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Abstract

An inductive approach to the representation theory of cyclotomic Hecke algebras, inspired by
Okounkov and Vershik [28], is developed. We study the common spectrum of the Jucys-Murphy
elements using representations of the simplest affine Hecke algebra. Representations are constructed
with the help of a new associative algebra whose underlying vector space is the tensor product of
the cyclotomic Hecke algebra with the free associative algebra generated by standard m-tableaux.
The classical limit of the whole approach, including the construction of representations, is given.
The flatness of the deformation is proved without the use of the representation theory.
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1. Introduction

The A-type Hecke algebra Hn(q) is a one-parameter deformation of the group ring of the symmetric
group Sn. We shall often omit the reference to the deformation parameter q and write simply Hn

(for other families of algebras appearing in this article the reference to the parameters of the family
will also be often omitted in the notation). The Hecke algebra of type A plays an important role in
numerous subjects: we just mention the knot theory, the Schur–Weyl duality for the quantum general
linear group; the representation theory of the A-type Hecke algebra for q a root of unity (for generic
q the Hecke algebra is isomorphic to the group ring of Sn) is related to the modular representation
theory of the symmetric group.

The Hecke algebras Hn form, with respect to n, an ascending chain of algebras. The Hecke
algebras Hn possess a set of Jucys–Murphy elements. This is a maximal commutative set (for generic
q and in the classical limit) whose advantages are: explicit description (compared to other maximal
commutative sets discovered in the study of chain models); simple relation to the centralizers of the
members of the chain. Moreover, the inductive formula for the Jucys–Murphy elements can be lifted
to the “universal” level: there exists a chain of affine Hecke algebras Ĥn for which one also defines the
Jucys–Murphy elements; the subalgebra generated by the Jucys–Murphy elements is isomorphic to a
free commutative algebra and there is a surjection Ĥn → Hn which sends the Jucys–Murphy elements
of the affine Hecke algebra to the Jucys–Murphy elements of the Hecke algebra Hn.

The main relation participating in the definition of the Hecke algebras is the Artin (or braid or
Yang–Baxter) relation. The main additional relation participating in the definition of the affine Hecke
algebra and governing the commutativity of the set of the Jucys–Murphy elements is the reflection
equation (a sort of braid relation participating in the presentation of the Weyl groups of type B) . The
Jucys–Murphy elements and reflection equation appear in many applications: scattering on the half-
line [5], theory of knots in a torus (see, e.g., [21] and references therein), the standard complex and the
BRST operators for quantum Lie algebras [11, 17], matrix integrals [43], quantum multilinear algebra
[18], construction of the quantum Minkowski space [26, 8] and quantum versions of the accidental
isomorphisms [19] etc.

In [28] Okounkov and Vershik developed an inductive approach to the representation theory of the
chain of the symmetric groups. Within this approach the description of the irreducible representations,
the Young graph and the Young orthogonal form arise from the study of the spectrum of the set of the
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Jucys–Murphy elements of the group ring CSn. This approach has then been successfully generalized
to the projective representations of the symmetric group [34], to the wreath product G ≀ Sn of the
symmetric group with any finite group G [29], to the Hecke algebras of type A [14] and to the Birman-
Murakami-Wenzl algebras of type A [15].

An analogue of the Hecke algebra and of the braid group exists for all complex reflection groups.
The complex reflection groups generalize the Coxeter groups and the complete list of irreducible finite
complex reflection groups consists of the series of groups denoted G(m, p, n), where m, p, n are positive
integers such that p divides m, and 34 exceptional groups [33].

The Hecke algebra of G(m, 1, n), which we denote by H(m, 1, n), is our main object of study.
The algebra H(m, 1, n) has been introduced in [1, 6] and is called the cyclotomic Hecke algebra. For
m = 1 this is the Hecke algebra of type A and for m = 2 this is the Hecke algebra of type B. The
representation theory of the algebra H(m, 1, n) was developed in [1] (and in [13] for the Hecke algebra
of type B); the irreducible representations of the algebra H(m, 1, n) are labeled, as for the group
G(m, 1, n), by m-tuples of Young diagrams.

The Hecke algebras H(m, 1, n) also (as the usual Hecke algebras) form, with respect to n, an
ascending chain of algebras. Moreover, the algebra H(m, 1, n) is naturally a quotient of the affine
Hecke algebra Ĥn and therefore inherits the natural set of Jucys–Murphy elements from the affine
Hecke algebra. Our principal aim in this paper is to reproduce the representation theory of the
cyclotomic Hecke algebra by analyzing the spectrum of Jucys–Murphy operators. We generalize the
Okounkov-Vershik approach to the representation theory of the cyclotomic Hecke algebra H(m, 1, n);
we construct irreducible representations and show that the usage of this approach allows to describe
all irreducible representations of H(m, 1, n) upon certain restrictions (slightly stronger than the semi-
simplicity conditions) on the parameters of the algebra H(m, 1, n).

We stress that our aim is not the construction itself of the representation theory - it has been
already constructed in [1] - but we want to re-obtain the representations directly from the analysis of
the Jucys–Murphy operators, to encode the representation bases in terms of sets of numbers which
satisfy simple rules and which in fact are sets of common eigenvalues of the Jucys–Murphy elements
and to reinterpret the Young multi-tableaux in terms of strings of eigenvalues of the Jucys–Murphy
operators. As a byproduct of the construction of the representation bases it follows that the set of
Jucys–Murphy operators is maximal commutative (this observation is present in [1]). The approach,
based on the Jucys–Murphy operators, has a recursive nature - it uses the structure of the ascending,
with respect to n, chain of the cyclotomic algebras H(m, 1, n).

Since the cyclotomic Hecke algebra is the quotient of the affine Hecke algebra, a representation of
the cyclotomic Hecke algebra is also a representation of the affine Hecke algebra. The representations
of the affine Hecke algebras are usually expressed in a different language, see [4, 42, 32, 37, 3] for the
original papers and surveys of the classical and q-deformed situations.

A novelty of our construction of the representations of the cyclotomic Hecke algebra is the intro-
duction of a new associative algebra. Namely we equip with an algebra structure the tensor product
of the algebra H(m, 1, n) with a free associative algebra generated by the standard m-tableaux cor-
responding to a given m-partition of n. We denote the resulting algebra by T. The representations
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are built then by evaluation from the right with the help of the simplest one-dimensional representa-
tion of H(m, 1, n). There is a natural “evaluation” homomorphism from T to H(m, 1, n) sending the
generator labeled by a standard m-tableau to the corresponding primitive idempotent of the algebra
H(m, 1, n).

An interesting consequence of the existence of this “smash” product with the free algebra is a
structure of a module on the tensor product of two representations corresponding to two (in general,
any number of) m-partitions. We determine the rules of the decomposition of these tensor products
into direct sums of irreducible representations. The decomposition rules themselves are quite easy:
Vλ(m)⊗̂Vλ′(m)

∼= dim(Vλ′(m)) Vλ(m) ; however an intertwiner, establishing this isomorphism, is difficult to
describe explicitly - already for small n the simplest choice of an intertwiner is quite evolved. Also, to
obtain the decomposition rules we need the completeness result saying that every H(m, 1, n)-module
is isomorphic to a direct sum of H(m, 1, n)-modules corresponding to m-partitions of n; however the
definition of the module structure on the tensor product does not use the completeness. We think
that the module structure on the tensor product deserves further study.

The space of a representation obtained with the help of the smash product is equipped with a
distinguished basis which is analogous to the semi-normal basis for representations of the symmetric
group. It turns out that there exists an analogue of an invariant scalar product on the representation
spaces; the definition of this analogue involves the involution ω : q → q−1, vj → v−1

j , j = 1, . . . ,m (q
and vj , j = 1, . . . ,m, are the parameters of the algebraH(m, 1, n), see Section 2 for precise definitions).
We call this analogue “ω-sesquilinear scalar product” and compute it for all irreducible representations
of H(m, 1, n) building thereby the analogues of the orthogonal representations of the symmetric group.
As a consequence, there is a large class of finite-dimensional irreducible representations of the affine
Hecke algebra which are unitarizable with respect to this scalar product. If the parameters q and vj ,
j = 1, . . . ,m, of the algebra H(m, 1, n) take values on the unit circle (in C) then the ω-sesquilinear
scalar product becomes a usual Hermitian scalar product.

On the level of groups the Coxeter–Todd algorithm [7] is a powerful method for constructing a
normal form for the group elements (with respect to a given subgroup). For an ascending chain of
groups the Coxeter–Todd algorithm provides (recursively) a global normal form for the group elements.
We apply the Coxeter–Todd algorithm to the chain, with respect to n, of the groups G(m, 1, n). The
resulting normal form has a nice generalization providing a normal form for the elements of the
cyclotomic algebra H(m, 1, n) (in other words, a basis of H(m, 1, n)). Our basis is quite different from
the basis BAK suggested in [1].

The cyclotomic Hecke algebraH(m, 1, n) is a deformation of the group ring of the group G(m, 1, n).
The first advantage of our basis is that it allows to prove the flatness of the deformation without
any appeal to the representation theory (the flatness of the deformation was established in [1] as
an outcome of the representation theory, after the classification of irreducible representations of the
algebra H(m, 1, n); note that for the cyclotomic quotient of the degenerate affine Hecke algebra a
proof that the elements from BAK form a basis is given in [20] without the use of the representation
theory).

Another advantage of our basis which underlines its naturality is that it is well-adapted to the
structure of the chain of the cyclotomic algebras; in particular, the formulas for the induced repre-
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sentations (from the algebra H(m, 1, n − 1) to the algebra H(m, 1, n)) are quite easy and we write
them down explicitly. A representation of the algebra H(m, 1, n) induced from a one-dimensional
representation of the algebra H(m, 1, n− 1) is a natural analogue of the Burau representation.

The inductive approach to the representation theory of the usual, type A, Hecke algebras heavily
uses the representation theory of the affine Hecke algebra of type A. One could expect that there will
be a necessity to use representations of the affine Hecke algebra of type B (see [9, 23] for definitions)
for the representation theory of the cyclotomic Hecke algebras. But – and it is maybe surprising – in
the non-degenerate situation the representation theory of the Hecke algebra in the inductive approach
requires the study of representations of the same affine Hecke algebra of type A. However, in the
classical limit, a certain version of the degenerate affine cyclotomic Hecke algebras, which we denote
Am,n in the text, appears; the representations of the simplest degenerate affine cyclotomic Hecke
algebra Am,2 serve for the study of the representation theory of the corresponding complex reflection
group – the classical limit of the cyclotomic Hecke algebra.

The algebras Am,n for all m = 1, 2, . . . can be obtained by a certain limiting procedure from one
and the same affine Hecke algebra Ĥn.

The representation theory of G(2, 1, n) (the Coxeter group of type B) was studied by Young [41]
and the representation theory of the wreath product A ≀ Sn of an arbitrary finite group A by the
symmetric group (of which G(m, 1, n) is a particular case) was studied in [35]. Given a finite group
A the wreath products A ≀ Sn form, with respect to n, an ascending chain of groups. The Okounkov-
Vershik approach has been extended to the representation theory of the wreath product of an arbitrary
finite group by the symmetric group in [29]. The branching rules for the chain of groups A ≀ Sn are
multiplicity free if and only if the group A is abelian. The chain of groups G(m, 1, n) provides a
simplest example (here A is a cyclic group) of a multiplicity free chain of wreath products A ≀ Sn.

In this paper, we attentively describe the classical limit of the whole construction including the
smash product, this time of the group ring of G(m, 1, n), with the free associative algebra generated
by the standard m-tableaux. Some parts of the construction turn out to be more complicated than in
the non-degenerate situation. As a rule, we omit the proofs of statements in the classical limit when
they almost repeat the proofs of the corresponding statements for the cyclotomic Hecke algebras. But
when the degenerate picture does not exactly follow the non-degenerate one, we attempt to provide
the full information. It concerns, in particular, the structure of the degenerate affine cyclotomic Hecke
algebras and commutative sets in them and also the subtleties about the intertwining operators.

The representations obtained with the help of the smash product are analogues, for G(m, 1, n), of
the semi-normal representations of the symmetric group. We determine the G(m, 1, n)-invariant Her-
mitian scalar product on the representations and describe analogues of the orthogonal representations
of the symmetric group.

Some of results, concerning representations of the cyclotomic Hecke algebras, smash product with
free algebras, normal form etc., of this paper were announced in [27] without proofs. We provide all
necessary proofs here.
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1.1 Organization of the paper

In Section 2 we recall the definitions of various chains of groups and algebras featuring in this article,
and of the Jucys–Murphy elements of the chain of the braid groups and chains of quotients of the
braid group ring.

Sections 3, 4 and 5 are devoted to the representation theory of the non-degenerate cyclotomic
Hecke algebras.

In Section 3 we start the study of the representation theory of the chain, with respect to n, of the
cyclotomic Hecke algebras H(m, 1, n) generalizing Okounkov-Vershik approach of the representation
theory of the symmetric groups. An important tool here is the list of representations, satisfying some
natural properties, of the affine Hecke algebra Ĥ2. We relate the set of standard Young m-tableaux
with the set Spec(J1, . . . , Jn) of common eigenvalues of the Jucys–Murphy elements J1, . . . , Jn in a
certain class of representations (which we call C-representations) of H(m, 1, n). More precisely, we
show that any string of numbers belonging to Spec(J1, . . . , Jn) is contained in a set called Cont(n)
which is in bijection with the set of standard Young m-tableaux.

In Section 4 we equip, for any m-partition λ(m) of n, the space C[Xλ(m) ]⊗H(m, 1, n) with a struc-
ture of an associative algebra. Here C[Xλ(m) ] is the free associative algebra with generators Xλ(m)

labeled by the standard m-tableaux of shape λ(m). To define the algebra structure, it is convenient
to use the Baxterized form of (only) a part of generators of the cyclotomic Hecke algebra. Given a
one-dimensional representation of the algebra H(m, 1, n), we construct, with the help of the algebra
structure on C[Xλ(m) ]⊗H(m, 1, n), a representation on the space whose basis is labeled by the stan-
dard m-tableaux of shape λ(m). This construction implies that the set Spec(J1, . . . , Jn) of common
eigenvalues of the Jucys–Murphy elements in C-representations coincides with the set Contm(n) and
with the set of standard Young m-tableaux.

At the end of Section 4 we compute the invariant ω-sesquilinear scalar product for all representa-
tions Vλ(m) .

Also, in Appendix to Section 4 we explain how the algebra structure on the space C[Xλ(m) ] ⊗
H(m, 1, n) induces the tensor structure on the set of C-representations of the cyclotomic Hecke alge-
bra H(m, 1, n); more generally, given an H(m, 1, n)-module W , the algebra structure on C[Xλ(m) ] ⊗
H(m, 1, n) leads to a structure of an H(m, 1, n)-module on the space Vλ(m) ⊗W , where Vλ(m) is the
C-representation related to the m-partition λ(m). We determine the rules of the decomposition of the
tensor products of C-representations into direct sums of irreducible representations. In the course of
the proof we give several explicit examples of such decompositions.

In Section 5 we complete the representation theory of the cyclotomic Hecke algebras; we show that
the constructed representations are irreducible and pairwise non-isomorphic (the proof is included
for completeness; it is adopted from [1]). Using an upper bound (proved in Appendix A) for the
dimension of the cyclotomic Hecke algebra and some results about products of Bratteli diagrams
recalled in Appendix B we conclude in a standard way that the class of irreducible C-representations
exhausts the set of the irreducible representations of the cyclotomic Hecke algebra when the parameters
of the algebra satisfy the restrictions specified in Section 2.
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Further, we include in Section 5 several direct consequences of the developed representation theory
(valid either in the generic picture or under the restrictions on the parameters considered in this
article): the semi-simplicity of the cyclotomic Hecke algebraH(m, 1, n), the simplicity of the branching
rules for the representations of the chain of the cyclotomic Hecke algebras3 and the maximality in
H(m, 1, n) of the commutative set formed by the Jucys–Murphy elements. We also mention some
information, implied by the developed representation theory, about the structure of the centralizer of
the algebra H(m, 1, n− 1) considered as a subalgebra in H(m, 1, n).

The classical limit of the cyclotomic Hecke algebra H(m, 1, n) is the group ring of the complex
reflection group G(m, 1, n). Section 6 is entirely devoted to the group G(m, 1, n).

The representation theory ofH(m, 1, n) developed in Sections 3, 4 and 5 can be used to immediately
obtain the representation theory of the group G(m, 1, n): one only has to take the classical limit of the
parameters in the formulas for the matrix elements of the generators. Nevertheless it is illuminating
to build the representation theory of the chain of groups independently of the non-degenerate picture.
We present the classical limit of the whole construction developed in Sections 3, 4 and 5 establishing
the inductive approach to the representation theory of the chain, with respect to n, of the groups
G(m, 1, n).

We first explain how to obtain the classical Jucys–Murphy elements of the group ring CG(m, 1, n)
from the Jucys–Murphy elements of the non-degenerate cyclotomic Hecke algebra H(m, 1, n) (thus
extending a result in [30] on the Weyl groups and their Hecke algebras). As for the relation with
the affine Hecke algebra, the picture complicates on the classical level; we introduce a degenerate
cyclotomic affine Hecke algebra Am,n. The degenerate cyclotomic affine Hecke algebras also form a
chain with respect to n. We establish the commutativity of a certain set of elements of the algebra
Am,n; the elements of this commutative set we call “classical universal” Jucys–Murphy elements.
There is a surjection Am,n → CG(m, 1, n) and the classical Jucys–Murphy elements are the images
of the classical universal Jucys–Murphy elements of Am,n under this surjection; we obtain therefore
an independent of the non-degenerate picture proof of the commutativity of the set formed by the
classical Jucys–Murphy elements.

Then we grosso modo repeat the same steps as in the non-degenerate situation. We study a certain
class of irreducible representations of the algebra Am,2 and deduce that the spectrum of the classical
Jucys–Murphy elements in C-representations is included in a set cContm(n) which is in bijection with
the set of the standard Young m-tableaux. We introduce an algebra structure on the tensor product
of the algebra CG(m, 1, n) with a free associative algebra generated by the standard m-tableaux. We
sketch the analogue of the construction of representations of H(m, 1, n) in the classical picture and
conclude that the constructed representations exhaust the set of irreducible representations of the
group G(m, 1, n). We do not give the proofs of the statements concerning the group G(m, 1, n) when
they go along the same lines as in the non-degenerate situation; we only indicate modifications when

3The paper [12] advocates the point of view that it is the affine Hecke algebra “that is responsible for the multiplicity
one phenomena”; for generic finite-dimensional representations the multiplicity one statement for the affine Hecke algebra
of type A follows from the multiplicity one statement for the cyclotomic Hecke algebra because in a generic finite-
dimensional representation the spectrum of the Jucys–Murphy element J1 is finite and thus such representation is
actually a representation of a cyclotomic quotient of the affine Hecke algebra.
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they appear.

Section 6 contains two appendices. The first appendix deals with the structure theory for the
degenerate cyclotomic affine Hecke algebras Am,n; we build a basis of Am,n providing a normal form
for the elements of Am,n. In the second appendix we study classical intertwining operators, useful
in analyzing the spectrum of the classical Jucys–Murphy operators; we show how to obtain classical
intertwining operators as classical limits of certain intertwining operators in the non-degenerate affine
Hecke algebra Ĥn.

Parts of the results in Section 6 can be found in the literature; we include them for the material
to be self-contained. Namely, the Jucys-Murphy elements of the group ring of the wreath product of
an arbitrary finite group A by the symmetric group (of which CG(m, 1, n) is a particular example)
have been defined independently in [29] and [40]; the Jucys–Murphy elements of the group ring of
the Coxeter group G(2, 1, n) were introduced in [30]. In [29], the Okounkov-Vershik approach is
extended to the wreath products of any finite group A by the symmetric group. Also, the degenerate
cyclotomic affine Hecke algebra Am,n turns out to coincide with the wreath Hecke algebra adapted to
our situation; the wreath Hecke algebra was defined and studied in [39] (see also [38]). The algebra
Am,n, defined differently, also appears in [31] as an analogue for G(m, 1, n) of a graded Hecke algebra.
In our presentation we especially insist on the connection of the treatment of the group G(m, 1, n)
with our treatment of the cyclotomic Hecke algebra H(m, 1, n); in particular, as we said above, we
obtain the Jucys-Murphy elements for G(m, 1, n) (respectively, the intertwining operators for Am,n ) by
taking limits of certain expressions involving the Jucys-Murphy elements of H(m, 1, n) (respectively,
the intertwining operators for Ĥn).

The article concludes with Appendices A, B and C.

In Appendix A we present the Coxeter-Todd algorithm for the chain, with respect to n, of the
groups G(m, 1, n). We already mentioned in Introduction and we partly repeat here several uses of the
algorithm. The Coxeter-Todd algorithm provides a normal form for elements of the groups G(m, 1, n).
We establish a generalization of this normal form to the cyclotomic Hecke algebras H(m, 1, n). The
normal form allows us in particular to prove, without the use of representation theory, that the
deformation from CG(m, 1, n) to H(m, 1, n) is flat in the sense that the dimension of H(m, 1, n)
equals the order of G(m, 1, n). In the course of building of the normal form for elements of H(m, 1, n)
we obtain explicit formulas for induced representations of H(m, 1, n) with respect to H(m, 1, n − 1).
At the end of Appendix A we specify these formulas to the usual Hecke algebras and extend these
formulas to the affine Hecke algebras. All these results are placed in a separate Appendix since they
are not directly related to the representation theory of the cyclotomic Hecke algebras – for Section 5
we do not need the precise statement about the flatness of the deformation; we need only an upper
bound for the dimension of the algebra; the assertion about the upper bound, see the first Proposition
in Subsection 2 of Appendix A, constitutes the simple part of the flatness statement. The subject of
Appendix A is rather the structure theory of the cyclotomic Hecke algebras.

In Appendix B we recall some definitions and results concerning Bratteli diagrams and their
products. We specify the information to the powers of the Young graph; the m-th power of the Young
graph is relevant in the representation theory of the chain of the cyclotomic Hecke algebras. Appendix
B has a review character.
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Appendix C contains several examples of the defining relations of the algebra on the tensor product
of the algebra H(m, 1, n) with a free associative algebra generated by the standard m-tableaux; result-
ing explicit formulas for matrix elements of generators in low-dimensional irreducible representations
of the cyclotomic Hecke algebras H(m, 1, n) are given.

Notation.

In this article, the ground field is the field C of complex numbers.
The spectrum of an operator T is denoted by Spec(T ).
We denote, for two integers k, l ∈ Z with k < l, by [k, l] the set of integers {k, k + 1, . . . , l − 1, l}.

The q-number jq is defined by jq :=
qj − q−j

q − q−1
.

The diagonal matrix with entries z1, z2, . . . , zk (on the diagonal) is denoted by diag(z1, z2, . . . , zk).

2. Cyclotomic Hecke algebras and Jucys–Murphy elements

The braid group Bn of type A (or simply the braid group) on n strands is generated by the elements
σ1, . . . , σn−1 with the defining relations:

{

σiσi+1σi = σi+1σiσi+1 for all i = 1, . . . , n− 2 ,

σiσj = σjσi for all i, j = 1, . . . , n− 1 such that |i− j| > 1 .

(2.1)

(2.2)

The braid group αBn of type B (sometimes called affine braid group) is obtained by adding to the
generators σ1, . . . , σn−1 the generator τ with the defining relations (2.1), (2.2) and:

{

τσ1τσ1 = σ1τσ1τ ,

τσi = σiτ for i > 1 .

(2.3)

(2.4)

The elements Ji, i = 1, . . . , n, of the braid group of type B defined inductively by the following
initial condition and recursion:

J1 = τ , Ji+1 = σiJiσi , (2.5)

are called Jucys–Murphy elements. It is well known that they form a commutative set of elements. In
addition, Ji commutes with all σk except σi−1 and σi,

Jiσk = σkJi if k > i or k < i− 1 . (2.6)

The affine Hecke algebra Ĥn is the quotient of the group algebra of the B-type braid group αBn

by:
σ2i = (q − q−1)σi + 1 for all i = 1, . . . , n− 1 . (2.7)

The usual Hecke algebra Hn is the algebra generated by the elements σ1, . . . , σn−1 with the relations
(2.1)–(2.2) and (2.7).
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The cyclotomic Hecke algebra H(m, 1, n) is the quotient of the affine Hecke algebra Ĥn by

(τ − v1) . . . (τ − vm) = 0 . (2.8)

In particular, H(1, 1, n) is isomorphic to the Hecke algebra of type A and H(2, 1, n) is isomorphic to
the Hecke algebra of type B.

