly if the following condition:

(2.18) f oV b;1; df2 = f T 5 d%
n x

is fulfilled for virtual velocity-ﬁcld v resulting from kinematically admissible dis-
placement field. Here ¢ and T represent the Cauchy stress tensor and the surface

external force, respectively. The region 2 as well as the surface X' correspond
to the material positions of the body at time ¢ + At. From the finite element

discretization and taking into account that the virtual velocity field is arbitrary in -
2 and on X, this leads with (2.6) in a standard way to the system of algebraic
nonlinear equations:

(2.19) Rp(Au*) =0 Vbs,
where Au denotes the displacement between time ¢ and £ + At, and

(2.20) Ry (Au™) = ] 0% (AwT) B |; (5= 1) d2 - / T 5@ =1)dz.
Aty 5o

bz

v corresponds to the virtual velocity of a degree of freedom, v being chosen
under the same form as the displacement field. The previous system is then solved
by using thé Newton-Raphson method.

3. Numerical results

, This section is devoted to the numerical study of the bending behaviour of a

NiTi square plate under several boundary conditions. The aim is to analyze the
convergence and the ability of the elastohysteresis constitutive law to model the
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pseudoelastic and the rubber-like behaviour of such shape memory alloys. The
first part deals with the influence of the boundary conditions on the mechanical
behaviour of a plate loaded by an uniform pressure on its upper side; then the
second part deals with the influence of the mesh on the numerical results. Finally
the fast part is devoted to the description of the behaviour of a NiTi SMA plate
in the austenitic as well as in the martensitic state.

3.1. Plate under several boundary conditions

The square plate which is studied here has the following dimensions: 40 x
40 x 2.6 mm. For symmetry reasons, only the quarter of the plate, presented
in Fig.3, has been used for all tests. Therefore on faces BCGF and EFGH, the
boundary conditions are symmetry type conditions, i.e. v = 0 on BCGFand « = 0
on EFGH. Three types of edge boundary conditions are used; a clamped plate
(Case 1), a simply supported plate (Case 2) and a sliding simply supported plate
(Case 3). For the first case, the boundary conditions are v = v = w = 0 on
ADCB and AEHD. For the second case w = ¢ =0 onCD and w = v = 0 on
DH, while for the last case, w = 0 on CD and DH. The plate is subjected to
uniform pressure on the upper side ABFE. The mesh used for all these cases has
10 elements on each lateral side and 2 elements in the thickness, the elements

being quadratic hexahedrons.
"B F
|
|
PP
./C G
Rl z
y
A ’r, .
l’ o
D . H X

F1G. 3. Square plate used for the numerical results. «, v and w are the displacements
along the =, y and z directions, respectively.

The pressure-deflection loading curves obtained for these three cases are pre-
sented ip Fig. 4. The parameters of the elastohysteresis constitutive law are those
determined from experimental results and given in Table 1 of the subsection 3.3.
The curves drawn in dashed lines represent the simulation of respective prob-
lems with particular boundary conditions for a linear elastic material, with the
Young modulus E = 83000 MPa and the Poisson’s ratio » = 0.393; these param-

+ eters have been determined from those in Tible 1 so that the associated linear
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50.0

40.0 |

3.0

PRESSURE (MPa)
B

10.0 |

0.00 . : I T 2.50

DEFLECTION (mm)
FIG. 4. Pressure-deflection loading curves obtained for a damped plate (1), a simply supported
plate (2), and a stiding simply supported plate (3). The curves in dashed linc represent the clastic
results associated to each case of boundary conditions with the parameters E = 83000 MPa and
» = 0.393.

behaviour coincides with the initial quasi-linear stress-strain relation of the elas-
tohysteresis behaviour. These elastic results have been compared to the analytical
solutions given by TIMOSHENKO [24] and, despite the fact that these analytical re-
sults are given for thin plates, there is a good agreement between analytical and
numerical results. Moreover, the curves drawn in full lines feature a strong non-
linear behaviour and it can be observed (like in the elastic case) that the clamped
plate requires a higher pressure to be deformed, while the pressure is of the same
order of magnitude in the two other cases.