The algebra H(m, 1, n) is a deformation of the group algebra CG(m, 1, n) of the complex reflection
group G(m, 1, n). The group G(m, 1, n) is isomorphic to Sn ≀ Cm, the wreath product of the cyclic
group with m elements by the symmetric group Sn. We collected the definition and some properties
of the group G(m, 1, n) in Section 6.

The deformation from CG(m, 1, n) to H(m, 1, n) is flat in the sense that H(m, 1, n) is a free
C[q, q−1, v1, . . . , vm]-module of dimension equal to the order of G(m, 1, n), that is:

dim(H(m, 1, n)) = n! ·mn . (2.9)

The flatness is proved in [1] with the help of the representation theory and in Appendix A of the
present article within the theory of associative algebras.

The specialization of H(m, 1, n) is semi-simple if and only if the numerical values of the parameters
satisfy (see [2])

1 + q2 + · · ·+ q2N 6= 0 for all N : N < n (2.10)

and
q2ivj − vk 6= 0 for all i, j, k such that j 6= k and − n < i < n . (2.11)

In the sequel we work either with a generic cyclotomic Hecke algebra (that is, v1, . . . , vm and q are
indeterminates) or in the semi-simple situation with an additional requirement:

vj 6= 0 , j = 1, . . . ,m . (2.12)

As n varies, the algebras H(m, 1, n) form an ascending chain of algebras:

H(m, 1, 0) = C ⊂ H(m, 1, 1) ⊂ · · · ⊂ H(m, 1, n) ⊂ . . . (2.13)

(the elements τ and σ1, . . . , σn−2 of the algebra H(m, 1, n) generate a subalgebra isomorphic to
H(m, 1, n − 1)). One has similar ascending chains of braid groups, affine braid groups and affine
Hecke algebras.

The representation theory of the generic algebra H(m, 1, n) was studied in [1]. Here we present
another approach which is a generalization of the approach of Okounkov and Vershik to the represen-
tation theory of the symmetric group [28] and which refers to the ascending chain (2.13).

We shall denote by the same symbols Ji the images of the Jucys–Murphy elements in the cyclotomic
Hecke algebra. As a by-product of the representation theory of the generic algebra H(m, 1, n), the
set of the Jucys–Murphy elements {J1, . . . , Jn} is maximal commutative in H(m, 1, n); more precisely,
the algebra of polynomials in the Jucys–Murphy elements coincides with the algebra generated by the
union of the centers of H(m, 1, k) for k = 1, . . . , n.
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Remark. We use the same notation “σi” for generators of different groups and algebras: these are
braid and affine braid groups and Hecke, affine Hecke and cyclotomic Hecke algebras. The symbol τ
is also used to denote a generator of several different objects. Moreover the reference to n (as in Hn)
in our notation for the generators σi is also always omitted. This should not lead to any confusion, it
will be clear from the context what is the algebra/group in question.

3. Spectrum of Jucys–Murphy elements and Young m-tableaux

We begin to develop an approach, based on the Jucys–Murphy elements, to the representation theory
of the chain (with respect to n) of the cyclotomic Hecke algebras H(m, 1, n). This is a generalization
of the approach of [28].

1. The first step consists in construction of all representations of H(m, 1, n) verifying two conditions.
First, the Jucys–Murphy elements J1, . . . , Jn are represented by semi-simple (diagonalizable) opera-
tors. Second, for every i = 1, . . . , n − 1 the action of the subalgebra generated by Ji, Ji+1 and σi is
completely reducible. We shall use the name C-representations (C is the first letter in “completely
reducible”) for these representations. At the end of the construction we shall see that all irreducible
representations of H(m, 1, n) are C-representations.

Following [28] we denote by Spec(J1, . . . , Jn) the set of strings of eigenvalues of the Jucys–Murphy

elements in the set of C-representations: Λ = (a
(Λ)
1 , . . . , a

(Λ)
n ) belongs to Spec(J1, . . . , Jn) if there is a

vector eΛ in the space of some C-representation such that Ji(eΛ) = a
(Λ)
i eΛ for all i = 1, . . . , n. Every

C-representation possesses a basis formed by vectors eΛ (this is a reformulation of the first condition
in the definition of C-representations). Since σk commutes with Ji for k > i and k < i− 1, the action
of σk on a vector eΛ, Λ ∈ Spec(J1, . . . , Jn), is “local” in the sense that σk(eΛ) is a linear combination

of eΛ′ such that a
(Λ′)
i = a

(Λ)
i for i 6= k, k + 1.

2. Affine Hecke algebra Ĥ2. Consider the affine Hecke algebra Ĥ2, generated by X, Y and σ
with the relations:

XY = Y X, Y = σXσ, σ2 = (q − q−1)σ + 1 . (3.1)

For all i = 1, . . . , n− 1, the subalgebra of H(m, 1, n) generated by Ji, Ji+1 and σi is a quotient of Ĥ2.
We reproduce here the result of [14] concerning the classification of irreducible representations with
diagonalizable X and Y of the algebra Ĥ2.

There are one-dimensional and two-dimensional irreducible representations.

• The one-dimensional irreducible representations are given by

X 7→ a, Y 7→ q±2a, σ 7→ ±q±1 . (3.2)

• The two-dimensional irreducible representations are given by

σ 7→

(

0 1
1 q − q−1

)

, X 7→

(

a −(q − q−1)b
0 b

)

, Y 7→

(

b (q − q−1)b
0 a

)

,
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with b 6= a in order for X and Y to be diagonalizable and with b 6= q±2a to ensure irreducibility.
By a change of basis we transform X and Y to a diagonal form:

σ 7→

(

(q−q−1)b
b−a 1− (q−q−1)2ab

(b−a)2

1 − (q−q−1)a
b−a

)

, X 7→

(

a 0
0 b

)

, Y 7→

(

b 0
0 a

)

. (3.3)

3. We return to strings of eigenvalues of the Jucys–Murphy elements.

Proposition 1. Let Λ = (a1, . . . , ai, ai+1, . . . , an) ∈ Spec(J1, . . . , Jn) and let eΛ be a corresponding
vector. Then

(a) We have ai 6= ai+1.

(b) If ai+1 = q±2ai then σi(eΛ) = ±q±1eΛ.

(c) If ai+1 6= q±2ai then Λ′ = (a1, . . . , ai+1, ai, . . . , an) ∈ Spec(J1, . . . , Jn); moreover, the vector

σi(eΛ)−
(q−q−1)ai+1

ai+1−ai
eΛ corresponds to the string Λ′ (see (3.3) with b = ai+1 and a = ai).

The proof follows directly from the representation theory of the algebra Ĥ2, described above (cf.
the Proposition 4.1 in [28] and the Proposition 3 in [14]).

4. Content strings.

Definition 2. A content string (a1, . . . , an) is a string of numbers satisfying the following conditions:

(c1) a1 ∈ {v1, . . . , vm};

(c2) for all j > 1: if aj = vkq
2z for some k and z 6= 0 then {vkq

2(z−1), vkq
2(z+1)}∩{a1, . . . , aj−1} 6= ∅;

(c3) if ai = aj = vkq
2z with i < j for some k and z, then {vkq

2(z−1), vkq
2(z+1)} ⊂ {ai+1, . . . , aj−1}.

The set of content strings of length n we denote by Contm(n).

Here is the “cyclotomic” analogue of the Theorem 5.1 in [28] and the Proposition 4 in [14]. We
adapt the proof paying attention to places where the restrictions (2.10)–(2.12) are essential.

Proposition 3. If a string of numbers (a1, . . . , an) belongs to Spec(J1, . . . , Jn) then it belongs to
Contm(n).

Proof. Since J1 = τ the condition (c1) follows from the characteristic equation for τ .

Assume that (c2) is not true, that is, there is a string (a1, . . . , an) ∈ Spec(J1, . . . , Jn) such that
for some j > 1, some k and some z 6= 0 one has aj = vkq

2z but ai 6= vkq
2(z−1) and ai 6= vkq

2(z+1) for
all i smaller than j. By successive applications of the statement (c) of the Proposition 1 we obtain
an element of Spec(J1, . . . , Jn) with vkq

2z at the first position. The restrictions (2.10)–(2.12) imply
vkq

2z 6= vi for all i = 1, . . . ,m and this contradicts the condition (c1).
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We prove the condition (c3) by induction on j−i. The base of induction is the statement (a) of the
Proposition 1. Assume that there are some i and some j such that i < j and ai = aj = vkq

2z for some
string (a1, . . . , an) ∈ Spec(J1, . . . , Jn). By induction we suppose that the condition (c3) is verified for
all i′, j′ such that |j′−i′| < j−i. If {vkq

2(z−1), vkq
2(z+1)}∩{ai+1, . . . , aj−1} = ∅ then by an application

of the statement (c) of the Proposition 1 we move aj to the left to the position number (j − 1) (note
that (j − 1) is still greater than i by the statement (a) of the Proposition 1) and obtain an element of
Spec(J1, . . . , Jn) which contradicts the induction hypothesis. Now assume that only one element from
the set {vkq

2(z−1), vkq
2(z+1)} is present in {ai+1, . . . , aj−1}. By the induction hypothesis, this element

appears only once in {ai+1, . . . , aj−1}. If j − i > 2 then, by an application of the statement (c) of
the Proposition 1, we obtain an element of Spec(J1, . . . , Jn) contradicting the induction hypothesis.
Thus j − i = 2 which is impossible because the braid relation σiσi+1σi = σi+1σiσi+1 is incompatible
with assignments σi 7→ ∓q∓1 and σi+1 7→ ±q±1 (these values are implied by the statement (b) of the
Proposition 1). �

Remark. Let ES be a vector space with a basis {eΛ} whose vectors are labeled by the elements
Λ ∈ Spec(J1, . . . , Jn). Let EC be a vector space with a basis {eµ} whose vectors are labeled by the
elements µ ∈ Contm(n). By the Proposition 3, Spec(J1, . . . , Jn) ⊂ Contm(n) and so ES is naturally
a vector subspace of EC . The space ES is equipped with the action of the algebra H(m, 1, n): the
operator corresponding to the generator τ is simply J1; the precise formulas for the action of the
elements σi, i = 1, . . . , n− 1, are given in the Proposition 1.

The Definition 2 straightforwardly implies that if (a1, . . . , ai, ai+1, . . . , an) ∈ Contm(n) with ai+1 6=
q±2ai then (a1, . . . , ai+1, ai, . . . , an) ∈ Contm(n). Therefore the operators corresponding to the gener-
ators τ and σi, i = 1, . . . , n− 1, make sense as the operators in the space EC . The aim of Subsection
4.3 below is to show that these operators continue to define the action of the algebra H(m, 1, n) - now
on the, in general, bigger space EC . One could construct representations working directly with strings
but it is illuminating and convenient to interpret the set Contm(n) in the more geometric terms of
Young multi-tableaux.

At the end of the whole construction it will then follow, see Section 5, that the spaces ES and EC

actually coincide.

5. Using “intertwining” operators Ui+1 := σiJi − Jiσi, i = 1, . . . , n− 1, it can be proved, as in [14],
that:

Spec(Ji+1) ⊂ Spec(Ji) ∪ q
±2 · Spec(Ji). (3.4)

Since Spec(J1) ⊂ {v1, . . . , vm} we arrive at the following conclusion.

Proposition 4. For all i = 1, . . . , n,

Spec(Ji) ⊂ {vkq
2 [1−i,i−1], k = 1, . . . ,m} . (3.5)

The Proposition 4 follows also from the Proposition 1 and the Proposition 3. Indeed assume that
for a string (a1, . . . , an) ∈ Spec(J1, . . . , Jn) the Proposition 4 does not hold. Let i be the smallest
integer for which ai /∈ {vkq

2 [1−i,i−1], k = 1, . . . ,m}. Using the statement (c) of the Proposition 1 we
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move ai to the left until it reaches the first position in the string and obtain thereby an element of
Spec(J1, . . . , Jn) which does not verify the condition (c1). This contradicts the Proposition 3.

6. Young m-diagrams and m-tableaux. A Young m-diagram, or m-partition, is an m-tuple of
Young diagrams λ(m) = (λ1, . . . , λm). The length of a Young diagram λ is the number of nodes of the
diagram and is denoted by |λ|. By definition the length of an m-tuple λ(m) = (λ1, . . . , λm) is

|λ(m)| := |λ1|+ · · ·+ |λm| . (3.6)

We recall some standard terminology. For a usual partition λ, a node α is called removable if the
set of nodes obtained from λ by removing the node α is still a partition; a node β not in λ is called
addable if the set of nodes obtained from λ by adding β is still a partition.

We extend this terminology for the m-partitions. To this end we define the notion of an m-node:
an m-node α(m) is a pair (α, p) consisting of a usual node α and an integer p with 1 ≤ p ≤ m. We
will refer to α as the node of the m-node α(m) and we will write node(α(m)) = α; we will refer to the
integer p as the position of the m-node α(m) and we will note pos(α(m)) = p. With this definition, an
m-partition λ(m) is a set of m-nodes such that, for any p between 1 and m, the subset consisting of
m-nodes α(m) with pos(α(m)) = p forms a usual partition.

Let λ(m) be an m-partition of length n. An m-node α(m) of λ(m) is called removable if the set
of m-nodes obtained from λ(m) by removing α(m) is still an m-partition. An m-node β(m) not in
λ(m) is called addable if the set of m-nodes obtained from λ(m) by adding β(m) is still an m-partition.
The m-partition obtained from λ(m) by removing any removable m-node α(m) will be denoted by
λ(m)\{α(m)}. For any m-partition λ(m), we denote by E−(λ

(m)) the set of removable m-nodes of λ(m)

and by E+(λ
(m)) the set of addable m-nodes of λ(m).

An m-partition whose m-nodes are filled with numbers is called m-tableau.

Let the length of the m-partition λ(m) be n. We place now the numbers 1, . . . , n in the m-nodes
of λ(m) in such a way that in every diagram the numbers in the m-nodes are in ascending order along
rows and columns in right and down directions. This is a standard Young m-tableau of shape λ(m).

We associate to eachm-node of a Youngm-diagram a number (the “content”) which is vkq
2(s−r) for

the m-node α(m) such that pos(α(m)) = k and node(α(m)) lies in the line r and column s (equivalently
we could say that the m-node α(m) lies in the line r and column s of the k-th diagram of the m-
diagram). Note that the notion of content makes sense for an arbitrary m-node of an arbitrary set of
m-nodes.

For an arbitrary set of m-nodes, two m-nodes on a same diagonal of the same diagram have the
same content which allows us to speak about the “content number” of a diagonal.

Here is an example of a standard Young m-tableau with m = 2 and n = 10 (the contents of the
m-nodes are indicated):
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. (3.7)

Proposition 5. There is a bijection between the set of standard Young m-tableaux of length n and
the set Contm(n).

Proof. To each standard Young m-tableau of length n we associate a string of numbers (a1, . . . , an)
such that ai for i = 1, . . . , n is the content of the m-node in which the number i is placed. This string
belongs to Contm(n). Indeed the condition (c1) is immediately verified. The condition (c2) is true:
if i occupies an m-node with a content vkq

2z with z 6= 0 of a standard m-tableau of shape λ(m) then
there is either an m-node just above in the same column or an m-node just to the left in the same
line of the same diagram of λ(m); it carries a number less than i and so its content which is vkq

2(z+1)

or vkq
2(z−1) appears before vkq

2z in the string. The condition (c3) is true because if ai = aj = vkq
2z

for some i < j then due to the restrictions (2.10)–(2.12) the m-nodes carrying i and j are on the same
diagonal of the same tableau in the m-tableau. Thus the m-node just above the m-node carrying
the number j and the m-node just on the left of the m-node carrying the number j are present in
λ(m); these m-nodes have contents vkq

2(z+1) and vkq
2(z−1) and are occupied by numbers k and l with

k, l ∈ {i+ 1, . . . , j − 1} because the m-tableau is standard.

Conversely to each string (a1, . . . , an) ∈ Contm(n) we first associate a set of m-nodes of cardinality
n. Additionally, this association distributes the numbers from 1 to n in these m-nodes; each m-node
carry one number and different m-nodes carry different numbers. Then we verify that the obtained
m-tuple is a standard m-tableau. The construction goes as follows.

The m-nodes are constructed one after another. Given a string (a1, . . . , an) ∈ Contm(n) and
assuming that (i−1) m-nodes are already constructed, we add at the step number i an m-node on the
first non-occupied place of a diagonal whose content number is the value of ai; we place the number i
in this m-node. This construction is unambiguous because the restrictions (2.10)–(2.12) ensure that
two different diagonals of such set of m-nodes have different content numbers. The construction of a
set of m-nodes of total cardinality n is finished.

We shall now show that the obtained set ofm-nodes is a standardm-tableau. Assume by induction
that for all i = 1, . . . , n−1 the obtained set of m-nodes is a standard m-tableau after i steps (for i = 1
there is nothing to prove; the induction hypothesis is justified because for any (a1, . . . , an) ∈ Contm(n),
it is clear from the Definition 2 that (a1, . . . , ai) ∈ Contm(i) for all i = 1, . . . , n− 1). It is left to add
an m-node in the position dictated by the value an = vkq

2z, place the number n in it and verify that
we obtain a standard m-tableau.

If, for all i, 0 < i < n, the number ai is different from the number an then the n-th m-node is
added at the first place of a corresponding diagonal. If z = 0 then there is nothing to prove, so assume
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that z > 0 (the situation with z < 0 is similar); the n-th m-node is added in the first line and we have
to prove that there is some i, 0 < i < n, such that ai = vkq

2(z−1). Suppose that this is not the case;
then by condition (c2) of the Definition 2 we have some i, 0 < i < n, such that ai = vkq

2(z+1). As
vkq

2z is not present in the string before the ith position, the set of m-nodes constructed at the step
number i cannot be a standard m-tableau contradicting the induction hypothesis.

Assume that there is some i, 0 < i < n, such that ai = an. We take the largest integer number i
satisfying this property. By construction, we add the n-th m-node on the first non-occupied place of
the diagonal which contains the m-node carrying the number i. The result is a standard m-tableau
only if them-node just to the right of them-node carrying the number i and them-node just below the
m-node carrying the number i are present. And this follows from the condition (c3) of the Definition
2 and the induction hypothesis. �

In the example (3.7) the standard Young 2-tableau is associated with the string of numbers:

(v1, v1q
2, v2, v1q

4, v2q
−2, v1q

−2, v1q
−4, v2q

2, v1, v2q
4).

Remark. The condition “z 6= 0” in the part (c2) of the Definition 2 can be omitted for the Hecke
algebras of type A; but this condition is necessary when m > 1. It is transparent from the geometric
point of view. For the Hecke algebra of type A, if aj = 1 (that is, z = 0) for some j > 1 then the
number j sits on the main diagonal but not in the left upper corner of the standard Young tableau;
therefore (both) values q2 and q−2 are present in the string {a1, . . . , aj−1}. However, for m > 1, if
aj = vk for some k and j > 1, the number j might occupy a left upper corner of the standard Young
m-tableau; in this case it clearly might happen that none of the values vkq

2 and vkq
−2 occur in in the

string {a1, . . . , aj−1}.

4. Construction of representations

We proceed as in [25]. We first define an algebra structure on the tensor product of the algebra
H(m, 1, n) with a free associative algebra generated by the standard m-tableaux corresponding to
m-partitions of n; the Baxterized elements are useful here. Then, by evaluation (with the help of the
simplest one-dimensional representation of H(m, 1, n)) from the right, we build representations.

Using the tensor product of the algebra H(m, 1, n) with the free associative algebra generated by
the standard m-tableaux we define and study in Appendix to this Section a structure of a module on
the tensor product of two representations corresponding to two m-partitions.

4.1 Baxterized elements

In the definition of the tensor product of the algebra H(m, 1, n) with a free associative algebra we
shall frequently use the so-called Baxterized elements.

Define, for any σi among the generators σ1, . . . , σn−1 ofH(m, 1, n), the Baxterized elements σi(α, β)
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by

σi(α, β) := σi + (q − q−1)
β

α− β
. (4.1)

The parameters α and β are called spectral parameters. We recall some useful relations for the
Baxterized generators σi. Let

f(α, β) =
qα− q−1β

α− β
. (4.2)

Proposition 6. The following relations hold:

σi(α, β)σi(β, α) = f(α, β)f(β, α),

σi(α, β)σi+1(α, γ)σi(β, γ) = σi+1(β, γ)σi(α, γ)σi+1(α, β),

σi(α, β)σj(γ, δ) = σj(γ, δ)σi(α, β) if |i− j| > 1.

(4.3)

Proof. It is a straightforward and well-known calculation. �

In the construction of representations we shall often verify relations for the Baxterized elements, as
in [25]. Relations will be verified for specific values of the spectral parameters. The following Lemma
shows that the original relations follow from the relations for the Baxterized elements with fixed values
of the spectral parameters.

Lemma 7. Let A and B be two elements of an arbitrary associative unital algebra A. Denote
A(α, β) := A+ (q − q−1) β

α−β and B(α, β) := B + (q − q−1) β
α−β where α and β are parameters.

(i) If
A(α, β)A(β, α) = f(α, β)f(β, α) ,

where f is defined in (4.2), for some (arbitrarily) fixed values of the parameters α and β (α 6= β) then

A2 − (q − q−1)A− 1 = 0 .

(ii) If
A2 − (q − q−1)A− 1 = 0 , B2 − (q − q−1)B − 1 = 0

and
A(α, β)B(α, γ)A(β, γ) = B(β, γ)A(α, γ)B(α, β)

for some (arbitrarily) fixed values of the parameters α,β and γ (α 6= β 6= γ 6= α) then

ABA = BAB .

(iii) If
A(α, β)B(γ, δ) = B(γ, δ)A(α, β)

for some (arbitrarily) fixed values of the parameters α,β,γ and δ (α 6= β and γ 6= δ) then

AB = BA .
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Proof. (i) We have

A(α, β)A(β, α) = f(α, β)f(β, α)

⇒ A2 + (q − q−1)

(

β

α− β
+

α

β − α

)

A− (q − q−1)2
αβ

(β − α)2
=
α2 + β2 − αβ(q2 + q−2)

(β − α)2

⇒ A2 − (q − q−1)A− 1 = 0 .

(ii) We have

A(α, β)B(α, γ)A(β, γ)−B(β, γ)A(α, γ)B(α, β) = 0

⇒ ABA−BAB + (q − q−1)(A2 −B2)
γ

α− γ
+

+(q − q−1)2(A−B)

(

γ

α− γ
(

β

α− β
+

γ

β − γ
)−

γ

β − γ

β

α− β

)

= 0

⇒ ABA−BAB + (q − q−1)2(A−B)
γ

α− γ

(

1 +
β

α− β
+

γ

β − γ
−

β(α− γ)

(β − γ)(α− β)

)

= 0

⇒ ABA−BAB = 0 .

(iii) It is immediate that A(α, β)B(γ, δ) = B(γ, δ)A(α, β) implies AB = BA. �

4.2 Smash product

We pass to the definition of the associative algebra structure on the product of the algebra H(m, 1, n)
with a free associative algebra whose generators are indexed by the standardm-tableaux corresponding
to m-partitions of n. The resulting algebra we shall denote by T.

Let λ(m) be an m-partition of length n. Consider a set of free generators labeled by standard
m-tableaux of shape λ(m); for a standard m-tableau Xλ(m) we denote by Xλ(m) the corresponding free
generator and by c(Xλ(m) |i) the content (see the preceding Section for the definition) of the m-node
carrying the number i.

In the sequel we shall use the Artin generators of the symmetric group. Recall that the symmetric
group (whose group ring is the classical limit of the A-type Hecke algebraHn) in the Artin presentation
is generated by the elements si, i = 1, ..., n− 1, with the defining relations



















sisi+1si = si+1sisi+1 for all i = 1, . . . , n− 2 ,

sisj = sjsi for all i, j = 1, . . . , n− 1 such that |i− j| > 1 ,

s2i = 1 for all i = 1, . . . , n− 1 .

(4.4)

(4.5)

(4.6)

Let Xλ(m) be an m-partition of n whose m-nodes are filled with numbers from 1 to n; thus different
m-nodes of the m-tableau Xλ(m) carry different numbers. The m-tableau Xλ(m) is not necessarily
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standard. By definition, for such m-tableau Xλ(m) and any permutation π ∈ Sn, the m-tableau Xπ
λ(m)

is obtained from the m-tableau Xλ(m) by applying the permutation π to the numbers occupying the m-
nodes of Xλ(m) ; for example Xsi

λ(m) is the m-tableau obtained from Xλ(m) by exchanging the positions
of the numbers i and (i+ 1) in the m-tableau Xλ(m) . We thus have by construction:

c(Xπ
λ(m) |i) = c(Xλ(m) |π−1(i)) (4.7)

for all i = 1, . . . , n.

For a standard m-tableau Xλ(m) , the m-tableau Xπ
λ(m) is not necessarily standard. As for the

generators of the free algebra, we denote the generator corresponding to the m-tableau Xπ
λ(m) by

X π
λ(m) if the m-tableau Xπ

λ(m) is standard. And if the m-tableau Xπ
λ(m) is not standard then we put

X π
λ(m) = 0.

Proposition 8. The relations

(

σi +
(q − q−1)c(Xλ(m) |i+ 1)

c(Xλ(m) |i)− c(Xλ(m) |i+ 1)

)

· Xλ(m) = X si
λ(m) ·

(

σi +
(q − q−1)c(Xλ(m) |i)

c(Xλ(m) |i+ 1)− c(Xλ(m) |i)

)

(4.8)

and
(

τ − c(Xλ(m) |1)
)

· Xλ(m) = 0 (4.9)

are compatible with the relations for the generators τ, σ1, . . . , σn−1 of the algebra H(m, 1, n).

Before the proof we explain the meaning of the word “compatible” in the formulation of the
Proposition.

Let F be the free associative algebra generated by τ̃ , σ̃1, . . . , σ̃n−1. The algebra H(m, 1, n) is
naturally the quotient of F .

Let C[X ] be the free associative algebra whose generators Xλ(m) range over all standardm-tableaux
of shape λ(m) for all m-partitions λ(m) of n.

Consider an algebra structure on the space C[X ] ⊗ F for which: (i) the map ι1 : x 7→ x ⊗ 1,
x ∈ C[X ], is an isomorphism of C[X ] with its image with respect to ι1; (ii) the map ι2 : φ 7→ 1 ⊗ φ,
φ ∈ F , is an isomorphism of F with its image with respect to ι2; (iii) the formulas (4.8)-(4.9), extended
by associativity, provide the rules to rewrite elements of the form (1⊗ φ)(x⊗ 1), x ∈ C[X ], φ ∈ F , as
elements of C[X ]⊗F .

The “compatibility” means that we have an induced structure of an associative algebra, denoted
by T, on the space C[X ] ⊗ H(m, 1, n). More precisely, if we multiply any relation of the cyclotomic
Hecke algebra H(m, 1, n) (the relation is viewed as an element of the free algebra F) from the right by
a generator Xλ(m) (this is a combination of the form “a relation of H(m, 1, n) times Xλ(m)”) and use
the “instructions” (4.8)-(4.9) to move all appearing X ’s to the left (the free generator changes but the
expression stays always linear in X ) then we obtain a linear combination of terms of the form “X π

λ(m) ,
π ∈ Sn, times a relation of H(m, 1, n)”.

Proof. We rewrite the relation (4.8) using the Baxterized form of the elements σi:

σi

(

c(Xλ(m) |i), c(Xλ(m) |i+ 1)
)

· Xλ(m) = X si
λ(m) · σi

(

c(Xλ(m) |i+ 1), c(Xλ(m) |i)
)

.
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For brevity we denote c(k) := c(Xλ(m) |k) for all k = 1, . . . , n.

We shall check the compatibility of the “instructions” (4.8)-(4.9) with the set of defining relations
(2.1)–(2.4) and (2.7)–(2.8). We start with the relations involving the generators σi only. Here we use
the Baxterized form of the relations and the Lemma 7.

Below we shall use without mentioning the inequalities c(k) 6= c(k+1), c(k) 6= c(k+2), c(k+1) 6= c(k+2)

(for all k) which follow from the restrictions (2.10)–(2.12).

(a) We consider first the relation σ2i = (q − q−1)σi + 1. If the m-tableau Xsi
λ(m) is standard then

we analyze this relation in its equivalent form, given in (i) in the Lemma 7. We have

σi(c
(i+1), c(i)) σi(c

(i), c(i+1)) · Xλ(m)

= σi(c
(i+1), c(i)) · X si

λ(m) · σi(c
(i+1), c(i))

= Xλ(m) · σi(c
(i), c(i+1)) σi(c

(i+1), c(i)) .

(4.10)

We used (4.7) in the second equality. Therefore,

(

σi(c
(i+1), c(i)) σi(c

(i), c(i+1))− f(c(i+1), c(i))f(c(i), c(i+1))
)

· Xλ(m)

= Xλ(m) ·
(

σi(c
(i), c(i+1)) σi(c

(i+1), c(i))− f(c(i+1), c(i))f(c(i), c(i+1))
)

and the compatibility for this relation is verified since the expression on the right of Xλ(m) belongs, by
the Proposition 6, to the ideal generated by relations.

If the m-tableau Xsi
λ(m) is not standard then (i + 1) sits in the same tableau of the m-tableau

Xλ(m) as i and is situated directly to the right or directly down with respect to i. In this situation
the relation (4.8) can be rewritten as σiXλ(m) = wXλ(m) , where w is equal to either q or (−q−1), and
the verification of the compatibility of the relation σ2i − (q − q−1)σi − 1 = 0 with the instructions
(4.8)-(4.9) is straightforward.

(b) The relation σiσi+1σi = σi+1σiσi+1 we analyze in its equivalent form, given in (ii) in the Lemma
7. We have

σi(c
(i+1), c(i+2))σi+1(c

(i), c(i+2))σi(c
(i), c(i+1)) · Xλ(m)

= X
sisi+1si
λ(m) · σi(c

(i+2), c(i+1))σi+1(c
(i+2), c(i))σi(c

(i+1), c(i))
(4.11)

and
σi+1(c

(i), c(i+1))σi(c
(i), c(i+2))σi+1(c

(i+1), c(i+2)) · Xλ(m)

= X
si+1sisi+1

λ(m) · (σi+1(c
(i+1), c(i))σi(c

(i+2), c(i))σi+1(c
(i+2), c(i+1)) .

(4.12)

We used several times the relations (4.7).

One might think that, as for the relation σ2i − (q − q−1)σi − 1 = 0, we should consider separately
the situations when in the process of transformation the m-tableau becomes non-standard. However
one verifies that for an arbitrary standard m-tableau Yλ(m) :
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• if them-tableau Y si
λ(m) is not standard then them-tableaux Y

sisi+1

λ(m) and Y
sisi+1si
λ(m) are not standard

as well;

• if the m-tableau Y
si+1

λ(m) is not standard then the m-tableaux Y
si+1si
λ(m) and Y

si+1sisi+1

λ(m) are not
standard as well.

It then follows that

• if the m-tableau Y
sisi+1si
λ(m) is standard then the m-tableaux Y si

λ(m) and Y
sisi+1

λ(m) are standard as
well;

• if the m-tableau Y
si+1sisi+1

λ(m) is standard then the m-tableaux Y
si+1

λ(m) and Y
si+1si
λ(m) are standard as

well.

Therefore, we cannot return to a standard m-tableau if an intermediate m-tableau was not stan-
dard. Thus the equalities (4.11) and (4.12) are always valid, in contrast to (4.10).

We replace X
si+1sisi+1

λ(m) by X
sisi+1si
λ(m) in the right hand side of (4.12) and subtract (4.12) from (4.11).

In the result, the expression on the right of X
sisi+1si
λ(m) belongs, by the Proposition 6, to the ideal

generated by relations.

(c) The relation σiσj = σjσi for |i − j| > 1 we analyze in its equivalent form, given in (iii) in the
Lemma 7. We have

(

σi(c
(i), c(i+1))σj(c

(j), c(j+1))− σj(c
(j), c(j+1))σi(c

(i), c(i+1))
)

· Xλ(m)

= X
sisj
λ(m) ·

(

σi(c
(i+1), c(i))σj(c

(j+1), c(j))− σj(c
(j+1), c(j))σi(c

(i+1), c(i))
)

.
(4.13)

Again, as for the previous relation, a direct inspection shows that (4.13) is always valid.

The expression on the right of X
sisj
λ(m) in the right hand side of (4.13) belongs again to the ideal

generated by relations by the Proposition 6.

(d) It is left to analyze the relations including the generator τ .

The verification of the compatibility of the relations (τ − v1) . . . (τ − vm) = 0 and τσi = σiτ for
i > 1 with the instructions (4.8)-(4.9) is immediate.

The compatibility of the remaining relation τσ1τσ1 = σ1τσ1τ with the instructions (4.8)-(4.9) is
a direct consequence of the Lemma below. �

Lemma 9. The relations (4.8)-(4.9) imply the relations:

(

Ji − c(Xλ(m) |i)
)

· Xλ(m) = 0 for all i = 1, . . . , n . (4.14)

Proof. For brevity we denote c(k) := c(Xλ(m) |k) for all k = 1, . . . , n.

Recall that J1 = τ and Ji+1 = σiJiσi. We use induction on i. For i = 1 the relation (4.14) is the
relation (4.9).
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Assume first that the m-tableau Xsi
λ(m) is standard. Then

σiJiσi · Xλ(m) = σiJi ·
(

−(q − q−1) c(i+1)

c(i)−c(i+1)Xλ(m) + X si
λ(m) · σi(c

(i+1), c(i))
)

= σi ·
(

−(q − q−1)c(i) c(i+1)

c(i)−c(i+1)Xλ(m) + c(i+1)X si
λ(m) · σi(c

(i+1), c(i))
)

= (q − q−1)2c(i) c(i+1)c(i+1)

(c(i+1)−c(i))2
Xλ(m) − (q − q−1) c(i)c(i+1)

c(i)−c(i+1)X
si
λ(m) · σi(c

(i+1), c(i))

−(q − q−1) c(i+1)c(i)

c(i+1)−c(i)
X si
λ(m) · σi(c

(i+1), c(i)) + c(i+1)Xλ(m) · σi(c
(i), c(i+1))σi(c

(i+1), c(i))

= c(i+1)
(

(q − q−1)2 c(i)c(i+1)

(c(i+1)−c(i))2
+ c(i)c(i)+c(i+1)c(i+1)−c(i)c(i+1)(q2+q−2)

(c(i+1)−c(i))2

)

Xλ(m)

= c(i+1)Xλ(m) .

Here we moved the elements σi to the right, using the relation (4.8); we used then relations (4.7), the
induction hypothesis and the first relation in the Proposition 6.

Then assume that the m-tableau Xsi
λ(m) is not standard. It means that the m-nodes carrying

numbers i and (i + 1) are adjacent (neighbors in a same line or a same column of a tableau in the
m-tableau). In this situation we have c(i) = q±2c(i+1) and

σiJiσi · Xλ(m) = σiJi ·
(

−(q − q−1) c(i+1)

q±2c(i+1)−c(i+1)

)

Xλ(m)

= σi ·
(

−(q − q−1) q±2c(i+1)c(i+1)

q±2c(i+1)−c(i+1)

)

Xλ(m)

= (q − q−1)2 q±2c(i+1)c(i+1)c(i+1)

(q±2c(i+1)−c(i+1))2
Xλ(m)

= c(i+1)Xλ(m) .

Here we moved the elements σi to the right using the relation (4.8); we used then the induction
hypothesis. �

4.3 Representations

The Proposition 8 provides an effective tool for the construction of representations of the cyclotomic
Hecke algebra H(m, 1, n).

Let |〉 be a “vacuum” - a basic vector of a one-dimensional H(m, 1, n)-module; for example,

σi|〉 = q|〉 for all i and τ |〉 = v1|〉 . (4.15)

Moving, in the expressions φXλ(m) |〉, φ ∈ H(m, 1, n), the elements X ’s to the left and using the module
structure (4.15), we build, due to the compatibility, a representation of H(m, 1, n) on the vector space
Uλ(m) with the basis Xλ(m) |〉. We shall, by a slight abuse of notation, denote the symbol Xλ(m) |〉 again
by Xλ(m) . This procedure leads to the following formulas for the action of the generators τ, σ1, . . . , σn−1

on the basis vectors Xλ(m) of Uλ(m) :

σi : Xλ(m) 7→
(q − q−1)c(Xλ(m) |i+ 1)

c(Xλ(m) |i+ 1)− c(Xλ(m) |i)
Xλ(m) +

qc(Xλ(m) |i+ 1)− q−1c(Xλ(m) |i)

c(Xλ(m) |i+ 1)− c(Xλ(m) |i)
X si
λ(m) (4.16)
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and
τ : Xλ(m) 7→ c(Xλ(m) |1)Xλ(m) . (4.17)

As before, it is assumed here that X si
λ(m) = 0 if Xsi

λ(m) is not a standard m-tableau. Denote this
H(m, 1, n)-module by Vλ(m) .

Assume that the m-tableau Xsi
λ(m) is standard. The two-dimensional subspace of Uλ(m) with the

basis {Xλ(m) ,X
si
λ(m)} is σi-invariant. For the future convenience we write down the matrix giving the

action of the generator σi on this two-dimensional subspace:

1

c(i+1) − c(i)





(q − q−1)c(i+1) q−1c(i+1) − qc(i)

qc(i+1) − q−1c(i) −(q − q−1)c(i)



 , (4.18)

where we denoted c(i) = c(Xλ(m) |i) and c(i+1) = c(Xλ(m) |i+ 1).

Remarks.

(a) In our construction of representations, the Baxterization of the generator τ (which can be
found in [16]) is never used while the Baxterized generators σi, i = 1, . . . , n− 1, appear. The relation
(4.9) says that τ , placed before Xλ(m) , can be immediately replaced by a number. This is similar to
the situation with the element σ1 in the representation theory of the Hecke (m = 1) algebras. Indeed
if m = 1 then for any standard tableau Xλ, the tableau Xλs1 is non-standard and so σ1, placed before
Xλ, can be immediately replaced by a number; in particular, the action of σ1 is given by a diagonal
matrix in the basis Xλ|〉 of Uλ; the behavior of τ extends this phenomenon to m > 1.

(b) It follows from the preceding remark that the action of the generators in the constructed
representations do not depend on the value of τ on the vacuum |〉. Moreover the constructed repre-
sentations do not depend (up to isomorphism) on the value of σi, i = 1, . . . , n − 1, on the vacuum.
Indeed if we take for the vacuum a basic vector |〉′ of the one-dimensional H(m, 1, n)-module such that
σi|〉

′ = −q−1|〉′ for all i and τ |〉′ = v1|〉
′, the procedure described in this subsection leads to represen-

tations Ṽλ(m) of H(m, 1, n). By construction, Vλ(m) and Ṽλ(m) have the same underlying vector space
Uλ(m) . It is straightforward to check that for any m-partition λ(m) there is an isomorphism between
H(m, 1, n)-modules Vλ(m) and Ṽλ(m) ; the operators for the representation Ṽλ(m) are obtained from the
operators for the representation Vλ(m) by the following diagonal change of basis in Uλ(m) :

Xλ(m) 7→ c
X

λ(m)
Xλ(m) , where c

X
λ(m)

=
∏

i :X
si

λ(m)
6=0

(

q c(Xλ(m) |i)− q−1c(Xλ(m) |i+ 1)
)

.

By construction, cX
λ(m)

6= 0.

(c) In the Hecke situation (m = 1) the coefficients appearing in the action of the generators can
be expressed in terms of the lengths lj,j+1 between nodes (see, e.g., [25]). We do not define the length
between nodes which do not belong to the same tableau of the m-tableau; the form, referring to
lengths, of the action is not useful any more.
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(d) The constructed action of the generators in the representations Vλ(m) coincides with the action
given in [1].

(e) The action of the intertwining operators Ui+1 = σiJi − Jiσi, i = 1, . . . , n − 1, (see paragraph
5 of Section 3) in a representation Vλ(m) is:

Ui+1(Xλ(m)) =
(

q−1c(i) − qc(i+1)
)

X si
λ(m) , (4.19)

where c(i) = c(Xλ(m) |i), i = 1, . . . , n. Indeed we rewrite Ui+1 = σiJi − σ−1
i Ji+1 = σi(Ji − Ji+1) + (q −

q−1)Ji+1, so, by the Lemma 9,

Ui+1(Xλ(m)) = (c(i) − c(i+1))

(

σi(Xλ(m)) +
(q − q−1)c(i+1)

c(i) − c(i+1)
Xλ(m)

)

.

Using (4.16) we obtain the formula (4.19).

4.4 Scalar product

1. The representations constructed on the spaces Uλ(m) , where λ(m) is an m-partition of length n, are
analogues for H(m, 1, n) of the seminormal representations of the symmetric group. We compute here
analogues, for the representations spaces of H(m, 1, n), of invariant scalar products on representation
spaces for the symmetric group.

Let
D := {1 + q2 + · · ·+ q2N}N=1,...,n ∪ {q2ivj − vk}i,j,k : j 6=k,−n<i<n

and let R be the ring C[q, q−1, v1, v
−1
1 , . . . , vm, v

−1
m ] of Laurent polynomials in variables q, v1, . . . , vm

localized with respect to the multiplicative set generated by D. Denote by ω the involution on
C[q, q−1, v1, v

−1
1 , . . . , vm, v

−1
m ] which sends q to q−1 and vj to v−1

j , j = 1, . . . ,m. The involution ω is
compatible with the localization and thus extends to R. Let U be a free module over R. We shall
call ω-sesquilinear scalar product a linear map 〈, 〉 : U ⊗C U → R of complex vector spaces with the
property

〈f u, g v〉 = f ω(g) 〈u, v〉 , f, g ∈ R .

We shall work here with the generic cyclotomic Hecke algebra, that is, the cyclotomic Hecke algebra
over the ring R. We denote by the same symbol Uλ(m) the vector space, now over the ring R, with
the basis {Xλ(m)}.

Let λ(m) be an m-partition and let Xλ(m) and X ′
λ(m) be two different standard m-tableaux of shape

λ(m). For brevity we set c(i) = c(Xλ(m) |i) for all i = 1, . . . , n. We introduce an ω-sesquilinear scalar
product on Uλ(m) defined on the basis {Xλ(m)} by

〈Xλ(m) ,X ′
λ(m)〉 = 0 , (4.20)

〈Xλ(m) ,Xλ(m)〉 =
∏

j,k : j<k , c(j) 6=c(k) , c(j) 6=c(k)q±2

q−1c(j) − qc(k)

c(j) − c(k)
. (4.21)
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Notice that, if Xsi
λ(m) is a standard m-tableau, we have

〈X si
λ(m) ,X

si
λ(m)〉 =

qc(i) − q−1c(i+1)

q−1c(i) − qc(i+1)
〈Xλ(m) ,Xλ(m)〉 . (4.22)

As before, the generators τ, σ1, . . . , σn−1 of the algebra H(m, 1, n) act on the space Uλ(m) according
to the formulas (4.16)–(4.17). We shall show that the ω-sesquilinear scalar product (4.20)-(4.21) is
H(m, 1, n)-invariant in the sense that

〈a(u), a(v)〉 = 〈u, v〉 for a = τ, σ1, . . . , σn−1 . (4.23)

It is immediate that (4.20)–(4.21) are invariant under the action of the generator τ of H(m, 1, n). The
verification of the invariance of (4.20) under the action of the generator σi of H(m, 1, n) is non-trivial
only if Xsi

λ(m) is standard and X ′
λ(m) = Xsi

λ(m) . This verification is done by a straightforward calculation
of 〈σi(Xλ(m)), σi(X

si
λ(m))〉; it is equal to

−
(q − q−1)c(i+1)

(c(i) − c(i+1))2

(

(qc(i) − q−1c(i+1))〈Xλ(m) ,Xλ(m)〉+ (qc(i+1) − q−1c(i))〈X si
λ(m) ,X

si
λ(m)〉

)

,

which is equal to 0 due to (4.22).

If Xsi
λ(m) is not standard then σi(Xλ(m)) = ǫqǫXλ(m) , ǫ = ±1, and the invariance of (4.21) under the

action of σi follows.

If Xsi
λ(m) is standard, then a straightforward calculation gives that 〈σi(Xλ(m)), σi(Xλ(m))〉 is equal

to
(q − q−1)2c(i)c(i+1)〈Xλ(m) ,Xλ(m)〉+ (q−1c(i) − qc(i+1))2〈X si

λ(m) ,X
si
λ(m)〉

(c(i) − c(i+1))2
.

Using (4.22) one obtains
〈σi(Xλ(m)), σi(Xλ(m))〉 = 〈Xλ(m) ,Xλ(m)〉 .

The proof of the H(m, 1, n)-invariance of (4.20)–(4.21) is finished. As a direct consequence, (4.20)–
(4.21) are invariant under the action of any product of the generators of the algebra H(m, 1, n).

2. In the generic situation, analogues for H(m, 1, n) of the orthogonal representations of the sym-
metric group are defined over an extension R̃ of the ring R. Let Fλ(m) be the set of all standard
m-tableaux of shape λ(m). Let also E

X
λ(m)

:= {(j, k)|j < k , c(j) 6= c(k) , c(j) 6= c(k)q±2} (this is the

set over which the product in the right hand side of (4.21) is taken). Introduce, for each standard
m-tableau Xλ(m) , a collection of variables ςjk

X
λ(m)

and let

R̃ := R

[

ςjk
X

λ(m)

]

X
λ(m)∈Fλ(m) ,(j,k)∈EX

λ(m)

/I ,
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where I is the ideal generated by

{

(

ςjk
X

λ(m)

)2

−
q−1c(j) − qc(k)

c(j) − c(k)

}

X
λ(m)∈Fλ(m) ,(j,k)∈EX

λ(m)

. Since each

factor
q−1c(j) − qc(k)

c(j) − c(k)
in the product in the right hand side of (4.21) is stable with respect to the

involution ω, one can extend the involution ω to the ring R̃ by the rule ω

(

ςjk
X

λ(m)

)

= ςjk
X

λ(m)
for all

Xλ(m) ∈ Fλ(m) and (j, k) ∈ E
X

λ(m)
.

An analogue for H(m, 1, n) of the orthogonal representation of the symmetric group is obtained
by performing the following diagonal change of basis in the R̃-module R̃⊗R Uλ(m) :

Xλ(m) 7→ X̃λ(m) := d
X

λ(m)
Xλ(m) , where d

X
λ(m)

=
∏

j,k : (j,k)∈E
X

λ(m)

ςjk
X

λ(m)
(4.24)

for any standard m-tableau Xλ(m) of shape λ(m). In the new basis {X̃λ(m)}, the operators for the
generators of H(m, 1, n) are orthogonal with respect to the ω-sesquilinear form. Namely let A be the
matrix of the generator a ∈ {τ, σ1, . . . , σn−1} of H(m, 1, n) in the basis {X̃λ(m)} then

Aω(A)T = Id , (4.25)

where Id is the identity matrix and, given a matrix x, xT means the transposed matrix .

Note that if q and vj , j = 1, . . . ,m, are numerical parameters whose values are of norm 1 then the
ω-sesquilinear form is just the usual Hermitian form and the matrices of the generators of H(m, 1, n)
are unitary in the usual sense.

3. Reintroduce the deformation parameters q, v1, . . . , vm in the notation for the cyclotomic Hecke
algebra: Hq,v1,...,vm(m, 1, n). There is another way to interpret the formulas (4.20)-(4.21). Namely
these formulas define a pairing between the representation spaces Uλ(m) and U ′

λ(m) where the first space
Uλ(m) carries the representation of the algebraHq,v1,...,vm(m, 1, n) and the second space U ′

λ(m) carries the
representation of the algebra Hq−1,v−1

1 ,...,v−1
m
(m, 1, n). The vector spaces Uλ(m) and U ′

λ(m) are naturally

isomorphic. The formula (4.23), stating the invariance of the pairing, holds; now in the formula (4.23),
x(u) is to be understood as the result of the action of the generator x ∈ Hq,v1,...,vm(m, 1, n) on the
vector u ∈ Uλ(m) while x(v) is the result of the action of the generator x ∈ Hq−1,v−1

1 ,...,v−1
m
(m, 1, n) on

the vector v ∈ U ′
λ(m) . The pairing is bilinear in the usual sense, 〈fu, gv〉 = fg〈u, v〉, f, g ∈ R.