The curves plotted in Fig. 5 and Fig. 6 represent the stress distributions in the
thickness, both for a deflection of 2 mm. The longitudinal stress o, and shear
stress oy, are presented in Fig.5 and Fig.6, respectively. The value of oy, B
taken in the middle of the plate while o, is taken on the symmetry side EFGH
near the edge, i.e. where it reaches its highest value. It can be observed that the
variation of g, along the thickness follows a third order symmetric curve and
that this value is not too different in all cases. Such a small difference is due to the
fact that the deformation state in the center of the plate is identical for all cases
(as the deformed shapes are the same, see Fig.7), since this region is far from
the edges. It can be expected that for an infinite plate, these three curves will
merge together. Conversely, the shear stress depends strongly on the boundary
conditions, the value of o, being much higher in the case of the clamped plate
compared to the other cases when the same central deflection is considered.
The clamped plate having the higher stiffness, the load must be increased to
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F1G. 5. Longitudinal stress distribution oy, obtained between points F and G, along the thickness
for a 2 mm central deflection, for a clamped plate (1), a simply supported plate (2), and a sliding

nou ' FWETE ST ST
—1000 =750 -500 -250

-

simply supported plate (3).
2.00 |
n .
E ____________________
21.00 -
=
[
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U200 -175 -150 -125 -100 -75 -50 25
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FiG. 6. Shear stress distribution ¢,. obtained between points E and H, along the thickness for
a2 mam ceatral deflection, for & camped plate (1), simply supported plate (2), and a sliding
simply supported plate (3).

obtain the same central deflection, which lead naturally to a higher shear stress
level. Moregver, all curves have a classical symmetric shape with respect to the
, mid-plane. '
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F1G. 7. Initial and deformed shape of the symmetry side EFGH of the plate for a deflection
of 2 mm, Meshes correspond (0 a clamped plate (1), a simply supported plate (2), and a dliding
simply supported plate (3). -

3.2. Influence of the mesh

The influence of the mesh on the numerical results has been studied on the
clamped square plate (see also subsection 3.3 for details about the material pa-
rameters). The pressure-deflection loading cuives obtained for n = 4, 6, 8 and 10
quadratic elements on the lateral sides, respectively, are presented in Fig. 8. It can

50.0
3
[ 1
2
B P
40.0 <
? ”""
§ se.0 >
g 2“.0 o
]
[
s
m -
0.0 |
"Jo-o r||r|1||1|.--|-|:|||_|....
o.00 0.50 1.00 1.50 2.00 2.50

DEFLECTION (mm)

FiG. 8. Pressure-deflection loading curves obtained on a square plate for n = 4 (1), n = 6 (2),
n=8(3)andn=10(4)quadraucclementsonead:hteml side of the plate, respectively. The
mesh contains 2 elements in the thickness.



ss0 ' G.Rio, P.Y. MANAGH AND D. FAviER

be observed that the number of elements on the edge side has a great influence
on the numerical results, especially when this number is rather small. As it could
be expected, a small number of elements leads to an overestimation of the bend-
ing rigidity. When this number increases, the calculations converge to a stable
solution which seems to be reached for n = 10, for the gap between curves 3 and
4 is rather small. The curves presented in Fig. 9 represent the pressure-deflection
curves obtained for n = 1, 2 and 3 quadratic elements in the thickness. It can be
seen that for a small number of elements (n = 1), the rigidity of the plate is again
overestimated in the range of smail strains, but also that it tends to saturate for
larger deformations. For a higher number of elements, the difference between
curves obtained for » = 2 and 3 elements becomes quasi-negligible.

a8 s
o o

0
=
o

PRESSURE (MPa)

10.0

I I £ 1 M R
4.00 0.50 1.00 1.50 2.00 2.50

n.n l'l_l El 1 l i L L L l_l 1 'l 1

DEFLECTION {mm)

FiG. 9. Pressure-deflection loading curves obtained on a square plate for n = 1 (1), » = 2 (2)
and n = 3 (3) quadratic elements in the thickness of the plate, respectively. The mesh contains
10 elements on each lateral side.

As a whole, a mesh of n = 10 elements on each lateral side and of n = 2
elements in the thickness offers a good compromise between the accuracy, the
reliability of the mesh and the calcufation time. This mesh is used for all the other
calculations; indeed, one observes that the convergence is stable in all tests, no
locking phenomenon appears and the solution always converges to a stable shape.

3.3. Shape memory alloy behaviour

Concemning the study of SMA, the material parameters have been ideati-
fied on a NiTi alloy from the experimental results obtained in simple shear by
" MaNACH [13]. The determination of these parameters has already been detailed
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in MANACH et al. [23]. The values are given in Table 1 (in MPa) and are considered
as temperature-independent.

Table 1. Material parameters of the elastohysteresis constitutive law.