4. For m = 1, that is, for the usual Hecke algebra H(1, 1, n), we have c(i) = q2cc(i) where cc(i) is the
classical content of the node occupied by i and the formula (4.21) can be rewritten in the following
form

〈Xλ(m) ,Xλ(m)〉 =
∏

j,k : j<k , c(j) 6=c(k) , c(j) 6=c(k)q±2

(cc(j)− cc(k)− 1)q
(cc(j)− cc(k))q

. (4.26)
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5. Let ρ : Ĥn → End(V) be an irreducible representation of the affine Hecke algebra Ĥn on a complex
vector space V of finite dimension L. Assume that the operator ρ(τ) is diagonalizable and the spectrum
of ρ(τ) is {(v1)l1 , (v2)l2 , . . . , (vm)lm}; here the numbers {v1, v2, . . . , vm} are pairwise different, lj is the
multiplicity of the eigenvalue vj , j = 1, . . . ,m. Then the representation ρ passes through the cyclotomic
quotient Hq,v1,...,vm(m, 1, n) of the affine Hecke algebra. Assume that the parameters q, v1, . . . , vm
satisfy the restrictions (2.10)-(2.12). By the completeness result from Section 5, the representation
ρ is isomorphic, as the representation of Hq,v1,...,vm(m, 1, n), to Vλ(m) for a certain m-partition λ(m).
Note that, given the knowledge of the values of q and vj , j = 1, . . . ,m, the basis {Xλ(m)} is determined
uniquely up to a global rescaling – if there were two bases then the operator, transforming one into
another, would contradict to the irreducibility of the representation ρ. Now, the operation A 7→ ω(A)T

is well-defined on matrices given by (4.16)-(4.17); for example, the matrix ω(ρ(σi))
T on the two-

dimensional space with the basis {Xλ(m) ,X
si
λ(m)} is

1

c(i+1) − c(i)





(q − q−1)c(i) qc(i+1) − q−1c(i)

q−1c(i+1) − qc(i) −(q − q−1)c(i+1)



 , (4.27)

with the same notation as in (4.18). The diagonal change of basis does not pose a problem either: in

the product in (4.24), ςjk
X

λ(m)
can be chosen as an arbitrary square root of the number

q−1c(j) − qc(k)

c(j) − c(k)
,

(j, k) ∈ E
X

λ(m)
. As a consequence, the matrices, in the basis {X̃λ(m)}, of the generators of the affine

Hecke algebra satisfy (4.25).

In this sense all irreducible finite-dimensional representations (from the described class) of the
affine Hecke algebra are unitarizable.

Appendix 4.A Module structure on tensor products

This Appendix is rather technical and is not necessary for the understanding of the rest of the paper.
It can be skipped at a first reading.

The algebra T, defined in Subsection 4.2, was used in Subsection 4.3 to construct modules over the
cyclotomic Hecke algebra H(m, 1, n). An extension of this construction equips the tensor products of
the underlying spaces of the H(m, 1, n)-modules, corresponding to m-partitions of n, with a structure
of an H(m, 1, n)-module. In this Appendix we give precise definitions and investigate the appearing
tensor product, denoted by ⊗̂, of representations.

In Section 5 we prove that under the restrictions (2.10)–(2.12) on the parameters of H(m, 1, n),
the irreducible representations of H(m, 1, n) are exhausted by the representations corresponding to m-
partitions of n. Our method of studying the tensor product ⊗̂ is inductive and is heavily based on the
completeness result from Section 5. A priori, we do not know the nature of representations appearing
in the decomposition of the tensor product Vλ(m)⊗̂Vλ′(m) of two representations corresponding to m-
partitions λ(m) and λ′(m). It is here that we need the heavy completeness result saying that every
H(m, 1, n)-module is isomorphic to a direct sum of H(m, 1, n)-modules corresponding to m-partitions
of n. Note that in its turn the completeness result is established in Section 5 indirectly, by counting
dimensions.
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The decomposition rules for the tensor product ⊗̂ are given in the Proposition 10 in this Appendix.
Qualitatively, the result is formulated very easily: the tensor product Vλ(m)⊗̂Vλ′(m) is isomorphic to
the direct sum of dim(Vλ′(m)) copies of the representation Vλ(m) . For simplest choices of λ(m) and λ′(m),
the decomposition of the tensor product Vλ(m)⊗̂Vλ′(m) can be done by a direct calculation. However,
in spite of the easiness of the formulation of the result of the Proposition 10, we could not find a way
to perform an explicit calculation for two arbitrary m-partitions. Besides, rectangular partitions play
a distinguished role in our way of proof of the Proposition 10 but not in the final formula for the
decomposition rules. It would be interesting to find a more explicit way to establish the Proposition
10, without using the completeness assertion from Section 5.

By construction from subsection 4.3, the representation Vλ(m) corresponding to an m-partition
λ(m) is equipped with the natural basis Xλ(m) indexed by standard m-tableaux of the shape λ(m). The
explicit form of an isomorphism Vλ(m)⊗̂Vλ′(m)

∼= dim(Vλ′(m)) Vλ(m) is quite evolved, showing again that
the tensor product ⊗̂ requires further understanding. We give several examples.

Certain statements below are valid in a more general situation, without the completeness assertion
from Section 5. To accurately formulate these statements, we shall say that a representation of the
cyclotomic Hecke algebra belongs to a class S if it is isomorphic to a direct sum of representations,
corresponding to multi-partitions.

1. Definition of the tensor product ⊗̂. Given an m-partition λ(m) of length n, recall that
Uλ(m) is the vector space with the chosen basis {Xλ(m)}. We stress that Uλ(m) is understood only
as a vector space, without any H(m, 1, n)-module structure specified, whereas Vλ(m) is understood
as the H(m, 1, n)-module given by the formulas (4.16)-(4.17) with underlying vector space Uλ(m) .
In particular, a representation of H(m, 1, n) is of the class S if it is isomorphic to a direct sum of
representations of the form Vλ(m) .

Let λ(m) and λ′(m) be two m-partitions of length n. The instructions from the Proposition 8 are
homogeneous in the generators X . A basis of the tensor product of Uλ(m) and Uλ′(m) is naturally
indexed by the products Xλ(m)Xλ′(m) , where Xλ(m) is the generator labeled by the standard m-tableau
Xλ(m) (of the shape λ(m)) and Xλ′(m) is the generator labeled by the standard m-tableau Xλ′(m) (of
the shape λ′(m)).

Moving now (following the instructions from the Proposition 8) in the expressions φXλ(m)Xλ′(m) |〉,
where φ ∈ H(m, 1, n), the elements X ’s to the left and evaluating, with the help of (4.15), the elements
of the cyclotomic algebra on the vacuum, we define the H(m, 1, n)-module structure on the tensor
product Uλ(m) ⊗Uλ′(m) of the vector spaces underlying the representations Vλ(m) and Vλ′(m) . We denote
the resulting representation of H(m, 1, n) by Vλ(m)⊗̂Vλ′(m) .

In principle, the tensor product ⊗̂ is defined for given m and n and should be rather denoted ⊗̂m,n.
For brevity, we omit m in the notation for the product, the value of m is fixed in our treatment. As
for n, below we introduce the operation of restriction from n to (n − 1) and explain that the tensor
product ⊗̂ is compatible with the restriction; due to the compatibility, we omit n in the notation for
the product as well.

Notice that for any product Xλ(m)Xλ′(m) , the generator τ never passes through Xλ(m) to the right
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(due to the particular form (4.9) of the instructions for the generator τ). Only the generators
σ1, . . . , σn−1 pass through Xλ(m) and then act on Xλ′(m) |〉. The subalgebra of H(m, 1, n) generated
by σ1, . . . , σn−1 is isomorphic to the Hecke algebra H(1, 1, n) (this follows from the normal form from
Appendix A, Corollary 39). Thus, it makes sense to consider tensor products of the form Vλ(m)⊗̂V ,
where V is a representation of H(1, 1, n), as a representation of H(m, 1, n). Moreover, by construction,
the representation Vλ(m)⊗̂Vλ′(m) is naturally isomorphic to the representation Vλ(m)⊗̂W , where W is
the restriction of the representation Vλ′(m) to the subalgebra generated by σ1, . . . , σn−1.

2. Product ⊗̂ : simplest examples. Let ̟(m) be the m-partition (λ1, . . . , λm) of length n such
that λ1 is the one-row partition (n) and λ2, . . . , λm are empty partitions. There is only one standard
m-tableau of shape ̟(m) which we denote by X̟(m) . For this particular m-partition, the formulas
(4.8)–(4.9) become:

(σi − q)X̟(m) = 0 for all i = 1, . . . , n− 1 and (τ − v1)X̟(m) = 0 . (4.28)

Thus the representation V̟(m) is isomorphic to the one-dimensional representation of the algebra
H(m, 1, n) spanned by the vacuum |〉. By construction, the following properties are verified (the
isomorphisms are to be understood as isomorphisms of H(m, 1, n)-modules): for any m-partition λ(m)

of length n,
Vλ(m)⊗̂V̟(m)

∼= Vλ(m) , (4.29)

and
V̟(m)⊗̂Vλ(m)

∼= V̟(m) ⊕ · · · ⊕ V̟(m)
∼= dim(Vλ(m)) V̟(m) . (4.30)

Actually, in the formulas (4.29)–(4.30) one can replace ̟(m) by any m-partition ̟′(m) such that V̟′(m)

is one-dimensional; these are the m-partitions (λ1, ..., λm) with only one non-empty λj which equals
(n) or (1n). For the validity of (4.29) for ̟′(m) see, for example, the Remark (b) after formulas
(4.16)–(4.17); the validity of (4.30) for ̟′(m) is immediate.

The formulas (4.29)–(4.30) are obtained in a straightforward manner. The Proposition 10 below
describes the product Vλ(m)⊗̂Vλ′(m) of representations corresponding to two arbitrary m-partitions of
the same length. However the proof of the general formula (4.33) is not direct and relies on the
completeness assertion which in turn requires the restrictions (2.10)–(2.12).

3. Restriction. An essential role in our study of the product ⊗̂ is played by the operation of
restriction which allows to use the induction arguments.

For any representation W of the algebra H(m, 1, n) we denote by Resnn−1(W) the restriction of W
to the subalgebra of H(m, 1, n) generated by τ, σ1, . . . , σn−2; according to results from Appendix A
(the assertion (ii) of the Proposition 38) this subalgebra is isomorphic to H(m, 1, n− 1). This justifies
the notation Resnn−1.

The class S of representations is stable with respect to the restriction Resnn−1. Indeed, the formulas
(4.8)-(4.9) imply that for any m-partition λ(m) of length n,

Resnn−1(Vλ(m)) ∼=
⊕

α(m) : α(m)∈E−(λ(m))

Vλ(m)\{α(m)} , (4.31)
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where, we recall, E−(λ
(m)) is the set of removable m-nodes of λ(m). The stability follows from (4.31).

Geometrically, it is clear that one can reconstruct the m-partition λ(m) from the set E−(λ
(m)) of its

removable m-nodes. Therefore, by (4.31), for an irreducible H(m, 1, n)-representation V , belonging
to the class S, V ∼= Vλ(m) , its restriction Resnn−1(V ) characterizes the representation V of H(m, 1, n)
uniquely up to isomorphism.

Moreover, a direct inspection shows that the operation ⊗̂ on representations belonging to the
class S is compatible with the operation of restriction in the following sense: for any two H(m, 1, n)-
representations W and W ′ belonging to S, we have

Resnn−1(W⊗̂W ′) ∼=
(

Resnn−1(W)
)

⊗̂
(

Resnn−1(W
′)
)

. (4.32)

Here the symbol ⊗̂ in the left hand side is the product for H(m, 1, n); in the right hand side it is the
product for H(m, 1, n − 1). The formula (4.32) justifies the usage of the symbol ⊗̂ instead of more
rigorous ⊗̂n.

Note that (4.31) and (4.32) are valid whenever the formula (4.8) makes sense for the participating
representations (that is, the denominators in (4.8) do not vanish); we do not need here the completeness
result from Section 5.

4. Decomposition rules. Under the constraints (2.10)–(2.12) on the parameters of H(m, 1, n), the
product ⊗̂ of two representations from the class S belongs again to the class S due to the completeness
result from Section 5. The following Proposition gives the decomposition rules for the tensor product
⊗̂ of the representations from the class S.

Proposition 10. Let λ(m) and λ′(m) be two arbitrary m-partitions of length n. Assume that the
conditions (2.10)–(2.12) on the parameters of H(m, 1, n) hold. Then the representation Vλ(m)⊗̂Vλ′(m)

of H(m, 1, n) is isomorphic to the direct sum of dim(Vλ′(m)) copies of Vλ(m) :

Vλ(m)⊗̂Vλ′(m)
∼= dim(Vλ′(m)) Vλ(m) . (4.33)

Proof. We shall use here that two representations V
π
(m)
1

and V
π
(m)
2

of H(m, 1, n) corresponding to two

differentm-partitions π
(m)
1 and π

(m)
2 of n are non-isomorphic and that any representation of H(m, 1, n)

belongs to the class S (this is proved, under the constraints (2.10)–(2.12), in Section 5).

We shall need the following Lemma.

Lemma 11. (i) Let λ(m) be an m-partition of length n satisfying the following conditions:

• λ(m) is different from m-partitions of the form (∅, . . . ,∅, λ,∅, . . . ,∅) where λ is a partition such
that |λ| ≤ 2 or λ = (2, 1) or λ = (2, 1, 1) or λ = (3, 1);

• λ(m) is different from m-partitions of the form (∅, . . . ,∅,�,∅, . . . ,∅,�,∅, . . . ,∅).

(ii) Let L = {λ
(m)
1 , . . . , λ

(m)
l } be any l-tuple of m-partitions of length n different from λ(m), λ

(m)
j 6= λ(m)

for all j = 1, ..., l.
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Then the two following sets of m-partitions

λ(m)− :=
{

λ(m)\{α(m)}
}

α(m) : α(m)∈E−(λ(m))
and L− :=

{

λ
(m)
j \{α

(m)
j }

}

j : j=1,...,l ; α
(m)
j : α

(m)
j ∈E−(λ

(m)
j )

do not coincide.

The Lemma 11 is a purely combinatorial statement. Its proof will be combinatorial as well. We
shall prove that, if λ(m)− is contained in L− then there exists a sub-m-partition of length n− 1 of one

of λ
(m)
j ∈ L which is not a sub-m-partition of λ(m). The representation-theoretic translation of the

last sentence is the following.

Corollary 12. Under the conditions (i) and (ii), if Resnn−1(Vλ(m)) is isomorphic to a sub-representa-
tion of Resnn−1(Vλ(m)

1

⊕· · ·⊕V
λ
(m)
l

), then there exists an m-partition ν(m) of length n−1 such that Vν(m)

is isomorphic to a sub-representation of Resnn−1(Vλ(m)
1

⊕ · · · ⊕V
λ
(m)
l

) but not to a sub-representation of

Resnn−1(Vλ(m)).

Proof of the Lemma. Assume that the l-tuple L = {λ
(m)
1 , . . . , λ

(m)
l }, formed by m-partitions

different from λ(m), is such that λ(m)− is contained in L−. Then for each α(m) ∈ E−(λ
(m)) the m-

partition λ(m)\{α(m)} of n− 1 is a sub-m-partition of some m-partition from L; there may be several
m-partitions from L with this property; choose one of them and denote it by µ(m). By condition (ii),
the m-partition µ(m) is obtained from λ(m)\{α(m)} by adding an m-node β(m) ∈ E+(λ

(m)\{α(m)})
different from α(m).

For a removable m-node γ(m) of µ(m), it is geometrically clear that the m-partition µ(m)\{γ(m)}
is not a sub-m-partition of λ(m) if and only if γ(m) is different from β(m); indeed, as for ordinary
partitions, the inclusion graph (see Appendix B for the definition) of m-partitions is a lattice; in
particular, it cannot contain a subgraph of the form

✁
✁
✁
✁

❚
❚
❚
❚❚✑

✑
✑
✑
✑

✑✑

◗
◗

◗
◗

◗
◗◗

s s

s s

λ(m)\{α(m)} = µ(m)\{β(m)} µ(m)\{γ(m)}

λ(m) µ(m)

So, if µ(m) has a removable m-node γ(m) different from β(m) then µ(m)\{γ(m)} is a sub-m-partition

of one of the λ
(m)
j ∈ L and is not a sub-m-partition of λ(m). Therefore it suffices to show that there is

an m-node α(m) ∈ E−(λ
(m)) such that, for any m-partition µ(m) obtained by adding to λ(m)\{α(m)} an

m-node β(m) ∈ E+(λ
(m)\{α(m)}), different from α(m), there is a removable m-node γ(m) ∈ E−(µ

(m)),
different from β(m).

Such γ(m) does not exist if and only if the m-partition µ(m) has only one removable m-node, that
is,

only one partition in the m-tuple µ(m) is non-empty

and this partition is of rectangular shape.
(4.34)
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Thus, an m-partition λ(m) contradicting to the assertion of the Lemma 11 should verify the prop-
erty: for every α(m) ∈ E−(λ

(m)) there exists β(m) ∈ E+(λ
(m)\{α(m)}), different from α(m), such that

the m-partition µ(m), obtained by adding to λ(m)\{α(m)} the m-node β(m), is described by (4.34). A
direct inspection shows that such m-partitions are exactly those which are excluded by the part (i) of
the formulation of the Lemma 11. �

We now return to the proof of the Proposition 10.

We proceed by induction on n; the formula (4.33) is trivial for n = 0, that is, for λ(m) = (∅, . . . ,∅).
As the proof of the induction step shows we need to verify separately several cases to complete the
proof of the Proposition 10.

Induction step. Let λ(m) and λ′(m) be two m-partitions of length n such that λ(m) satisfies the
conditions from the part (i) of the Lemma 11. Due to the formulas (4.31)–(4.32),

Resnn−1(Vλ(m)⊗̂Vλ′(m)) ∼=
⊕

α(m), α
′(m) :

α(m) ∈ E−(λ(m))

α
′(m) ∈ E−(λ

′(m))

Vλ(m)\{α(m)}⊗̂Vλ′(m)\{α
′(m)}. (4.35)

Our induction hypothesis is: the formula (4.33) is valid for the products in the right hand side of
(4.35). Assuming the induction hypothesis, we transform the right hand side of (4.35),

Resnn−1(Vλ(m)⊗̂Vλ′(m)) ∼= dim(Vλ′(m)) Res
n
n−1(Vλ(m)). (4.36)

Now we shall employ several times the completeness result from Section 5. First of all, the repre-
sentation Vλ(m)⊗̂Vλ′(m) belongs to S so we can write Vλ(m)⊗̂Vλ′(m) = c Vλ(m) ⊕W where

• W belongs to S and has no irreducible constituents isomorphic to Vλ(m) ,

• c is a non-negative integer; c ≤ dim(Vλ′(m)) by the dimension argument.

If c < dim(Vλ′(m)) we use again results of Section 5 to obtain a contradiction. Due to the semi-
simplicity at level n − 1 (note that the conditions (2.10)–(2.12) at level n − 1 are implied by the
conditions (2.10)–(2.12) at level n), the representation monoid of H(m, 1, n − 1) is cancellative; we
can thus simplify (4.36) by cResnn−1(Vλ(m)) on both sides. We obtain:

Resnn−1(W ) ∼=
(

dim(Vλ′(m))− c
)

Resnn−1(Vλ(m)) .

Since Resnn−1(Vλ(m)) is isomorphic to a sub-representation of Resnn−1(W ), the Corollary 12 implies
the existence of an m-partition ν(m) of n − 1 such that ν(m) is not a sub-m-partition of λ(m) but
Vν(m) is isomorphic to a sub-representation of Resnn−1(W ). But now the representation Resnn−1(W ) is
isomorphic to a direct sum of several copies of Resnn−1(Vλ(m)) implying that such ν(m) cannot exist, a
contradiction. Thus c = dim(Vλ′(m)) and

Vλ(m)⊗̂Vλ′(m)
∼= dim(Vλ′(m)) Vλ(m) .

The proof of the induction step is finished.
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End of the proof of the Proposition 10. If the formula (4.33) is verified for an m-partition
λ(m) and an arbitrary m-partition λ

′(m) of the same length as λ(m), we shall simply say that (4.33) is
verified for λ(m). Our way of proof of the induction step referred to the Lemma 11. So if the formula
(4.33) is established for all m-partitions of length n then it is established for all m-partitions λ(m)

of length (n + 1) unless λ(m) belongs to the set of m-partitions listed in part (i) of the Lemma 11.
For the m-partitions listed in part (i) of the Lemma 11 an independent proof is needed. Besides,
by (4.30), the formula (4.33) is already established for m-partitions λ(m) of 1, that is, for λ(m) =
(∅, . . . ,∅,�,∅, . . . ,∅) and for m-partitions of the form

(∅, . . . ,∅, λ,∅, . . . ,∅) , where λ is (2) or (1, 1) . (4.37)

Below we shall separately verify that (4.33) holds for other m-partitions λ(m) listed in the part (i) of
the Lemma 11, that is, m-partitions λ(m) of the form

(∅, . . . ,∅, λ,∅, . . . ,∅) , where λ is (2, 1) , (2, 1, 1) or (3, 1) (4.38)

or of the form
(∅, . . . ,∅,�,∅, . . . ,∅,�,∅, . . . ,∅) . (4.39)

Proof of (4.33) for the m-partitions of the forms (4.38) and (4.39).

We recall here that, for any λ(m), λ
′(m), the representation Vλ(m)⊗̂Vλ′(m) is naturally isomorphic to

a representation Vλ(m)⊗̂W where W is a representation of the Hecke algebra H(1, 1, n) (see the end
of the paragraph 1 of this appendix). Due to the completeness result of Section 5, it is enough to
consider the cases W ∼= Vλ for all partitions λ.

For the m-partitions λ(m) of the form (4.38), the generator τ acts by a constant in Vλ(m) and it is
thus sufficient to work with the Hecke algebra H(1, 1, n).

Reintroduce for this paragraph the deformation parameter q in the notation for the Hecke algebra:
Hq(1, 1, n). Due to the relations (2.1)–(2.2) and (2.7), we have an isomorphism θ : Hq(1, 1, n) →
H−q−1(1, 1, n) of algebras, defined on generators by Hq(1, 1, n) ∋ σi 7→ σi ∈ H−q−1(1, 1, n). The
composition with θ of a representation of H−q−1(1, 1, n), corresponding to a partition λ, sends the
representations V(3,1), V(2,2) and V(2,1,1) of H−q−1(1, 1, n) to, respectively, the representations V(2,1,1),
V(2,2) and V(3,1) of Hq(1, 1, n). Thus the formula (4.33) for λ = (3, 1) follows from the formula (4.33)
for λ = (2, 1, 1).

We remind that (4.33) has already been proved for any m-partitions λ′(m) such that Vλ′(m) is
one-dimensional, see (4.30).

For the m-partitions λ(m) of the form (4.39), the proof of (4.33) is reduced to the situation where
Vλ′(m) is replaced by Vλ′ where λ′ is (2) or (1, 1) in which case the representation Vλ′ is one-dimensional
and the formula (4.33) follows.

1. For the m-partition λ(m) of the form (4.38) with λ = (2, 1) we have reduced the proof to the
situation m = 1, and it remains to establish the result (4.33) only for Vλ⊗̂Vλ.
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The underlying vector space of Vλ has a basis {X1,X2} where X1 := X
1

3

2
and X2 := X

1

2

3
.

In this basis, the generators σ1 and σ2 are realized as follows:

σ1 7→ diag(q,−q−1) , σ2 7→
1

2q

(

−q−2 3q
1 q2

)

. (4.40)

We order the basis XiXj of the underlying vector space of Vλ⊗̂Vλ lexicographically; that is, we
choose the order {X1X1,X1X2,X2X1,X2X2}. In this basis, the matrices of the generators σ1 and σ2
are:

σ1 7→ diag(q, q,−q−1,−q−1) , σ2 7→
1

2q









−q−2 0 0 3q
0 −q−2 1 q2 + q−2

−q2 − q−2 3q q2 0
1 0 0 q2









.

The two subspaces with the bases

{X1X2, 3qX2X1} ,

{X1X1 + X1X2,X2X1 + X2X2}
(4.41)

carry the representation (4.40) which implies (4.33) in this case. Since Vλ⊗̂Vλ decomposes into a direct
sum of two isomorphic representations, the choice (4.41) of subspaces is not unique. We just make
(here and for the other cases below) a simple choice.

2. For the m-partition λ(m) of the form (4.38) with λ = (2, 1, 1) we have reduced the proof to the
situation m = 1, and it remains to establish the result (4.33) only for Vλ⊗̂Vλ′ with λ′ = (2, 2), (2, 1, 1)
and (3, 1).

The underlying vector space of Vλ has a basis {X1,X2,X3} where X1 := X
1

3

4

2
, X2 := X

1

2

4

3

and X3 := X
1

2

3

4
. In this basis, the generators σ1, σ2 and σ3 are realized as follows:

σ1 7→ diag(q,−q−1,−q−1) ,

σ2 7→
1
2q





−q−2 3q 0
1 q2 0
0 0 −q−12q



 , σ3 7→
1
3q





−q−13q 0 0
0 −q−3 4q
0 2q q3



 .

(4.42)

2a. λ′ = (2, 2).

The underlying vector space of Vλ′ has a basis {Y1,Y2}, where Y1 := X
1

3

2

4

and Y2 := X
1

2

3

4

.

We order the basis XiYj of the underlying vector space of Vλ⊗̂Vλ′ lexicographically. In this basis the
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generators σ1, σ2 and σ3 are realized as follows:

σ1 7→ diag(q, q,−q−1,−q−1,−q−1,−q−1) ,

σ2 7→
1

2q

















−q−2 0 0 3q 0 0
0 −q−2 1 q2 + q−2 0 0

−q2 − q−2 3q q2 0 0 0
1 0 0 q2 0 0
0 0 0 0 −q−12q 0
0 0 0 0 0 −q−12q

















,

σ3 7→
1

3q

















−q−13q 0 0 0 0 0
0 −q−13q 0 0 0 0
0 0 −q−3 0 4q 0
0 0 0 −q−3 0 −2q
0 0 2q 0 q3 0
0 0 0 −4q 0 q3

















,

The two subspaces with the bases

{X1Y2, 3qX2Y1, 3qX3Y1} ,

{X1Y1 + X1Y2,X2Y1 + X2Y2,X3Y1 − (q2 + q−2)X3Y2}

carry the representation (4.42), which implies (4.33) in this case.

2b. λ′ = λ = (2, 1, 1).

We order the basis XiXj of the underlying vector space of Vλ⊗̂Vλ lexicographically. In this basis
the generators σ1, σ2 and σ3 are realized as follows:

σ1 7→ diag(q, q, q,−q−1,−q−1,−q−1,−q−1,−q−1,−q−1) ,

σ2 7→
1

2q





























−q−2 0 0 0 3q 0 0 0 0
0 −q−2 0 1 q2 + q−2 0 0 0 0
0 0 −q−2 0 0 −1 0 0 0

−q2 − q−2 3q 0 q2 0 0 0 0 0
1 0 0 0 q2 0 0 0 0
0 0 −3q 0 0 q2 0 0 0
0 0 0 0 0 0 −q−12q 0 0
0 0 0 0 0 0 0 −q−12q 0
0 0 0 0 0 0 0 0 −q−12q





























,

36



σ3 7→
1

3q





























−q−13q 0 0 0 0 0 0 0 0
0 −q−13q 0 0 0 0 0 0 0
0 0 −q−13q 0 0 0 0 0 0
0 0 0 −q−3 0 0 −2q 0 0
0 0 0 0 −q−3 0 0 0 4q
0 0 0 0 0 −q−3 0 2q q3 + q−3

0 0 0 −4q 0 0 q3 0 0
0 0 0 0 −q3 − q−3 4q 0 q3 0
0 0 0 0 2q 0 0 0 q3





























,

The three subspaces with the bases

{X1Y2, 3qX2Y1,−3q(q
2 + q−2)X3Y1} ,

{X1Y1 + X1Y2,X2Y1 + X2Y2,−(q2 + q−2)X3Y1 −
q3 + q−3

2q
X3Y2 + X3Y3} ,

{X1Y3,−3qX2Y3,−3q(q
2 + q−2)X3Y2}

carry the representation (4.42), which implies (4.33) in this case.

2c. λ′ = (3, 1).

The underlying vector space of Vλ′ has a basis {Y1,Y2,Y3}, where Y1 := X
1

2

3 4
, Y2 :=

X
1

3

2 4
and Y3 := X

1

4

2 3
. We order the basis XiYj of the underlying vector space of Vλ⊗̂Vλ′

lexicographically. In this basis the generators σ1, σ2 and σ3 are realized as follows:

σ1 7→ diag(q, q, q,−q−1,−q−1,−q−1,−q−1,−q−1,−q−1) ,

σ2 7→
1

2q





























−q−2 0 0 q2 + q−2 1 0 0 0 0
0 −q−2 0 3q 0 0 0 0 0
0 0 −q−2 0 0 3q 0 0 0
0 1 0 q2 0 0 0 0 0
3q −q2 − q−2 0 0 q2 0 0 0 0
0 0 1 0 0 q2 0 0 0
0 0 0 0 0 0 −q−12q 0 0
0 0 0 0 0 0 0 −q−12q 0
0 0 0 0 0 0 0 0 −q−12q





























,
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σ3 7→
1

3q





























−q−13q 0 0 0 0 0 0 0 0
0 −q−13q 0 0 0 0 0 0 0
0 0 −q−13q 0 0 0 0 0 0
0 0 0 −q−3 0 0 4q 0 0
0 0 0 0 −q−3 0 0 q3 + q−3 2q
0 0 0 0 0 −q−3 0 4q 0
0 0 0 2q 0 0 q3 0 0
0 0 0 0 0 2q 0 q3 0
0 0 0 0 4q −q3 − q−3 0 0 q3





























,

The three subspaces with the bases

{X1Y1, 3qX2Y2, 3q(q
2 + q−2)X3Y3} ,

{X1Y1 + X1Y2,X2Y1 + X2Y2,X3Y1 + (q2 + q−2)X3Y3} ,

{X1Y3,X2Y3,X3Y2 −
q3 + q−3

2q
X3Y3}

carry the representation (4.42), which implies (4.33) in this case.

The proof of the Proposition 10 is completed. �

Remarks.

(a) By the Proposition 10, the tensor product ⊗̂ is obviously associative. We remark that if we
had an independent proof of the associativity of ⊗̂ it would immediately imply the Proposition 10:

Vλ(m)⊗̂Vλ′(m)
∼= (Vλ(m)⊗̂V̟(m))⊗̂Vλ′(m)

∼= Vλ(m)⊗̂(V̟(m)⊗̂Vλ′(m)) ∼= dim(Vλ′(m)) Vλ(m) ;

we used (4.29) for the first isomorphism and (4.29)-(4.30) for the last one.

(b) Let λ(m) be an m-partition of length n and ρ : H(m, 1, n) → End(V) a representation of
H(m, 1, n). One can construct a representation of H(m, 1, n) on the space Uλ(m) ⊗V by moving the
elements of H(m, 1, n) through the basis elements Xλ(m) of Uλ(m) with the help of instructions from
the Proposition 8 and then applying the representation ρ. Denote this representation by Vλ(m) ⊠V.
If ρ is a representation from the class S, this construction is equivalent to the tensor product ⊗̂,

Vλ(m) ⊠V ∼= Vλ(m)⊗̂V . (4.43)

Similarly to the construction of a H(m, 1, n)-module structure on the space Uλ(m) ⊗ Uλ
′(m) , one

can construct a H(m, 1, n)-module structure on the tensor product of spaces corresponding to l arbi-
trary m-partitions, with l ∈ Z≥0. One has to replace in the construction the quadratic combinations
Xλ(m)Xλ′(m) by combinations X

λ
(m)
l

X
λ
(m)
l−1

. . .X
λ
(m)
1

of degree l, move the elements of H(m, 1, n) through

these combinations using the homogeneous (in X ) relations (4.8)–(4.9) and then evaluating them on
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the vacuum |〉. Denote this representation by W
λ
(m)
l

,λ
(m)
l−1 ,...,λ

(m)
1

. We claim that W
λ
(m)
l

,λ
(m)
l−1 ,...,λ

(m)
1

is

isomorphic to the direct sum of dim(V
λ
(m)
1

) × · · · × dim(V
λ
(m)
l−1

) copies of V
λ
(m)
l

. Indeed, by (4.43),

W
λ
(m)
l

,λ
(m)
l−1 ,...,λ

(m)
1

is equivalent to the representation V
λ
(m)
l

⊠W
λ
(m)
l−1 ,...,λ

(m)
1

. By induction (the induc-

tion base is the formula (4.33)) the representation W
λ
(m)
l−1 ,...,λ

(m)
1

is isomorphic to the direct sum of

dim(V
λ
(m)
1

)× · · · × dim(V
λ
(m)
l−2

) copies of V
λ
(m)
l−1

. By (4.33) and (4.43), the claim follows.

(c) The partition (2, 1, 1) appears in the list from the part (i) of the Lemma 11 because

Res43(V(2,1,1))
∼= Res43(V(2,2))⊕ Res43(V(1,1,1,1)) .

For the representation V(2,1,1) the matrix of the operator σ1σ3 is

1

3q





−3q 0 0
0 q−4 −q−14q
0 −q−12q −q2



 .

Thus, trV(2,1,1)
(σ1σ3) = −2+ q−2. In the representation V(1,1,1,1) we have σ1, σ3 7→ (−q−1) while in the

representation V(2,2) we have σ1, σ3 7→ diag(q,−q−1), so trV(1,1,1,1)
(σ1σ3) + trV(2,2)

(σ1σ3) = q2 + 2q−2.

This differs from trV(2,1,1)
(σ1σ3) = −2+q−2 if and only if (q+q−1)2 6= 0 that is, q+q−1 6= 0. Therefore

to establish the formula (4.33) for the representation V(2,1,1) it is enough to calculate the trace of σ1σ3
in the representations V(2,1,1)⊗̂Vλ with λ = (2, 2), (2, 1, 1) and (3, 1). Note that this argument works,
in particular, in the classical limit q → 1.

5 Completeness

1. In the preceding Section we constructed, for everym-partition λ(m), a representation ofH(m, 1, n).
The spectrum of the Jucys–Murphy elements J1, . . . , Jn in this representation is the set of strings
corresponding to the standard m-tableaux of shape λ(m), see the Lemma 9. This construction provides
an inclusion of the set of standard Young m-tableaux of length n into Spec(J1, . . . , Jn). On the other
hand, the Proposition 3 and the Proposition 5 provide an inclusion of Spec(J1, . . . , Jn) into the set of
standard Young m-tableaux of length n. These operations, by construction, are inverse to each other.
We sum up the results.

We underline that the restrictions (2.10)–(2.12) are essential for the statements below.

Proposition 13. The set Spec(J1, . . . , Jn), the set Contm(n) and the set of standard m-tableaux are
in bijection.

Corollary 14. The spectrum of the Jucys–Murphy elements is simple in the representations Vλ(m)

(labeled by the m-partitions).

It means that for two different standard m-tableaux (not necessarily of the same shape) the elements
of Spec(J1, . . . , Jn) associated to them by the Proposition 13 are different (two strings (a1, . . . , an)
and (a′1, . . . , a

′
n) are different if there is some i such that ai 6= a′i).
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2. It remains to verify that we obtain within this approach all irreducible representations of the
algebra H(m, 1, n).

According to Appendix B the sum of the squares of the dimensions of the constructed representa-
tions equals the dimension of H(m, 1, n). It is therefore sufficient to prove that these representations
are irreducible and pairwise non-isomorphic. It is done in the Theorem 15.

As a by-product we obtain that the algebra H(m, 1, n) is semi-simple under the restrictions (2.10)–
(2.12).

Theorem 15. The representations Vλ(m) (labeled by the m-partitions) of the algebra H(m, 1, n)
constructed in Section 4 are irreducible and pairwise non-isomorphic.

Proof. The proof can be found in [1] (as well as the semi-simplicity result). We briefly repeat the
argument for completeness.

In the proof we use induction on n. It is justified since the restrictions (2.10)–(2.12) for H(m, 1, n)
imply the restrictions (2.10)–(2.12), in which n is replaced by n′, for H(m, 1, n′) with arbitrary n′,
0 < n′ < n.

The Corollary 14 directly implies that the representations Vλ(m) and Vλ′(m) are non-isomorphic if
λ(m) 6= λ′(m).

Suppose by induction that the representations Vµ(m) , for all m-partitions µ(m) of n − 1, are irre-
ducible representations of H(m, 1, n − 1). The base of induction is n = 1; there is nothing to prove
here.

Fix an m-partition λ(m) with |λ(m)| = n. Let {µ
(m)
i }, i = 1, . . . , l, be the set of all m-sub-partitions

of λ(m) with |µ
(m)
i | = n− 1.

For each i, the representation V
µ
(m)
i

of H(m, 1, n−1) is a sub-representation of the restriction of the

representation Vλ(m) to H(m, 1, n − 1). The dimension of Vλ(m) (the number of standard m-tableaux
of the shape λ(m)) is the sum (over i) of dimensions of V

µ
(m)
i

. Therefore, the representation Vλ(m) of

H(m, 1, n) decomposes with respect to H(m, 1, n− 1) into a direct sum of representations V
µ
(m)
i

.

The m-sub-partitions µ
(m)
i are different and correspond thus to non-isomorphic irreducible repre-

sentations of H(m, 1, n−1). It follows that the positions of V
µ
(m)
i

as subspaces in Vλ(m) are well-defined.

Therefore, if Vλ(m) has a non-trivial invariant subspace U then U must contain at least one of the V
µ
(m)
i

,

say V
µ
(m)
1

.

It is sufficient to show that starting from elements of V
µ
(m)
1

one can obtain an element of V
µ
(m)
j

for

any j 6= 1 by the action of operators from H(m, 1, n). A basis vector of Vλ(m) labeled by a standard

m-tableau Xλ(m) of shape λ(m) belongs to the subspace V
µ
(m)
j

where µ
(m)
j is the m-sub-partition of

length (n− 1) formed by the m-nodes with 1, . . . , n− 1 of Xλ(m) . For any j 6= 1 the m-sub-partition

µ
(m)
j is obtained from µ

(m)
1 by removing one m-node and adding some other m-node, different from

the removed one; it is easy to see that the two m-nodes involved are non-adjacent and, even more,
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are not on neighboring diagonals. Take the standard m-tableau of shape λ(m) for which the numbers

1, . . . , n − 1 are placed in the m-sub-partition µ
(m)
1 of λ(m) and moreover the number n − 1 is in the

only m-node of µ
(m)
1 which is not in the m-sub-partition µ

(m)
j . The vector ~v of Vλ(m) labeled by this

m-tableau belongs to the subspace V
µ
(m)
1

and is sent by σn−1 to a combination of the vector ~v and a

vector belonging to V
µ
(m)
j

. The formula (4.16) shows that this vector of V
µ
(m)
j

is non-zero. �

Let B be an associative subalgebra of an associative algebra A. An indecomposable (irreducible if
the algebra A is semi-simple) representation of the algebra A “branches” with respect to the algebra
B, that is, decomposes into a direct sum of indecomposable (irreducible if the algebra B is semi-simple)
representations of B. The information about branchings of all representations of the algebra A with
respect to the subalgebra B is called branching rules for the pair (A,B).

As a corollary of the whole construction we obtain under the restrictions (2.10)–(2.12) the branch-
ing rules for the pair

(

H(m, 1, n), H(m, 1, n−1)
)

; the representation of the algebra H(m, 1, n) labeled

by an m-partition λ(m) of n decomposes into the direct sum of the representations of the algebra
H(m, 1, n) labeled by the m-sub-partitions of λ(m) of length n− 1. In particular we obtain the follow-
ing Corollary.

Corollary 16. Under the restrictions (2.10)–(2.12) the branching rules for the chain, with respect
to n, of the algebras H(m, 1, n) are multiplicity-free.

It means that under the restrictions (2.10)–(2.12) in the decomposition of an irreducible represen-
tation of the algebra H(m, 1, n) each irreducible representation of the algebra H(m, 1, n− 1) appears
with the multiplicity equal either to 0 or to 1.

By the general arguments it follows that under the restrictions (2.10)–(2.12) the centralizer of the
sub-algebra H(m, 1, n− 1) in the algebra H(m, 1, n) is commutative for each n = 1, 2, 3, . . .

It also follows from the constructed representation theory that under the restrictions (2.10)–(2.12)

• the centralizer of the subalgebra H(m, 1, n − 1) in the algebra H(m, 1, n) is generated by the
center of H(m, 1, n− 1) and the Jucys–Murphy element Jn;

• the subalgebra generated by the Jucys–Murphy elements J1, . . . , Jn of the algebra H(m, 1, n) is
maximal commutative.

Remarks.

(a) For every standardm-tableau Xλ(m) define the element P
X

λ(m)
of the cyclotomic Hecke algebra

H(m, 1, n) by the following recursion. The initial condition is P∅ = 1. Let α(m) be the m-node
occupied by the number n in Xλ(m) ; define µ(m) := λ(m)\{α(m)}. Denote by Xµ(m) the standard
m-tableau with the numbers 1, . . . , n−1 at the same m-nodes as in Xλ(m) . Then the recursion is given
by

P
X

λ(m)
:= P

X
µ(m)

∏

β(m) : β(m)∈E+(µ(m)) , β(m) 6=α(m)

Jn − c(β(m))

c(α(m))− c(β(m))
(5.1)
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where c(β(m)) is the content of the m-node β(m). Due to the completeness results of this Section,
the elements P

X
λ(m)

form a complete set of pairwise orthogonal primitive idempotents of the algebra

H(m, 1, n).

We shall prove that, moreover, we have a well-defined homomorphism ̺ : T → H(m, 1, n) which
is identical on the generators τ, σ1, . . . , σn−1 and sends Xλ(m) to P

X
λ(m)

for all standard m-tableaux

Xλ(m) . Using the completeness, the only non-trivial verification one has to do is to check that, for any
standard m-tableau Xλ(m) such that Xsi

λ(m) is standard, the defining relation (4.8) of the algebra T is
satisfied by the images of σi, Xλ(m) and X si

λ(m) through the homomorphism ̺. The verification reduces
to the following equality for matrices (see (4.18)):

(

0 A
B −C

)(

1 0
0 0

)

=

(

0 0
B 0

)

=

(

0 0
0 1

)(

C A
B 0

)

, (5.2)

where A =
qc(i) − q−1c(i+1)

c(i) − c(i+1)
, B =

qc(i+1) − q−1c(i)

c(i+1) − c(i)
, C =

(q − q−1)(c(i+1) + c(i))

c(i+1) − c(i)
and c(i) := c(Xλ(m) |i)

for all i = 1, . . . , n. The elements ̺(Xλ(m)) are the diagonal matrix units; the elements

̺
(

σi +
(q − q−1)c(Xλ(m) |i+ 1)

c(Xλ(m) |i)− c(Xλ(m) |i+ 1)

)

̺(Xλ(m)) = ̺(X si
λ(m))̺

(

σi +
(q − q−1)c(Xλ(m) |i)

c(Xλ(m) |i+ 1)− c(Xλ(m) |i)

)

(5.3)

form a part of off-diagonal (non-normalized) matrix units - the calculation (5.2) shows that these
elements are non-zero. For the usual Hecke algebra H(1, 1, n) the equality (5.3) was established in
[24]. The complete set of off-diagonal matrix units was constructed in [25] for the usual Hecke algebra.
The construction for the cyclotomic Hecke algebra is similar and we leave details to the reader.

(b) For a subset {vi1 , . . . , vil} with l < m let z := (τ − vi1)...(τ − vil). Taking a quotient of
H(m, 1, n) by the ideal generated by z we get a homomorphism p : H(m, 1, n) → H(l, 1, n) where
H(l, 1, n) is the cyclotomic Hecke algebra with the parameters q, vi1 , . . . , vil (note that the restrictions
(2.10)–(2.12) hold for this choice of the parameters if they hold for q, v1, . . . , vn). The representations
of H(m, 1, n) for which the diagonal entries of the (diagonal) matrix (4.17) belong to {vi1 , . . . , vil}
(these representations are labeled by m-partitions with empty partitions on the places corresponding
to vj which are omitted in {vi1 , . . . , vil}) pass through the image p(H(m, 1, n)) in H(m, 1, n). The
sum of squares of dimensions of these representations equals to the dimension of H(l, 1, n). It follows
that p is surjective.

6. The classical limit

Here we consider the classical limit of the cyclotomic Hecke algebra H(m, 1, n), that is the group ring
of the complex reflection group G(m, 1, n). The representation theory of the groups G(m, 1, n) is well
known, see, [35] or, e.g., [22]. Also, the representation theory of G(m, 1, n) can be directly deduced
from the representation theory of H(m, 1, n) by taking the limit

{

vi → ξi for i = 1, . . . ,m, where the ξi are distinct mth roots of unity ,

q → ±1
(6.1)

42



in formulas for matrix elements. However it is interesting to take the “classical limit” of the whole
above developed approach establishing thereby an approach to the representation theory of the group
G(m, 1, n) not referring to the representation theory of H(m, 1, n). The construction of an algebra
structure on the tensor product of the algebra CG(m, 1, n) with a free associative algebra generated
by the standard m-tableaux corresponding to m-partitions of n is of independent interest.

The representation theory of a more general class of groups, namely, of the wreath products of
finite groups by the symmetric groups, was built, in the spirit of [28], in [29]. The construction in [29]
is worked out within the group theory. In this section we shall see how this approach is restored –
on the example of the groups G(m, 1, n), the wreath products of the cyclic groups by the symmetric
groups – in the classical limit of the construction developed in the preceding sections for H(m, 1, n).
We shall see that there are certain subtleties in passing to the classical “group” situation (one should
be careful about the order of taking limits etc). As it often happens the classical situation is more
complicated than the quantum one.

We more or less repeat the same steps as in the non-degenerate situation. We present the classical
Jucys–Murphy elements of the group ring of G(m, 1, n), which we obtain as classical limits of certain
expressions involving the Jucys-Murphy elements of H(m, 1, n); the Jucys–Murphy of the group ring
of G(m, 1, n) are images of the “universal” Jucys–Murphy elements living in a version of a degenerate
cyclotomic affine Hecke algebra (in contrast with the non-degenerate situation where we need the
usual affine Hecke algebra), which we denote Am,n. The algebra Am,n turns out to coincide with a
particular case of the wreath Hecke algebra defined in [39] (see also [31]). To study the spectrum of
the Jucys–Murphy of the group ring of G(m, 1, n) we use representations of the simplest non-trivial
degenerate cyclotomic affine Hecke algebra, the algebra Am,2. We characterize the sets of common
eigenvalues of the Jucys–Murphy of the group ring of G(m, 1, n) and establish then the relation with
the m-partitions. The representations of the group G(m, 1, n) are constructed again with the help
of the tensor product of the algebra CG(m, 1, n) with a free associative algebra generated by the
standard m-tableaux corresponding to m-partitions of n. We also give in the first appendix to this
section a proof of a structure theorem (giving a normal form) for the degenerate cyclotomic affine
Hecke algebra (this is a particular case of the PBW basis of the wreath Hecke algebra given in [39]).
In the second appendix we study the intertwining operators (introduced in [39]) in the degenerate
cyclotomic affine Hecke algebra which provide a certain information about the spectrum of the Jucys–
Murphy elements and explain how to obtain these intertwining operators by taking the classical limit
of certain intertwining operators of the non-degenerate affine Hecke algebra.

Some material in this Section is known (the Jucys-Murphy elements [29, 40], the construction
of the representations from the study of their spectrum [29], the degenerate cyclotomic affine Hecke
algebra [39, 38]). We insist here on the connection of the treatment for the groups G(m, 1, n) with the
treatment for the algebra H(m, 1, n). Also the construction of the representations given in Subsection
6.8 appears to be new.
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6.1 Complex reflection group G(m, 1, n)

The group G(m, 1, n) is generated by the elements t, s1, . . . , sn−1 with the relations:











s2i = 1 for all i = 1, . . . , n− 1 ,

sisi+1si = si+1sisi+1 for all i = 1, . . . , n− 2 ,

sisj = sjsi for all i, j = 1, . . . , n− 1 such that |i− j| > 1

(6.2)

and










tm = 1 ,

ts1ts1 = s1ts1t ,

tsi = sit for i > 1 .

(6.3)

The notation “si”, the same as for the generators of the symmetric group Sn, see (4.4)-(4.6), should
not lead to any confusion; the subgroup of the group G(m, 1, n) generated by the elements s1, . . . ,
sn−1 is isomorphic to the symmetric group Sn.

The group G(m, 1, n) is isomorphic to the group Cm ≀ Sn, the wreath product of the cyclic group
with m elements, Cm, by the symmetric group Sn. Its order is n! ·m

n (see Appendix A for a normal
form). Let γ be a generator of the group Cm, that is γm = e where e is the unit element of Cm. We
also denote by e the unit element of Sn. The standard isomorphism between the group G(m, 1, n) and
Cm ≀ Sn is given by the map:

t 7→
(











γ
e
...
e











, e
)

, si 7→
(











e
e
...
e











, (i, i+ 1)
)

, (6.4)

where the vectors are elements of the Cartesian product of n copies of Cm.