&, Hr Boo #h So
Austenitic state | 425000 | 22500 { 2500 | 7500 | 100
Marteasitic state [ 425000 | 22500 { 2500 | 7500 | 200

The evolution of Q, as a function of the temperature has been determined
to follow a linear relation such as: Q, = 5vZ(T — 313)MPa [23] for T > 313K,
and {0 MPa otherwise. In the austenitic state, the test is performed at T =
353K and in the martensitic state at T = 313K. The numerical simple shear
stress-strain curves obtained using these parameters are presented in Fig. 10 and
Fig. 11 for the austenitic and martensitic states, respectively. Moreover, loops
and subloops have been performed on these simulated curves in order to fea-
ture the main characteristics of the elastohysteresis model. The results obtained
on the pressure-deflection loading-unloading cwrves in the middie of the plate
are presented in Fig. 12 in the austenitic (A) and in the martensitic (M) state,
respectively.
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Fi1G. 10. Numerical stress-strain curve obtained in simple shear on a NiTi alloy from the
parameters identified by the experimental results of Manach [13] in the austenitic state
at T =353K

, Tt is now well known that the deformation mode of materials presenting a
thermoelastic martensitic transformation is highly influenced by the tempera-
ture at which the deformation takes place. Two mechanisms of deformation can
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F1G. 11. Numerical stress-strain curve obtained in simple shear on a NiTi afloy from the
parameters identified by the experimental results of Manach [13] in the martensitic state
at T =313K.
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Fi6r12. Pressure-deflection loading-unloading curve obtained for the bending of a NiTi
clamped square plate in the austenitic (A) and in the martensitic (M) state, respectively.

occur, i.e. the reorientation of the martensite variants when the material is in
, the martensitic state, and the stress-induced martensitic transformation when the
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material is in the austenitic state. Qualitatively, the curves presented in Fig. 12
exhibit the typical mechanical behaviours of SMA related to these two previous
phenomena, ie. the superelastic effect of the austenitic phase and the rubber-
like behaviour of the martensitic phase. Then for curve (M), the deformation is
produced by the motion of internal defects such as martensite-martensite inter-
faces or martensite twins. The loading curve corresponds to the development of
the martensite variant reorientation, while the unloading curve is characterized
by a partial reorientation of the martensite variants, producing then a greater
reverse deformation than the classical elastic deformation. For curve (A), the
main mechanism of deformation is produced by the stress-induced martensitic
transformation during loading and its quasi-total reversion during unloading,

e.g. [25].
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FiG. 13. Longitudinal stress distribution ey, obtained between points F and G, along the

thickness, for a 2 mm central deflection, for 2 clamped plate at the end of the loading
and unloading in the austenitic (A) and in the martensitic (M) state, respectively.

The stress distributions in the thickness are presented in Fig. 13 and Fig. 14
for the longitudinal stress o,, and for the shear stress o, respectively. Compar-
isons are made for the same central deflection of 2mm. It can be observed that
the residual stresses are of the same order of magnitude, the longitudinal stress
o,y being greater in the martensitic state (which is more deformed) while the
shear stress o, is similar for both cases, which is coherent with consideration of
subsection 3.1. It can also be pointed out that those stress distributions are in
agreement with the analytical solutions given by Kirchhoff for an elastic clamped

square plate.
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FiG. 14. Shear stress distribution oy obtained between points E and H, along the thickness
for a 2 mm central deflection, for a clamped plate at the end of the loading and unloading
in the austenitic (A) and in the martensitic (M) state, respectively.

4. Conclusions

A new three-dimensional finite element model of the unusual deformation of
shape memory alloys has been developed. The validity of this model has been
analyzed in the case of the bending behaviour of NiTi alloy. The formulation of
this model is written in the case of large geometrical transformations including
large deformations. In this context, a general 3D kinematics has been studied.
The constitutive behaviour is defined using an elastohysteresis tensorial scheme
and finally, the equilibrium equations are deduced using the principle of virtual
power which is solved by the finite element method.

The modelling ability of the formulation has been presented in the case of
three-dimensional plate behaviour, the numerical study conceming the bending
behaviour of a NiTi square plate under several boundary conditions. The be-
haviour of the plate under several boundary conditions features a good agree-
ment, at the beginning of the loading, between the numerical and analytical elastic
results, while the influence of the mesh has also been analyzed. Furthermore, this
study shows that the behaviour of SMA is well modelled by the elastohysteresis
constitutive law and that the main effects observed numerically are consistent
with l_;.h_c'u'se observed experimentally on such shape memory alloys.
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