The group G(m, 1, n) admits the following equivalent presentation. Let E be the set {(γk, a), k =
0, . . . ,m − 1, a = 1, . . . , n}. Define the following action of Cm on this set: γ · (γk, a) = (γk+1, a).
Denote Perm(E) the group of permutations of the set E. Then the group G(m, 1, n) is isomorphic to
the subgroup of Perm(E) consisting of elements π ∈ Perm(E) such that:

π(γk, a) = γk · π(e, a) for all k = 1, . . . ,m− 1 and a = 1, . . . , n . (6.5)

Indeed it is easy to see that this is a subgroup of Perm(E) and that its order is n! ·mn. We denote
it by Perm0(E). In order to specify an element π of Perm0(E) it is enough to give the images under
π of the elements of the set {(e, a), a = 1, . . . , n}. Let φ be the map from G(m, 1, n) to Perm0(E)
defined on the generators of G(m, 1, n) by:

φ(t)(e, a) =

{

(γ, a) if a = 1 ,

(e, a) for a 6= 1 ;

φ(si)(e, a) = (e, si(a)) for a = 1, . . . , n and i = 1, . . . , n− 1 .

(6.6)
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We can extend φ to a homomorphism (it is enough to check that the maps φ(t), φ(s1), . . . , φ(sn−1)
satisfy the defining relations of G(m, 1, n)). Moreover this homomorphism is surjective; it is a conse-
quence of the following fact: for any j = 1, . . . , n− 1,

φ(sj) . . . φ(s1)φ(t)φ(s1) . . . φ(sj)(e, a) =

{

(γ, a) if a = j + 1 ,

(e, a) for a 6= j + 1 .
(6.7)

Finally, as G(m, 1, n) and Perm0(E) have the same order, the map φ is an isomorphism.

6.2 Jucys–Murphy elements

Our main concern in this subsection is to obtain a version of Jucys–Murphy elements of G(m, 1, n)
from the Jucys–Murphy elements of the cyclotomic Hecke algebra H(m, 1, n), more precisely, from
limits of certain expressions containing the Jucys–Murphy elements of H(m, 1, n) (a similar process
was used in [30] for the Weyl groups). The Jucys–Murphy elements were defined in [29, 40] for the
wreath product of any finite group A by the symmetric group. The Jucys–Murphy elements obtained
by a limiting procedure coincide with those from [29, 40] if we choose A to be the cyclic group.

As in the non-degenerate situation, the usage of the Jucys–Murphy elements is the main tool in our
construction of the representation theory. We briefly outline the content of the following subsections.
Once the Jucys–Murphy elements of G(m, 1, n) are obtained we verify that they realize the degenerate
cyclotomic affine Hecke algebra Am,n (see the Definition 17 below). We verify, on the classical level,
the commutativity of the double set {x1, x̃1, . . . , xn, x̃n} of elements in the algebra Am,n (we do not
include the commutativity of this set in the defining relations of Am,n, contrary to the definition of the
wreath Hecke algebra of [39]; as a corollary of the results here, the two algebras are in fact isomorphic).
The representation theory for the algebra Am,2 carries an important information about the recursive
properties of the Jucys–Murphy elements. We present the list of irreducible representations with
diagonalizable x1, x̃1, x2 and x̃2 of the algebra Am,2, and then, almost without proofs, the analogues
of the results of Sections 3, 4 and 5 (the proofs mainly go along the same lines as the proofs of the
analogous statements of Sections 3, 4 and 5) in the classical setting.

In the following we identify the generators τ , σ1, . . . , σn−1 of H(m, 1, n) with respectively t, s1
,. . . , sn−1 as soon as we have taken the classical limit vi → ξi for i = 1, . . . ,m and q → ±1.

Jucys–Murphy elements. We define the following classical analogues of the Jucys–Murphy ele-
ments Ji:

ji := lim
q→1

lim
vi→ξi

(

Ji
)

, (6.8)

and

j̃i :=
1

m
lim
q→1

lim
vi→ξi

(

Jm
i − 1

q − q−1

)

. (6.9)

Attention: the order of taking limits here is important, we first take the limit with respect to the
variables vi and then with respect to q; it is maybe more instructive to write (6.9) in the form

j̃i :=
1
m lim

q→1

lim
vi→ξi

(Jm
i −1)

q−q−1 .
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6.3 Degenerate cyclotomic affine Hecke algebra

The Jucys–Murphy elements of the cyclotomic Hecke algebra H(m, 1, n) are the images of the “uni-
versal” Jucys–Murphy elements of the affine Hecke algebra. Similarly, the elements ji and j̃i are
the images of certain elements of a “universal” degenerate cyclotomic affine Hecke algebra, which we
introduce here.

Definition 17. Let Am,n be the algebra generated by s1, . . . , sn−1 and two more generators, x1 and
x̃1; the defining relations we introduce in three steps. First, there are defining relations, involving the
generators s1, . . . , sn−1 only:















s2i = 1 ,

sisi+1si = si+1sisi+1 ,

sisj = sjsi if |i− j| > 1 ;

(6.10)

second, there are relations concerning the addition of the generator x1:



















xm1 = 1 ,

x1s1x1s1 = s1x1s1x1 ,

x1si = six1 if i > 2 ;

(6.11)

the third group of relations concerns the addition of the last generator x̃1:































x̃1(s1x̃1s1 +
1
m

m
∑

p=1
xp1s1x

−p
1 ) = (s1x̃1s1 +

1
m

m
∑

p=1
xp1s1x

−p
1 )x̃1 ,

x̃1si = six̃1 if i > 2 ,

x̃1x1 = x1x̃1 ,

x̃1s1x1s1 = s1x1s1x̃1 .

(6.12)

We call the algebra Am,n the degenerate cyclotomic affine Hecke algebra.

Due to the relations (6.10)–(6.11) there is a homomorphism

ι̂ : CG(m, 1, n) → Am,n , ι̂(si) = si for i = 1, . . . , n− 1 , ι̂(t) = x1 . (6.13)

Let π be a map from the set of generators {s1, . . . , sn−1, x1, x̃1} to CG(m, 1, n) defined by

π : si 7→ si for i = 1, . . . , n− 1 , x1 7→ t , x̃1 7→ 0 . (6.14)

Clearly, π extends to a homomorphism, which we denote by the same symbol π, from the algebra Am,n

to CG(m, 1, n) (the homomorphism π is well defined since the relations (6.12) are trivially satisfied
when one sends x̃1 to 0). Moreover, the composition π ◦ ι̂ leaves the generators of G(m, 1, n) invariant
and is therefore the identity homomorphism of the algebra CG(m, 1, n); in particular, the map ι̂ is
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injective or, equivalently, the subalgebra of Am,n generated by the elements s1, . . . , sn−1 and x1 is
isomorphic to the algebra CG(m, 1, n).

Define “higher” elements xi and x̃i for i = 2, . . . , n by

xi+1 = sixisi , i = 1, . . . , n− 1 , (6.15)

and

x̃i+1 = six̃isi +
1

m

m
∑

p=1

xpi six
−p
i , i = 1, . . . , n− 1 . (6.16)

The second relation in (6.11) can be rewritten as

x1x2 = x2x1 ; (6.17)

the first and the fourth relations in (6.12) can be rewritten, respectively, as

x̃1x̃2 = x̃2x̃1 and x̃1x2 = x2x̃1 . (6.18)

Lemma 18. We have
π(xi) = ji and π(x̃i) = j̃i . (6.19)

Proof. We have to check that the elements ji (respectively, j̃i) verify the recurrent relations (6.15)
(respectively, (6.16)) and the initial conditions j1 = t (respectively, j̃1 = 0).

It follows from (6.8) in a straightforward manner that j1 = t and ji+1 = sijisi so only the
verification for the elements j̃i remains.

Due to (6.9) we have j̃1 = 0. Then we calculate

Jm
i+1 = (σiJiσi)

m

= σiJi

(

(1 + (q − q−1)σi)Ji

)m−1
σi

= σiJ
m
i σi + (q − q−1)

(

σiJiσiJ
m−1
i σi+σiJ

2
i σiJ

m−2
i σi+. . .+σiJ

m−1
i σiJiσi

)

+O((q − q−1)2) .

Thus,

Jm
i+1 − 1

q − q−1
=
σiJ

m
i σi − 1

q − q−1
+
(

σiJiσiJ
m−1
i σi+σiJ

2
i σiJ

m−2
i σi+. . .+σiJ

m−1
i σiJiσi

)

+O(q − q−1)

=
σi(J

m
i − 1)σi
q − q−1

+ σi +
(

σiJiσiJ
m−1
i σi+σiJ

2
i σiJ

m−2
i σi+. . .+σiJ

m−1
i σiJiσi

)

+O(q − q−1) .

Upon taking the limit and dividing by m we obtain:

j̃i+1 = sij̃isi +
1

m
(si +

m−1
∑

p=1

sij
p
i sij

m−p
i si) .
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Finally we use that:
sij

p
i sij

q
i si = sij

p
i j

q
i+1 = sij

q
i+1j

p
i = jqi sij

p
i ,

and we replace si by j
m
i sij

0
i because jmi = 1. �

Since the Jucys–Murphy elements commute in the algebraH(m, 1, n), it follows from the definitions
(6.8) and (6.9) that the elements ji, i = 1, . . . , n, and the elements j̃i, i = 1, . . . , n, form together a
commutative set. We did not include the commutativity of the corresponding set, formed by the
elements xi, i = 1, . . . , n, and the elements x̃i, i = 1, . . . , n, in the defining relations for the algebra
Am,n: the commutativity of this set (and therefore, by the Lemma 18, of its image under the morphism
π, that is, of the set formed by the elements ji, i = 1, . . . , n, and j̃i, i = 1, . . . , n) follows, as we shall
now see, from the relations (6.10)–(6.12).

Proposition 19. The relations (6.10)–(6.12) imply that:

xkxl = xlxk, x̃kx̃l = x̃lx̃k and xkx̃l = x̃lxk for all k, l = 1, . . . , n . (6.20)

Proof. We start by:

Lemma 20. The relations (6.10)–(6.12) imply that xi and x̃i commutes with sk for k > i and
k < i− 1.

Proof of the Lemma. It is well known that the relations (6.10)–(6.11) imply that xi commutes with
sk for k > i and k < i− 1.

We use induction on i for the elements x̃i. By definition the element x̃1 commutes with the elements
sk for k > 1; the element

x̃i+1 ≡ six̃isi +
1

m

m
∑

p=1

xpi six
m−p
i (6.21)

commutes, by the induction hypothesis, with the elements sk for k > i + 1 and k < i − 1. It is left
to check the commutation relation with si−1. This check is non-trivial only if (i − 1) > 0; then we
further decompose the elements x̃i and xi in the right hand side of (6.21):

x̃i+1 = six̃isi +
1
m

m
∑

p=1
xpi six

m−p
i

= sisi−1x̃i−1si−1si +
1
m

m
∑

p=1
six

p
i−1si−1x

m−p
i−1 si +

1
m

m
∑

p=1
si−1x

p
i−1si−1sisi−1x

m−p
i−1 si−1

= sisi−1x̃i−1si−1si +
1
m

m
∑

p=1

(

xpi−1sisi−1six
m−p
i−1 + si−1x

p
i−1sisi−1six

m−p
i−1 si−1

)

.

For each p, the expression in the last sum has the form ξ + si−1ξsi−1 (for some ξ) and therefore
commutes with si−1. The first term commutes with si−1 as well:

sisi−1x̃i−1si−1si · si−1 = sisi−1x̃i−1sisi−1si = sisi−1six̃i−1si−1si = si−1 · sisi−1x̃i−1si−1si .
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We conclude that x̃i+1 commutes with si−1. �

We return to the proof of the Proposition 19. The commutativity statement (6.20) we establish by
induction again. The element x̃1 commutes with x1 by definition. Assuming that x1, . . . , xi, x̃1, . . . , x̃i
form a commutative set we have to prove that xi+1 and x̃i+1 commute with x1, . . . , xi, x̃1, . . . , x̃i and
that xi+1 commutes with x̃i+1 as well.

(i) Since xi+1 = sixisi and x̃i+1 = six̃isi +
1
m

m
∑

p=1
xpi six

m−p
i we find, by the induction hypothesis

and by the Lemma 20, that xi+1 and x̃i+1 commute with xk and x̃k for k < i.

(ii) We now prove that the elements xi+1 and x̃i+1 commute with the elements xi and x̃i.

If i > 1, we write xi = si−1xi−1si−1 and x̃i = si−1x̃i−1si−1 +
1
m

m
∑

p=1
xpi−1si−1x

m−p
i−1 ; by the Lemma

20 and the statement (i) of the proof, the elements xi+1 and x̃i+1 commute with all elements entering
the above decompositions of xi and x̃i and therefore, with xi and x̃i.

For i = 1, the element x2 commutes with x1 and x̃1 and the element x̃2 commutes with x̃1 by
definition. To finish the proof of the statement that xi+1 and x̃i+1 commute with xi and x̃i it is left
to show that x1x̃2 = x̃2x1. We calculate

x1x̃2 = x1s1x̃1s1 +
1
m

m
∑

p=1
xp+1
1 s1x

−p
1 and x̃2x1 = s1x̃1s1x1 +

1
m

m
∑

p=1
xp1s1x

1−p
1

= s1x2x̃1s1 +
1
m

m
∑

p=1
xp+1
1 x−p

2 s1 = s1x̃1x2s1 +
1
m

m
∑

p=1
xp1x

1−p
2 s1 ,

and, as x2x̃1 = x̃1x2, the difference between x1x̃2 and x̃2x1 is 1
m(xm+1

1 x−m
2 − x1)s1 which is 0 because

xm1 = xm2 = 1.

(iii) It remains to prove that the elements xi+1 and x̃i+1 commute. Using the already proved
commutativity relations, we calculate:

x̃i+1xi+1 = six̃ixisi +
1
m

m
∑

p=1
xpi six

m−p
i xi+1 and xi+1x̃i+1 = sixix̃isi +

1
m

m
∑

p=1
xi+1x

p
i six

m−p
i

= sixix̃isi +
1
m

m
∑

p=1
xpi sixi+1x

m−p
i = sixix̃isi +

1
m

m
∑

p=1
xpi xi+1six

m−p
i

= sixix̃isi +
1
m

m+1
∑

p=2
xpi six

m−p+1
i , = sixix̃isi +

1
m

m
∑

p=1
xpi six

m−p+1
i ,

so the difference between x̃i+1xi+1 and xi+1x̃i+1 is equal to 1
m(xm+1

i si − xisix
m
i ) which is 0 because

xmi = 1. �

6.4 Representations of algebra Am,2

As in the non-degenerate situation, the important step in the understanding of the spectrum of the
Jucys–Murphy elements and in the construction of representations is the analysis of the representations
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of the smallest non-trivial degenerate cyclotomic affine Hecke algebra, the algebra Am,2. Here we
present the list of irreducible representations with diagonalizable x1, x̃1, x2 and x̃2 of the algebra Am,2.

Consider the algebra Am,2 generated by x, y, x̃, ỹ and s with the relations:










xy = yx , x̃ỹ = ỹx̃ , xx̃ = x̃x , yx̃ = x̃y ,

y = sxs , xm = 1 , ỹ = sx̃s+ 1
m

m
∑

p=1
xpsxm−p , s2 = 1 .

(6.22)

For all i = 1, . . . , n−1, the subalgebra of CG(m, 1, n) generated by ji, ji+1, j̃i, j̃i+1 and si is a quotient
of the algebra Am,2. Form = 1 the algebra Am,2 reduces to the degenerate affine Hecke algebra studied
in [28] for the representation theory of the symmetric groups Sn.

The four elements x, y, x̃ and ỹ pairwise commute, see the Proposition 19. As for H(m, 1, n), we
investigate irreducible representations of the algebra Am,2 with diagonalizable x, y, x̃ and ỹ. Let e be
a common eigenvector of x, y, x̃ and ỹ with eigenvalues a, b, ã and b̃, respectively,

x.e = ae , y.e = be , x̃.e = ãe , ỹ.e = b̃e , (6.23)

where x.v stands for the action of the element x of the algebra on the vector v of the representation
space. We have am = bm = 1. Using xs = sy, ys = sx, x̃s = sỹ − 1

m

∑m
p=1 ypxm−p and ỹs =

sx̃+ 1
m

∑m
p=1 ypxm−p, we find

x.(s.e) = bs.e , y.(s.e) = as.e ,

x̃.(s.e) = b̃s.e−
(

1
m

∑m
p=1 bpam−p

)

e , ỹ.(s.e) = ãs.e+
(

1
m

∑m
p=1 bpam−p

)

e .
(6.24)

Thus the action of the generators closes on the linear span of e and s(e) and the irreducible represen-
tations can be only one-dimensional or two-dimensional. We straightforwardly arrive at the complete
list of irreducible representations of the algebra Am,2 with diagonalizable x, y, x̃ and ỹ.

• The vector s.e is proportional to the vector e. Then s.e = ǫe, where ǫ2 = 1; the representations
of this type are one-dimensional. The action of generators is given by

x 7→ a , y 7→ a , x̃ 7→ ã , ỹ 7→ ã+ ǫ , s 7→ ǫ , (6.25)

where am = 1 and ǫ2 = 1.

• The vectors e and s.e span a two-dimensional space. If a 6= b then
∑m

p=1 bpam−p = 0. The
irreducible representations here are two-dimensional. The matrices of the generators of the
algebra Am,2 are given by

s 7→

(

0 1
1 0

)

, x 7→

(

a 0
0 b

)

, y 7→

(

b 0
0 a

)

,

x̃ 7→

(

ã 0

0 b̃

)

, ỹ 7→

(

b̃ 0
0 ã

)

,

(6.26)

where am = bm = 1 and a 6= b.

50



• The vectors e and s.e span a two-dimensional space and a = b. Then 1
m

∑m
p=1 bpam−p = 1. By

(6.23)–(6.24) the action of x̃ and ỹ is diagonalizable if and only if ã 6= b̃. The representations are
two-dimensional. The matrices of the generators of the algebra Am,2 in the basis {e, e′}, where
e′ := s.e+ 1

ã−b̃
e are given by

s 7→

(

1
b̃−ã

1− 1
(b̃−ã)2

1 − 1
b̃−ã

)

, x 7→

(

a 0
0 a

)

, y 7→

(

a 0
0 a

)

,

x̃ 7→

(

ã 0

0 b̃

)

, ỹ 7→

(

b̃ 0
0 ã

)

.

(6.27)

where am = 1 and b̃ 6= ã. The representation (6.27) is irreducible if and only if b̃ 6= ã± 1.

6.5 Classical spectrum

In this and the two following subsections, the classical analogues of the results of Section 3 are given
without proofs (which mostly repeat the proofs of the analogous statements of Section 3).

As for H(m, 1, n), the first step consists in construction of all representations of CG(m, 1, n) verify-
ing two conditions. First, the classical Jucys–Murphy elements j1, . . . , jn, j̃1, . . . , j̃n are represented by
semi-simple (diagonalizable) operators. Second, for every i = 1, . . . , n− 1 the action of the subalgebra
generated by ji, ji+1, j̃i, j̃i+1 and si is completely reducible. We shall keep the name C-representations
for these representations. At the end of the construction we shall see that all irreducible representations
of CG(m, 1, n) are C-representations.

We denote Spec

(

j1 , . . . , jn

j̃1 , . . . , j̃n

)

the set of common eigenvalues of the elements j1, j̃1, . . . , jn, j̃n

in the C-representations:

Λ =





a
(Λ)
1 , . . . , a

(Λ)
n

ã
(Λ)
1 , . . . , ã

(Λ)
n



 (6.28)

belongs to Spec

(

j1 , . . . , jn

j̃1 , . . . , j̃n

)

if there is a vector eΛ in the space of a C-representation such that

ji(eΛ) = a
(Λ)
i eΛ and j̃i(eΛ) = ã

(Λ)
i eΛ for all i = 1, . . . , n.

The elements ji and j̃i commute with sk for k > i and k < i − 1 (see the Lemma 20) which

implies that the action of sk on Spec

(

j1 , . . . , jn

j̃1 , . . . , j̃n

)

is “local” in the sense that sk(eΛ) is a linear

combination of eΛ′ such that a
(Λ′)
i = a

(Λ)
i and ã

(Λ′)
i = ã

(Λ)
i for i 6= k, k + 1.

The 2× n arrays (6.28) we shall call strings, keeping the name “string” used for a set of common
eigenvalues of the Jucys–Murphy elements for the algebra H(m, 1, n).
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Proposition 21. Let Λ =

(

a1 , . . . , ai , ai+1 , . . . , an

ã1 , . . . , ãi , ãi+1 , . . . , ãn

)

∈ Spec

(

j1 , . . . , jn

j̃1 , . . . , j̃n

)

and

let eΛ be a corresponding vector. Then

(a) We have ami = 1 for all i = 1, . . . , n; if ai = ai+1 then ãi 6= ãi+1.

(b) If ai+1 = ai and ãi+1 = ãi + ǫ, where ǫ = ±1, then si(eΛ) = ǫeΛ.

(c) If ai+1 6= ai or ai+1 = ai & ãi+1 6= ãi ± 1 then

Λ′ =

(

a1 , . . . , ai+1 , ai , . . . , an

ã1 , . . . , ãi+1 , ãi , . . . , ãn

)

∈ Spec

(

j1 , . . . , jn

j̃1 , . . . , j̃n

)

.

Moreover, if ai+1 6= ai then the vector si(eΛ) corresponds to the string Λ′, see the matrices
(6.26) with a = ai, b = ai+1, ã = ãi and b̃ = ãi+1; if ai+1 = ai and ãi+1 6= ãi ± 1 then the vector
si(eΛ) −

1
ãi+1−ãi

eΛ corresponds to the string Λ′, see the matrices (6.27) with a = ai = ai+1,

ã = ãi and b̃ = ãi+1.

6.6 Classical content strings

We define the classical analogue of the set Contm(n) which we denote by cContm(n).

Recall that [k, l] = {k, k + 1, . . . , l − 1, l} for two integers k, l ∈ Z, k < l.

Definition 22. A classical content string

(

a1 , . . . , an

ã1 , . . . , ãn

)

is a string of columns of numbers

satisfying the following conditions:

(1) ã1 = 0 and ami = 1 for all i = 1, . . . , n.

(2) For all j > 1: if ãj 6= 0 then there exists i, i < j, such that ai = aj and ãi ∈ {ãj − 1, ãj + 1}.

(3) If aj = ak and ãj = ãk for j, k, j < k, then there exist i1, i2 ∈ [j+1, k− 1] such that ai1 = ai2 =
aj = ak, ãi1 = ãj − 1 and ãi2 = ãj + 1.

The set of classical content strings we denote by cContm(n).

Here is the classical analogue of the Proposition 3.

Proposition 23. Assume that a string of columns of numbers

(

a1 , . . . , an

ã1 , . . . , ãn

)

belongs to the

set Spec

(

j1 , . . . , jn

j̃1 , . . . , j̃n

)

. Then it belongs to the set cContm(n).
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Remark. It follows directly from the Definition 22 that if

(

a1 , . . . , ai , ai+1 , . . . , an

ã1 , . . . , ãi , ãi+1 , . . . , ãn

)

∈ cContm(n)

with ai+1 6= ai or with ai+1 = ai & ãi+1 6= ãi ± 1 then

(

a1 , . . . , ai+1 , ai , . . . , an

ã1 , . . . , ãi+1 , ãi , . . . , ãn

)

∈ cContm(n).

Like in the remark just after the proof of the Proposition 3, the action (described in the Proposition
21) of the generators si, i = 1, . . . , n − 1, on the vector space with a basis formed by vectors eΛ,

Λ ∈ Spec

(

j1 , . . . , jn

j̃1 , . . . , j̃n

)

, extends to an action on the vector space with a basis formed by vectors

eµ, µ ∈ cContm(n) . The classical analogues of other statements in the remark after the proof of the
Proposition 3 hold as well.

6.7 Classical content of an m-node in a Young m-diagram

Proposition 24. There is a bijection between the set of standard Young m-tableaux of length n and
the set cContm(n).

This classical analogue of the Proposition 5 is proved along the same lines as the Proposition 5;
we need only to modify the notion of a content of an m-node in a Young m-diagram.

The classical content of a node in a Young diagram is (s− r) when the node lies in the line r and
column s. To extend this definition to Young m-diagrams, we have to specify in which diagram of
an m-diagram the m-node lies; thus, the content of an m-node in a Young m-diagram is a couple of
numbers, the first number specifies the diagram (in which the m-node lies) in the m-diagram and the
second number gives the content of the m-node in the specified diagram. To relate this information
with the spectra of the Jucys–Murphy elements, fix (arbitrarily) a bijection between the set [1,m] and
the set of distinct m-th roots of unity; let ξk be the root of unity associated with k ∈ [1,m] by this
bijection. We define the classical content of an m-node which lies in the line r and column s of the

kth diagram of the m-diagram to be the column

(

ξk

s− r

)

.

Now to a standard Young m-tableau with length n we associate a string of columns of numbers
(

a1 , . . . , an

ã1 , . . . , ãn

)

where

(

ai

ãi

)

is the content of the m-node in which the number i is placed in

the m-tableau. This association provides, like in the proof of the Proposition 5, the bijection stated
in the Proposition 24.

Here is the same example as in paragraph 6, Section 3, but in the classical context:
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-1

0 1 2



















(6.29)

The string, associated to this standard Young 2-tableau, is:

(

ξ1 , ξ1 , ξ2 , ξ1 , ξ2 , ξ1 , ξ1 , ξ2 , ξ1 , ξ2

0 , 1 , 0 , 2 , −1 , −1 , −2 , 1 , 0 , 2

)

,

where {ξ1, ξ2} is the set of distinct square roots of unity.

Remark. In the classical limit the elements ji serve the same aim in the representation theory as
the numbers vk in front of the powers of q in the spectrum of the non-degenerate elements Ji: the
elements ji distinguish different Young tableaux in an m-tableau.

6.8 Construction of representations

Here we establish an analogue of the construction from Section 4 in the classical setting: we define
an algebra structure on a tensor product of the algebra CG(m, 1, n) with a free associative algebra
generated by the standard m-tableaux corresponding to m-partitions of n. Then, by evaluation (with
the help of the simplest one-dimensional representation of G(m, 1, n)) from the right, we build rep-
resentations. We do not give the proofs of the statements when they are completely similar to the
proofs of the analogous statements from Section 4; we only indicate the modifications.

6.8.1 Baxterized elements

Define, for any si among the generators s1, . . . , sn−1 of G(m, 1, n), the Baxterized element si(α, β) by

si(α, β) := si +
1

α− β
. (6.30)

The parameters α and β are called spectral parameters.

Proposition 25. The following relations hold:

si(α, β)si(β, α) = 1− 1
(α−β)2

,

si(α, β)si+1(α, γ)si(β, γ) = si+1(β, γ)si(α, γ)si+1(α, β) ,

si(α, β)sj(γ, δ) = sj(γ, δ)si(α, β) if |i− j| > 1 .

(6.31)
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As in the non-classical situation the original relations follow from the relations for the Baxterized
elements with fixed values of the spectral parameters.

Lemma 26. Let A and B be two elements of an arbitrary associative unital algebra A. Denote
A(α, β) := A+ 1

α−β and B(α, β) := B + 1
α−β where α and β are parameters.

(i) If

A(α, β)A(β, α) = 1−
1

(α− β)2
,

for some (arbitrarily) fixed values of the parameters α and β (α 6= β) then

A2 = 1 .

(ii) If A2 = 1, B2 = 1 and

A(α, β)B(α, γ)A(β, γ) = B(β, γ)A(α, γ)B(α, β)

for some (arbitrarily) fixed values of the parameters α,β and γ (α 6= β 6= γ 6= α) then

ABA = BAB .

(iii) If
A(α, β)B(γ, δ) = B(γ, δ)A(α, β)

for some (arbitrarily) fixed values of the parameters α,β,γ and δ (α 6= β and γ 6= δ) then

AB = BA .

6.8.2 Product of the algebra CG(m, 1, n) with a free associative algebra generated by the
standard m-tableaux corresponding to m-partitions of n

Let λ(m) be an m-partition of length n. Consider a set of free generators labeled by standard m-
tableaux of shape λ(m); for a standard m-tableau Xλ(m) we denote, as before, by Xλ(m) the corre-
sponding free generator.

Recall that the classical content of an m-node which lies in the line r and column s of the kth

diagram of the m-diagram is the column

(

ξk

s− r

)

, where k 7→ ξk is an arbitrarily chosen bijection

between the set [1,m] and the set of distinct m-th roots of unity. For a standard m-tableau we shall

denote the entries of the content column of an m-node where i is placed by

(

p(Xλ(m) |i)

cc(Xλ(m) |i)

)

.

Proposition 27. The following relations:

• if p(Xλ(m) |i) 6= p(Xλ(m) |i+ 1) then

si · Xλ(m) = X si
λ(m) · si ; (6.32)
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• if p(Xλ(m) |i) = p(Xλ(m) |i+ 1) then

(

si+
1

cc(Xλ(m) |i)− cc(Xλ(m) |i+ 1)

)

·Xλ(m) = X si
λ(m) ·

(

si+
1

cc(Xλ(m) |i+ 1)− cc(Xλ(m) |i)

)

(6.33)

and
(

t− p(Xλ(m) |1)
)

· Xλ(m) = 0 (6.34)

are compatible with the relations for the generators t, s1, . . . , sn−1 of the group G(m, 1, n). The element
X si
λ(m) corresponds to the m-tableau obtained from Xλ(m) by exchanging the m-nodes with numbers i

and (i+ 1). If the resulting m-tableau is not standard, we put X si
λ(m) = 0.

The compatibility is understood in the same sense as in the explanations after the formulation of
the Proposition 8. We denote the resulting algebra by Tc.

Proof. Notice that for p(Xλ(m) |i) = p(Xλ(m) |i + 1) the relation (6.33) can be rewritten with the
use of the Baxterized form of the elements si:

si
(

cc(Xλ(m) |i), cc(Xλ(m) |i+ 1)
)

· Xλ(m) = X si
λ(m) · si

(

cc(Xλ(m) |i+ 1), cc(Xλ(m) |i)
)

.

(i) If p(Xλ(m) |i) = p(Xλ(m) |i + 1) we prove the compatibility of the relation s2i = 1 with the
instructions (6.32)–(6.34) by a calculation similar to the one from the proof of the Proposition 8; one
uses here the Proposition 25 and the Lemma 26 instead of the Proposition 6 and the Lemma 7.

If p(Xλ(m) |i) 6= p(Xλ(m) |i+ 1) the compatibility is immediate.

(ii) If p(Xλ(m) |i) = p(Xλ(m) |i + 1) = p(Xλ(m) |i + 2) we prove the compatibility of the relation
sisi+1si = si+1sisi+1 with the instructions (6.32)–(6.34) by a calculation similar to the one from the
proof of the Proposition 8 (with the use of the Proposition 25 and the Lemma 26 instead of the
Proposition 6 and the Lemma 7).

The case p(Xλ(m) |i) 6= p(Xλ(m) |i+ 1) 6= p(Xλ(m) |i+ 2) 6= p(Xλ(m) |i) is immediate.

Three cases remain:

• p(Xλ(m) |i) 6= p(Xλ(m) |i+ 1) and p(Xλ(m) |i+ 1) = p(Xλ(m) |i+ 2),

• p(Xλ(m) |i) = p(Xλ(m) |i+ 1) and p(Xλ(m) |i+ 1) 6= p(Xλ(m) |i+ 2),

• p(Xλ(m) |i) = p(Xλ(m) |i+ 2) and p(Xλ(m) |i+ 1) 6= p(Xλ(m) |i+ 2).

In each of these cases we perform a straightforward calculation using that, by definition, for any
permutation π ∈ Sn,

cc(Xπ
λ(m) |k) = cc(Xλ(m) |π−1(k)) and p(Xπ

λ(m) |k) = p(Xλ(m) |π−1(k)) .

We write down this calculation only for the case p(Xλ(m) |i) 6= p(Xλ(m) |i + 1) and p(Xλ(m) |i + 1) =
p(Xλ(m) |i+2) (the two other calculations are very similar). For brevity we denote cc(k) = cc(Xλ(m) |k).
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We have

sisi+1si · Xλ(m) = sisi+1 · X
si
λ(m) · si

= si · X
si+1si
λ(m) · si+1si

= − 1
cc(i+1)−cc(i+2)X

si+1si
λ(m) · si+1si + X

sisi+1si
λ(m) · (si +

1
cc(i+2)−cc(i+1) )si+1si ,

and

si+1sisi+1 · Xλ(m) = si+1si ·
(

− 1
cc(i+1)−cc(i+2)Xλ(m) + X

si+1

λ(m) · (si+1 +
1

cc(i+2)−cc(i+1) )
)

= si+1 ·
(

− 1
cc(i+1)−cc(i+2)X

si
λ(m) · si + X

sisi+1

λ(m) · si(si+1 +
1

cc(i+2)−cc(i+1) )
)

= − 1
cc(i+1)−cc(i+2)X

si+1si
λ(m) · si+1si + X

si+1sisi+1

λ(m) · si+1si(si+1 +
1

cc(i+2)−cc(i+1) ) .

Thus (sisi+1si − si+1sisi+1) · Xλ(m) = X
sisi+1si
λ(m) · (sisi+1si − si+1sisi+1) and so the compatibility of the

relation sisi+1si = si+1sisi+1 with the instructions (6.32)–(6.34) is proven.

(iii) If p(Xλ(m) |i) = p(Xλ(m) |i + 1) and p(Xλ(m) |j) = p(Xλ(m) |j + 1) we prove the compatibility of
the relation sisj = sjsi with the instructions (6.32)–(6.34) by a calculation similar to the one from
the proof of the Proposition 8 (with the use of the Proposition 25 and the Lemma 26 instead of the
Proposition 6 and the Lemma 7).

If p(Xλ(m) |i) 6= p(Xλ(m) |i + 1) or p(Xλ(m) |j) 6= p(Xλ(m) |j + 1) the compatibility follows from an
easy calculation.

The verification of the compatibility of the relations tm = 1 and tsi = sit for i > 1 with the
instructions (6.32)–(6.34) is immediate.

The compatibility of the relation ts1ts1 = s1ts1t with the instructions (6.32)–(6.34) is a direct
consequence of the Lemma below. �

Lemma 28. The relations (6.32) imply the relations:

(

ji − p(Xλ(m) |i)
)

· Xλ(m) = 0 for all i = 1, . . . , n , (6.35)

(

j̃i − cc(Xλ(m) |i)
)

· Xλ(m) = 0 for all i = 1, . . . , n . (6.36)

Proof. Let Xλ(m) be a standard m-tableau and set, for brevity, p(i) = p(Xλ(m) |i) and cc(i) =
cc(Xλ(m) |i) for all i = 1, . . . , n. We prove (6.35)-(6.36) by induction on i. The basis of induction for
(6.35) is the relation (6.34) and the basis of induction for (6.36) is trivial since j̃1 = 0 and cc(1) = 0.

If p(i+1) = p(i) then the proof of (6.35) is very similar to the proof of the Lemma 9. If p(i+1) 6= p(i)

then (6.35) is immediate.

Now we prove (6.36). We recall that j̃i+1 = sij̃isi +
1
m

m
∑

k=1

jki sij
−k
i .
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Assume first thatXsi
λ(m) is not standard. Then p

(i+1) = p(i), cc(i+1) = cc(i)+ǫ and si ·Xλ(m) = ǫXλ(m)

with ǫ = ±1. It is immediate that j̃i+1 · Xλ(m) = cc(i+1)Xλ(m) .

Next assume that Xsi
λ(m) is standard and that p(i+1) 6= p(i). Then si · Xλ(m) = X si

λ(m) · si and we
obtain

j̃i+1 · Xλ(m) = cc(i+1)Xλ(m) +
1

m

m
∑

k=1

(p(i))−k(p(i+1))kX si
λ(m) .

As
m
∑

k=1

(p(i))−k(p(i+1))k = 0 (since p(i+1) 6= p(i)), we have j̃i+1 · Xλ(m) = cc(i+1)Xλ(m) .

Finally assume that Xsi
λ(m) is standard and that p(i+1) = p(i). Straightforward calculations lead to

sij̃isi · Xλ(m) =

(

cc(i+1) +
1

cc(i) − cc(i+1)

)

Xλ(m) −X si
λ(m) ·

(

si +
1

cc(i+1) − cc(i)

)

,

and
(

1

m

m
∑

k=1

jki sij
−k
i

)

· Xλ(m) =
−1

cc(i) − cc(i+1)
Xλ(m) + X si

λ(m) ·

(

si +
1

cc(i+1) − cc(i)

)

.

Adding these two equalities, we obtain j̃i+1 · Xλ(m) = cc(i+1)Xλ(m) . �

6.8.3 Representations

We apply the same procedure as at the end of Section 4 to build representations of G(m, 1, n) on
the vector space Uλ(m) spanned by {Xλ(m)}. We use as the “vacuum” |〉 the basic vector of the one-
dimensional G(m, 1, n)-module: si|〉 = |〉 and t|〉 = ξ1|〉. This procedure leads to the following formulas
for the action of the generators t, s1, . . . , sn−1 on the basis vectors Xλ(m) of Uλ(m) :

• if p(Xλ(m) |i) 6= p(Xλ(m) |i+ 1) then

si : Xλ(m) 7→ X si
λ(m) , (6.37)

• if p(Xλ(m) |i) = p(Xλ(m) |i+ 1) then

si : Xλ(m) 7→ −
1

cc(Xλ(m) |i)− cc(Xλ(m) |i+ 1)
Xλ(m)

+

(

1 +
1

cc(Xλ(m) |i+ 1)− cc(Xλ(m) |i)

)

X si
λ(m) ,

(6.38)

and
t : Xλ(m) 7→ p(Xλ(m) |1)Xλ(m) . (6.39)

As before, it is assumed here that X si
λ(m) = 0 if Xsi

λ(m) is not a standard m-tableau.
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Remarks.

(a) As for the algebra H(m, 1, n) (see remarks at the end of Subsection 4.3), certain properties of
the action of the generator t repeat corresponding properties of the generator s1 in the representation
theory of the usual Hecke algebra.

Moreover, again as for the cyclotomic Hecke algebra H(m, 1, n), the constructed representations
do not depend (up to isomorphism) on the value of the generators s1, . . . , sn−1 and t on the vacuum
|〉.

(b) In the same way as for the cyclotomic Hecke algebras, the associative algebra structure on the
tensor product of the algebra CG(m, 1, n) with a free associative algebra generated by the standard
m-tableaux allows to equip the tensor products of the spaces of representations corresponding to two
(in general, any number of) m-diagrams with the CG(m, 1, n)-module structure. The decomposition
rules of the tensor structure are given by the same formula (4.33).

(c) This remark is the analogue of the remark (e) at the end of Subsection 4.3 in the classical
situation. In Appendix 6.B we introduce the classical intertwining operators ũi+1 := six̃i−x̃isi ∈ Am,n,
i = 1, . . . , n − 1. The image under the map π, defined in (6.14), of the element ũi+1 is π(ũi+1) =
sij̃i − j̃si ∈ CG(m, 1, n), i = 1, . . . , n− 1. The action of π(ũi+1) in a representation Vλ(m) is:

Xλ(m) 7→
(

cc(i) − cc(i+1) − δp(i),p(i+1)

)

X si
λ(m) , (6.40)

where cc(i) = cc(Xλ(m) |i), p(i) = p(Xλ(m) |i), i = 1, . . . , n; δp,p′ is the Kronecker symbol. Indeed we

rewrite ũi+1 = si(j̃i − j̃i+1) +
1
m

m
∑

l=1

jlij
−l
i+1 and so, by the Lemma 28,

ũi+1(Xλ(m)) = (cc(i) − cc(i+1))

(

si(Xλ(m)) +
δp(i),p(i+1)

cc(i) − cc(i+1)
Xλ(m)

)

.

Using (6.37)-(6.38) we obtain the formula (6.40).

6.8.4 Scalar product

1. The representations of G(m, 1, n) given by formulas (6.37)–(6.39) are analogues of the semi-normal
representations of the symmetric group. In this Subsection we provide analogues for G(m, 1, n) of the
orthogonal representations of the symmetric group. The formulas from this Subsection could be
obtained by taking the classical limit of the formulas in Subsection 4.4. However the classical limit
presents certain subtleties (and the classical formulas become shorter); we give here an independent
of the non-degenerate case presentation.

Let λ(m) be an m-partition and let Xλ(m) and X ′
λ(m) be two different standard m-tableaux of shape

λ(m). For brevity we set cc(i) = cc(Xλ(m) |i) and p(i) = p(Xλ(m) |i) for all i = 1, . . . , n. Define the
following Hermitian scalar product on the vector space Uλ(m) :

〈Xλ(m) ,X ′
λ(m)〉 = 0 , (6.41)
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〈Xλ(m) ,Xλ(m)〉 =
∏

j,k : j<k , p(j)=p(k) , cc(j) /∈{cc(k),cc(k)±1}

cc(j) − cc(k) − 1

cc(j) − cc(k)
. (6.42)

The so defined scalar product is positive definite.

Notice that, if Xsi
λ(m) is a standard m-tableau, we have

〈X si
λ(m) ,X

si
λ(m)〉 = 〈Xλ(m) ,Xλ(m)〉 if p(i) 6= p(i+1), (6.43)

and

〈X si
λ(m) ,X

si
λ(m)〉 = −

cc(i+1) − cc(i) − 1

cc(i) − cc(i+1) − 1
〈Xλ(m) ,Xλ(m)〉 if p(i) = p(i+1) . (6.44)

We shall show that this Hermitian scalar product is invariant under the action of the group G(m, 1, n)
given by formulas (6.37)–(6.39). It is immediate that (6.41)–(6.42) are invariant under the action
of the generator t of G(m, 1, n). The verification of the invariance of (6.41) under the action of the
generator si of G(m, 1, n) is non-trivial only if Xsi

λ(m) is standard and X ′
λ(m) = Xsi

λ(m) . In this situation

assume first that p(i) 6= p(i+1). Then

〈si(Xλ(m)), si(X
si
λ(m))〉 = 〈X si

λ(m) ,Xλ(m)〉 = 0.

Now assume that p(i) = p(i+1). It is straightforward to obtain that 〈si(Xλ(m)), si(X
si
λ(m))〉 is equal to

(cc(i+1) − cc(i) − 1)〈Xλ(m) ,Xλ(m)〉+ (cc(i) − cc(i+1) − 1)〈X si
λ(m) ,X

si
λ(m)〉

(cc(i) − cc(i+1))2
.

Using the formula (6.44) we obtain

〈si(Xλ(m)), si(X
si
λ(m))〉 = 0 ,

and the verification that (6.41) is invariant under the action of G(m, 1, n) is finished.

If Xsi
λ(m) is not standard, then si(Xλ(m)) = ±Xλ(m) and the invariance of (6.42) follows. Assume

that Xsi
λ(m) is standard and that p(i) 6= p(i+1), then si(Xλ(m)) = X si

λ(m) and therefore, using (6.43),

〈si(Xλ(m)), si(Xλ(m))〉 = 〈Xλ(m) ,Xλ(m)〉 .

Now assume that Xsi
λ(m) is standard and that p(i) = p(i+1). A straightforward calculation leads to

〈si(Xλ(m)), si(Xλ(m))〉 =
〈Xλ(m) ,Xλ(m)〉+ (cc(i) − cc(i+1) − 1)2〈X si

λ(m) ,X
si
λ(m)〉

(cc(i) − cc(i+1))2
.

Using (6.44) one obtains
〈si(Xλ(m)), si(Xλ(m))〉 = 〈Xλ(m) ,Xλ(m)〉 ,

which concludes the proof that (6.41)–(6.42) are invariant under the action of the group G(m, 1, n).
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2. As a consequence, the operators for the elements of G(m, 1, n) are unitary in the basis {X̃λ(m)}
where

X̃λ(m) :=





∏

j,k : j<k , p(j)=p(k) , cc(j) /∈{cc(k),cc(k)±1}

(

cc(j) − cc(k) − 1

cc(j) − cc(k)

) 1
2



 Xλ(m)

for any standard m-tableau Xλ(m) of shape λ(m).

3. Another possible formula for the Hermitian scalar product is, instead of (6.42),

〈Xλ(m) ,Xλ(m)〉 =
∏

j,k : j<k , p(j)=p(k) , cc(j) /∈{cc(k),cc(k)±1}

|cc(j) − cc(k) − 1| . (6.45)

The right hand sides in the two formulas (6.42) and (6.45) differ only by a factor equal to
∏

j,k : j<k , p(j)=p(k) , cc(j) /∈{cc(k),cc(k)±1}

|cc(j) − cc(k)| .

This factor does not depend on the particular m-tableau Xλ(m) of shape λ(m); it only depends on the
m-partition λ(m).

4. The formula (6.45) can be rewritten without absolute values in the following way. Define

Υ(Xλ(m)) :=
∏

j,k : j<k , p(j)=p(k) , cc(j) /∈{cc(k),cc(k)±1}

(cc(Xλ(m) |j)− cc(Xλ(m) |k)) .

Then
Υ(X ′

λ(m)) = (−1)ℓ(w) Υ(Xλ(m)) ,

where Xλ(m) and X ′
λ(m) are two standard m-tableaux of the same shape λ(m) and ℓ(w) is the length

of the permutation w which transforms Xλ(m) into X ′
λ(m) . Thus if we fix one standard tableau X◦

λ(m)

of the shape λ(m) then
(−1)ℓ(w(X

λ(m) )) Υ(Xλ(m)) ,

where Xλ(m) is another standard tableau of the shape λ(m) and w(Xλ(m)) is the permutation trans-
forming X◦

λ(m) into Xλ(m) , has the same sign for all Xλ(m) . Let ε be the sign of Υ(X◦
λ(m)). Then the

right hand side of (6.45) equals

ε (−1)ℓ(w(X
λ(m) )) Υ(Xλ(m)) .

6.9 Completeness

Here are the analogues of the results of Section 5 for the classical limit. The proofs are completely
similar to the proofs in Section 5.

Proposition 29. The set Spec

(

j1 , . . . , jn

j̃1 , . . . , j̃n

)

, the set cContm(n) and the set of standard m-

tableaux are in bijection.
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Corollary 30. The spectrum of the classical Jucys–Murphy elements is simple in the representations
Vλ(m) (labeled by the m-partitions).

It means that for two different standard m-tableaux (not necessarily of the same shape) the ele-

ments of Spec

(

j1 , . . . , jn

j̃1 , . . . , j̃n

)

associated to them by the Proposition 29 are different (two arrays

(

a1 , . . . , an

ã1 , . . . , ãn

)

and

(

a′1 , . . . , a′n

ã′1 , . . . , ã′n

)

are different if there is some i such that ai 6= a′i or

ãi 6= ã′i ).

It remains to verify that we obtain within this approach all irreducible representations of the
group G(m, 1, n). According to Appendix B the sum of the squares of the dimensions of the con-
structed representations equals the order of G(m, 1, n). Thus the following Proposition completes the
verification.

Proposition 31. The representations Vλ(m) (labeled by the m-partitions) of the group G(m, 1, n)
constructed in the preceding subsection are irreducible and pairwise non-isomorphic.

As a result, the branching rules for the pair (G(m, 1, n), G(m, 1, n − 1)) (that is, for the pair
(CG(m, 1, n),CG(m, 1, n − 1)) of algebras) are the same as in the non-degenerate situation, for the
pair (H(m, 1, n), H(m, 1, n− 1)).

Similarly to the non-degenerate situation, we obtain the following conclusions.

• The branching rules for the chain, with respect to n, of the groups G(m, 1, n) are free of multi-
plicities.

• The centralizer of the sub-algebra CG(m, 1, n−1) in the algebra CG(m, 1, n) is commutative for
each n = 1, 2, 3, . . .

• The centralizer of the subalgebra CG(m, 1, n− 1) in the algebra CG(m, 1, n) is generated by the
center of CG(m, 1, n− 1) and the Jucys–Murphy elements jn and j̃n.

• The subalgebra generated by the Jucys–Murphy elements j1, . . . , jn, j̃1, . . . , j̃n of the algebra
CG(m, 1, n) is maximal commutative.

Remark. This remark repeats, in the classical situation, the remark (a) at the end of Section 5. For
every standard m-tableau Xλ(m) define the element p

X
λ(m)

of the ring CG(m, 1, n) by the following

recursion. The initial condition is p∅ = 1. Let α(m) be the m-node occupied by the number n in Xλ(m) ;
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define µ(m) := λ(m)\{α(m)}. Let Xµ(m) be the standard m-tableau with the numbers 1, . . . , n − 1 at
the same m-nodes as in Xλ(m) . Then the recursion is given by

p
X

λ(m)
:= p

X
µ(m)

∏

β(m) :
β(m)∈E+(µ(m))

cc(β(m)) 6=cc(α(m))

j̃n − cc(β(m))

cc(α(m))− cc(β(m))

∏

β(m) :
β(m)∈E+(µ(m))

p(β(m)) 6=p(α(m))

jn − p(β(m))

p(α(m))− p(β(m))
, (6.46)

where

(

p(β(m))

cc(β(m))

)

is the classical content of the m-node β(m). Due to the completeness results of

this Section, the elements p
X

λ(m)
form a complete set of pairwise orthogonal primitive idempotents of

the algebra CG(m, 1, n).

As for the cyclotomic Hecke algebra, we have a well-defined homomorphism Tc → CG(m, 1, n)
which is identical on the generators t, s1, . . . , sn−1 and sends Xλ(m) to p

X
λ(m)

for all standard m-

tableaux Xλ(m) . The verification is similar to the one for the algebra H(m, 1, n) (see the remark (a)
at the end of Section 5). We leave it to the reader.

Appendix 6.A Structure of degenerate cyclotomic affine Hecke algebra

Here we describe a normal form for elements of the degenerate cyclotomic affine Hecke algebra Am,n,
see the Definition 17. It coincides with the one given in [39] for the wreath Hecke algebra if we take,
for the finite group in [39], the cyclic group of order m. Nevertheless we sketch here for completeness
the proof in our particular situation. Fix any basis B in the group ring of the group G(m, 1, n). Recall
the injective homomorphism ι̂ : CG(m, 1, n) → Am,n defined in (6.13).

Proposition 32. The following set is a basis of Am,n:

x̃k11 . . . x̃knn · w , (6.47)

where k1, . . . , kn ∈ Z≥0 and w ∈ ι̂(B); here Z≥0 is the set of non-negative integers.

Sketch of the proof. The defining relations (6.10)–(6.12), together with the definition (6.16), the
Proposition 19 and the Lemma 20 imply that any element of Am,n can be written as a linear combi-
nation of the elements (6.47). Only the linear independence of the elements (6.47) needs some care.
Let E be the vector space with the basis

ũk11 . . . ũknn , where k1, . . . , kn ∈ Z≥0. (6.48)

The element corresponding to k1 = · · · = kn = 0 we denote by 1.

Define the operators Lx̃i
, i = 1, . . . , n, on E:

Lx̃i
(ũk11 . . . ũkii . . . ũknn ) = ũk11 . . . ũki+1

i . . . ũknn . (6.49)

Clearly Lx̃i
, i = 1, . . . , n, form a commutative set of operators.
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Let V be a left regular G(m, 1, n)-module. The basis B induces a basis in V which we denote by
the same symbol B. Let F := E ⊗ V . Extend the operators Lx̃i

, i = 1, . . . , n, to the operators on F
acting as the identity on V . We have

Lk1
x̃1
. . . Lkn

x̃n
(1⊗ v) = ũk11 . . . ũknn ⊗ v , (6.50)

where v is an arbitrary element of V .

Define the operators Lsi , i = 1, . . . , n− 1 and Lxi
, i = 1, . . . , n on F by the rules:

• The action of Lsi , i = 1, . . . , n − 1, (respectively, Lxi
, i = 1, . . . , n) on the subspace formed by

the elements 1 ⊗ v, v ∈ V , is the left regular action of the generator si (respectively, of the
element ji) of the group G(m, 1, n).

• To define the result of the action of Lsi , i = 1, . . . , n − 1 and Lxi
, i = 1, . . . , n on an element

ũk11 . . . ũknn ⊗ v, we use (6.50) to write

ũk11 . . . ũknn ⊗ v = Lk1
x̃1
. . . Lkn

x̃n
(1⊗ v) (6.51)

and then move Lsi (respectively, Lxi
) to the right through Lk1

x̃1
. . . Lkn

x̃n
postulating the following

commutation relations:

LsiLx̃i
= Lx̃i+1Lsi −

1
m

∑m
p=1 L

p
xiL

−p
xi+1 , LsiLx̃i+1 = Lx̃i

Lsi +
1
m

∑m
p=1 L

p
xiL

−p
xi+1 ,

LsiLx̃j
= Lx̃j

Lsi if j 6= i, i+ 1 ,

Lxi
Lx̃j

= Lx̃j
Lxi

for all i, j = 1, . . . , n .

(6.52)

In the process of moving Lsi to the right through Lk1
x̃1
. . . Lkn

x̃n
, elements Lxi

and Lxi+1 appear. We
move them to the right as well using the same rules (6.52).

The resulting explicit formula for the action of the operators Lsi , Lxi
on the space F is:

Lsi(ũ
k1
1 . . . ũkii ũ

ki+1

i+1 . . . ũ
kn
n ⊗ v) = ũk11 . . . ũ

ki+1

i ũkii+1 . . . ũ
kn
n ⊗ siv

+
ki+1
∑

a=1
ũk11 . . . ũa−1

i ũ
ki+ki+1−a
i+1 . . . ũknn ⊗Πiv −

ki
∑

a=1
ũk11 . . . ũa−1

i ũ
ki+ki+1−a
i+1 . . . ũknn ⊗Πiv ,

where Πi =
1
m

m
∑

p=1
jpi j

−p
i+1, and

Lxi
(ũk11 . . . ũknn ⊗ v) = ũk11 . . . ũknn ⊗ jiv .

One checks that the operators Lxi
, Lx̃i

, i = 1, . . . , n, and Lsi , i = 1, . . . , n− 1, verify the defining
relations (6.10)–(6.12) on the whole space F and define thereby the Am,n-module structure on the
space F .
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Therefore,

L
x̃
k1
1 ...x̃kn

n · w
(1⊗ 1) = Lk1

x̃1
. . . Lkn

x̃n
· Lw(1⊗ 1) = ũk11 . . . ũknn ⊗ w ,

where w ∈ B and w is the image of w under the map ι̂; this shows that the operators L
x̃
k1
1 ...x̃kn

n ·w
are

linearly independent and the linear independence of the set (6.47) follows. �

Appendix 6.B Classical intertwining operators

Here we describe the intertwining operators in the degenerate cyclotomic affine Hecke algebra Am,n;
they can be used to investigate the spectrum of the elements x̃i in different representations. We
discuss the origin of these intertwining operators in the (non-degenerate) affine Hecke algebra. We
also rederive the spectrum of the Jucys–Murphy elements j̃i from the perturbation theory point of
view. The intertwining operators can be introduced [39] in the more general context of the wreath
Hecke algebra.

1. The following Proposition is the classical analogue of the Proposition 4.

Proposition 33. We have

Spec(j̃i) ⊂ [1− i, i− 1] for all i = 1, . . . , n. (6.53)

The Proposition 33 follows from the Propositions 21 and 23 like the Proposition 4 follows from the
Propositions 1 and 3 in the proof given in paragraph 5 in Section 3.

To give an alternative proof (in the spirit of [14]), mentioned in paragraph 5 in Section 3, we
introduce the following elements of the algebra Am,n:

ũi+1 := six̃i − x̃isi ≡ si(x̃i − x̃i+1) + Pi+1 , i = 1, . . . , n− 1, (6.54)

where we denoted Pi+1 :=
1
m

∑m
p=1 xpi x

−p
i+1. Clearly, the elements Pi+1 are idempotents

P 2
i+1 = Pi+1 (6.55)

and satisfy
{

(xi − xi+1)Pi+1 = 0 ,

siPi+1 = Pi+1si .

(6.56)

(6.57)

The elements ũi are the “classical intertwining” operators, they satisfy (the verification is straight-
forward)







ũi+1xi = xi+1ũi+1 , ũi+1xi+1 = xiũi+1 , ũi+1xj = xj ũi+1 for j 6= i, i+ 1 ,

ũi+1x̃i = x̃i+1ũi+1 , ũi+1x̃i+1 = x̃iũi+1 , ũi+1x̃j = x̃j ũi+1 for j 6= i, i+ 1 .
(6.58)
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Next, the elements ũi satisfy the Artin relations:

ũiũi+1ũi = ũi+1ũiũi+1 . (6.59)

In the verification here it is convenient to use (6.58) to transform, say, the left hand side of (6.59),
starting as follows:

ũiũi+1ũi =
(

si−1(x̃i−1 − x̃i) + Pi

)

ũi+1ũi = si−1ũi+1ũi(x̃i − x̃i+1) + Piũi+1ũi .

Continuing this way, we move out to the right all x̃’s; the comparison of the left hand side and the right
hand side is more or less direct afterwards. In the comparison, the equalities siPisi = si−1Pi+1si−1,
( 1
m

∑m
p=1 xpi−1x

−p
i+1 − Pi+1)Pi = 0 and ( 1

m

∑m
p=1 xpi−1x

−p
i+1 − Pi)Pi+1 = 0 are useful; the first equality

is a straightforward calculation, the second and third equalities follow from (6.56).

One more property of the elements ũi is

ũ2i+1 = −(x̃i − x̃i+1)
2 + Pi+1 = −

(

x̃i − x̃i+1 + Pi+1

)(

x̃i − x̃i+1 − Pi+1

)

. (6.60)

The relation (6.60) can be verified directly or following the method above for the verification of the
relation (6.59).

Therefore, for a polynomial χ in one variable, we have

ũi+1χ(x̃i)ũi+1 = χ(x̃i+1)ũ
2
i+1 = −χ(x̃i+1)

(

x̃i − x̃i+1 + Pi+1

)(

x̃i − x̃i+1 − Pi+1

)

. (6.61)

The elements x̃i, x̃i+1 and Pi+1 commute. In a representation ρ, the spectrum of the operator ρ(Pi+1)
is contained in {0, 1}; taking for χ the characteristic equation for ρ(x̃i), we conclude that

Spec(ρ(x̃i+1)) ⊂ Spec(ρ(x̃i)) ∪
(

Spec(ρ(x̃i)) + 1
)

∪
(

Spec(ρ(x̃i))− 1
)

. (6.62)

Realizing x̃i by j̃i in a representation of the group G(m, 1, n) and taking into account the “initial
condition” j̃1 = 0 we rederive (6.53).

Remark. The usual degenerate affine Hecke algebra (it corresponds to m = 1) is distinguished in
the sense that the idempotents Pi become trivial: Pi = 1, in contrast to the degenerate cyclotomic
affine Hecke algebras with m > 1.

2. Let Ĥn be the affine Hecke algebra. We shall denote the generators of Ĥn by σ1, . . . , σn−1 and
y1, the symbol y1 is used instead of τ here. Denote by yi the Jucys–Murphy operators of the algebra
Ĥn; recall that yi+1 for i > 0 are defined inductively by yi+1 := σiyiσi.

General intertwining operators Ui+1, i = 1, . . . , n− 1, of the affine Hecke algebra are defined to be
operators which verify







Ui+1yi = yi+1Ui+1 , Ui+1yi+1 = yiUi+1 ,

Ui+1yk = ykUi+1 for k 6= i, i+ 1
(6.63)
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for all i = 1, . . . , n− 1.

The intertwining operators (the solutions Ui+1 := Ui+1 of (6.63)) used in [14] are

Ui+1 := σiyi − yiσi . (6.64)

The operators Ui+1 satisfy, in addition to (6.63), to the Yang–Baxter equation,

UiUi+1Ui = Ui+1UiUi+1 , (6.65)

and square to the following function of the Jucys–Murphy elements:

U2
i = −(yi+1 − q2yi)(yi+1 − q−2yi) . (6.66)

In contrast to (6.60), the right hand side of (6.66) does not contain anything analogous to the projector
Pi+1. We shall explain the appearance of the projectors in the classical limit.

We could work directly with the Jucys–Murphy operators of the cyclotomic algebra H(m, 1, n)
and use the formulas (6.8)-(6.9). However, one can work (and we prefer to do so) on the level of
the affine Hecke algebra and take the cyclotomic quotient afterwards. Namely, we have the following
composition:

Ĥn → H(m, 1, n) CG(m, 1, n) (6.67)

Here the homomorphism from Ĥn to H(m, 1, n) is given by Ĥn ∋ σi 7→ σi ∈ H(m, 1, n) and y1 7→ τ ,
where τ satisfies (2.8). The symbol  stands for the classical limit. The classical limit can be also
understood as a homomorphism like other arrows in (6.67); namely, the classical limit here is the
quotient by the ideal generated by {vi − ξi, i = 1, . . . , n} and (q− 1), where vi and q are considered as
central generators.

The formulas (6.8)-(6.9) show that the Taylor series decompositions of the Jucys–Murphy operators
of the cyclotomic algebra H(m, 1, n) begin as follows

Ji = ji + jij̃iα+O(α2) ; (6.68)

here α is the deformation parameter, q2 = 1 + α + O(α2). We “lift” the formula (6.68) to the affine
Hecke algebra by assuming that the Taylor series decompositions of the Jucys–Murphy operators of
the affine algebra Ĥn begin as follows

yi = xi + xix̃iα+O(α2) , (6.69)

where xi and x̃i belong to the degenerate cyclotomic affine Hecke algebra Am,n, see (6.10)-(6.12). The
assumption (6.69) can be understood as a sort of considering the “first infinitesimal neighborhood” of
the homomorphism from Ĥn to CG(m, 1, n) participating in (6.67).

To perform the classical limit one takes into account the following beginning of the Taylor series
decomposition of the elements σi:

σi = si +
α

2
+O(α2) . (6.70)
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Note that the operators Ui+1, given by (6.64) tend, by (6.69) and (6.70), to the operators

ui+1 := sixi − xisi ≡ si(xi − xi+1) . (6.71)

The operators ui+1 satisfy all the relations for the operators ũi+1 listed in (6.58); but the intertwining
operators ui+1 do not help to understand the spectrum of the images of the elements x̃i in some
representation.

As noted in [14], the operators Ui+1 := Ui+1f(yi, yi+1), where f is an arbitrary function, are
intertwining operators which satisfy the Yang–Baxter equation.

One shows by induction that for any positive integer L,

σiy
L
i − yLi σi = Ui+1 ·

L−1
∑

b=0

y b
i y

L−1−b
i+1 . (6.72)

Therefore, the operators σiy
L
i − yLi σi are intertwining operators for any positive integer L.

Under the assumption (6.69), the operators σiy
m
i −ymi σi ≡ σi(y

m
i −1)− (ymi −1)σi tend to 0 when

α tends to 0. These operators are of order O(α). Denote

Ũi+1 :=
1

m

(

σi
ymi − 1

α
−
ymi − 1

α
σi

)

. (6.73)

Clearly, Ũi+1 tend to ũi+1 when α tends to 0 (q − q−1 = α+O(α2)).

Using (6.72) with L = m, (6.63) with Ui+1 := Ui+1 and (6.66), we obtain

(σiy
m
i − ymi σi)

2 = Ui+1 ·
m−1
∑

b=0

ybi y
m−1−b
i+1 · Ui+1 ·

m−1
∑

c=0

yci y
m−1−c
i+1

= U2
i+1 ·

(m−1
∑

b=0

ybi y
m−1−b
i+1

)2

= −(yi+1 − q2yi)(yi+1 − q−2yi)

(m−1
∑

b=0

ybi y
m−1−b
i+1

)2

= −

(

(yi+1 − q2yi)
m−1
∑

b=0

ybi y
m−1−b
i+1

)

·

(

(yi+1 − q−2yi)
m−1
∑

b=0

ybi y
m−1−b
i+1

)

.

(6.74)

Let r := xi/xi+1. Under the assumption (6.69) we calculate

m−1
∑

b=0

ybi y
m−1−b
i+1 = mxm−1

i Pi+1 + α

(

x̃ix
m−1
i+1

m−1
∑

b=0

brb + x̃i+1x
m−1
i

m−1
∑

b=0

br−b

)

+O(α2) (6.75)

and














yi+1 − q2yi = xi+1 − xi + α

(

(xi+1x̃i+1 − xix̃i)− xi

)

+O(α2) ,

yi+1 − q−2yi = xi+1 − xi + α

(

(xi+1x̃i+1 − xix̃i) + xi

)

+O(α2) .

(6.76)
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Writing xi+1 − xi = xi+1(1− r) or xi+1 − xi = −xi(1− r−1) and using the identity

(1− c)

m−1
∑

b=0

b cb = m(P − 1) (6.77)

(where P := 1
m

∑m−1
b=0 cb is the projector), valid for a generator c of the cyclic group Cm with m

elements, we find































(yi+1 − q2yi)

m−1
∑

b=0

ybi y
m−1−b
i+1 = mα(x̃i+1 − x̃i − Pi+1) +O(α2) ,

(yi+1 − q−2yi)

m−1
∑

b=0

ybi y
m−1−b
i+1 = mα(x̃i+1 − x̃i + Pi+1) +O(α2) .

(6.78)

Substituting (6.78) into (6.74), dividing by (mα)2 and taking the limit α → 0, we recover the result
(6.60) from the perturbative point of view.

3. The elements ji verify j
m
i = 1, the characteristic equations for the elements ji are not significant

on the classical level. It is easy to obtain the characteristic equation for j̃i starting from a characteristic
equation for Ji. Let A0 be a semi-simple operator on a vector space V . Consider a perturbation of
A0 of the form

A = A0 +A0A1α+O(α2) , (6.79)

where A1 is also semi-simple and the operators A0 and A1 commute. Let r be an eigenvalue of A0

and Vr the corresponding eigenspace. The operator A(α) on the space Vr has, up to the order α2, the
form r Id + rA1, and its eigenvalues are r+ rslα where {sl} is the set of eigenvalues of the restriction
of A1 to Vr.

In the particular situation with A0 = ji, A1 = j̃i and A = Ji, the spectrum of A is, in general, a
subset of

{

vlq
2η, l = 1, . . . ,m and η ∈ {1− i, . . . , i− 1}

}

. We first take the limit vl → ξl, l = 1, . . . ,m.

Then ξlq
2η = ξl + ξlηα + O(α2) (since q2 = 1 + α + O(α2)) thus the spectrum of the operator j̃i is a

subset of [1− i, i− 1] and we recover the Proposition 33 from a perturbative point of view.

Appendix A. Normal form for H(m, 1, n)

We present the Coxeter-Todd algorithm for the chain (with respect to n) of the groups G(m, 1, n).
We establish the resulting normal form (which differs from the normal form in [1]) for elements of
G(m, 1, n). This normal form suggests a basis for the algebra H(m, 1, n). We show that this is
indeed a basis. Several known facts about the chain (with respect to n) of the algebras H(m, 1, n) are
reestablished with the help of this basis. In particular, we show that H(m, 1, n) is a flat deformation
of the group ring of G(m, 1, n). This is proved in [1] with the use of the representation theory. Our
proof does not refer to the representation theory; it is done more in a spirit of classical proofs for the
Hecke algebra.

69



A.1 Coxeter–Todd algorithm for the chain of groups G(m, 1, n)

For a finite group G given by generators and relations and a subgroup W of G generated by some
subset of the generators of G, the Coxeter-Todd algorithm consists [7] in constructing the set of the
left cosets of W in G and the action of the generators on this set. To every coset, a vertex in the
Coxeter-Todd figure is associated; arrows stand for the action of the generators. The algorithm starts
with the left coset eW = W (e is the identity element); only the generators of G which are not in
W act non-trivially on this coset producing new vertices. At each step, using the relations of a given
presentation we analyze the action of the generators on vertices which are already in the figure and add
or erase possible cosets. The algorithm terminates when we know the action of all generators on every
coset in the figure. The figure gives an upper bound for the order of a group G. The Coxeter-Todd
algorithm lists the set of cosets and provides thereby a “normal form of an element of G with respect
to W”.

1. Coxeter–Todd figure for the chain. Recall that the complex reflection group G(m, 1, n)
is generated by the elements t, s1, . . . , sn−1 with the relations (6.2)–(6.3). Let W be its subgroup
generated by the elements t, s1, . . . , sn−2. Here we present the Coxeter-Todd algorithm for the group
G(m, 1, n) with respect to its subgroup W .

t t t t t

t

t

ttttt

t

t

t

❜
❜❜

❆
❆❑

❅❅

✁
✁✁

✟✟

❆
❆❯

❜
❜❜

❜
❜❜

✡
✡
✡✡✣

❜❜
❜❜

❜❜

❅❅

W

sn−1 sn−2 s1

s1

t

t

sn−1sn−2s1

sn−1

sn−2

t

Fig. 1. Coxeter-Todd figure for G(m, 1, n) with respect to W

The action is indicated by oriented edges (labeled by the generators). For a generator of order 2
(

these are the generators s1, . . . , sn−1 of G(m, 1, n) if m 6= 2
)

an unoriented edge represents a pair of
edges with opposite orientations. If a generator leaves a coset invariant, the corresponding edge is a
loop which starts and ends at the vertex representing the coset. For brevity, these loops are omitted;
only non-trivial actions are drawn.

In the middle of Fig. 1 there is an m-gon with edges labeled by t. At each vertex of the m-gon
starts a tail with n− 1 edges (labeled in the same way for the tails from all vertices of the m-gon).
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To illustrate the utility of the figure, we recalculate the order of the group G(m, 1, n), defined
by generators and relations. The Fig. 1 has mn vertices; the group G(m, 1, n) acts on the set
of vertices and the stabilizator of the vertex named W is the subgroup W itself; so the order of
G(m, 1, n) is mn|W |. Clearly, W is a quotient of G(m, 1, n − 1). By the induction hypothesis4,
|G(m, 1, n − 1)| = (n − 1)!mn−1, thus |W | ≤ (n − 1)!mn−1 and |G(m, 1, n)| ≤ n!mn. On the other
hand the standard surjection (recalled in Section 6, see (6.4)) from G(m, 1, n) to Cm ≀ Sn leads to the
opposite inequality |G(m, 1, n)| ≥ n!mn and we conclude that

(a) the order |G(m, 1, n)| of G(m, 1, n) is n!mn,

(b) the surjection from G(m, 1, n) to Cm ≀ Sn is an isomorphism

and

(c) W is isomorphic to G(m, 1, n− 1).

2. Normal form for elements of G(m, 1, n). Due to the algorithm we have a normal form for the
elements of G(m, 1, n) with respect to G(m, 1, n− 1).

Proposition 34. Any element x ∈ G(m, 1, n) can be written in the form :

x = sjsj−1 . . . s1t
αs1s2 . . . sn−1w , (A.1)

where j ∈ {0, . . . , n− 1}, α ∈ {0, . . . ,m− 1} and w ∈W ≃ G(m, 1, n− 1). Here the standard notation
is employed: the empty product, e.g. for j = 0 in (A.1), is 1.

Given a normal form for elements of G(m, 1, n − 1), the Proposition 34 provides a normal form
for elements of G(m, 1, n). In particular, we can use the same (with n replaced by n − 1), as in the
Proposition 34, normal form for elements of G(m, 1, n− 1) constructing recursively the global normal
form for elements of G(m, 1, n).

A.2 Normal form. Preparation

The normal form for elements of the cyclotomic Hecke algebra H(m, 1, n) we shall construct in several
steps.

1. Normal form for elements of H(m, 1, n); beginning of the construction. The normal
form from the Proposition 34 generalizes to the cyclotomic Hecke algebra H(m, 1, n) generated by
τ, σ1, . . . , σn−1 with the defining relations (2.1)–(2.4) and (2.7)–(2.8). We start with the following
Proposition.

Proposition 35. Any x ∈ H(m, 1, n) can be written as a linear combination of elements

σ−1
j σ−1

j−1 . . . σ
−1
1 τασ1σ2 . . . σn−1w̃ , (A.2)

where j ∈ {0, . . . , n − 1}, α ∈ {0, . . . ,m − 1} and w̃ ∈ W̃ with W̃ the subalgebra generated by the
elements τ, σ1, . . . , σn−2.

4The induction starts with the group G(m, 1, 1) generated by τ only; clearly, |G(m, 1, 1)| = m.
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Proof. The unit element of the algebra H(m, 1, n) is in the set of elements (A.2), as well as
all generators. We only have to check that the linear span of the elements (A.2) is stable under
multiplication by the generators (then the linear span of the elements (A.2) is a unital subalgebra,
containing all generators, thus the whole algebra). We consider the left multiplication; we multiply
an arbitrary element E of the form (A.2) by each generator G ∈ {σ1, . . . , σn−1, τ} from the left and
move in this product GE the original generator G to the right; the expression transforms; we follow
the process until it becomes clear that the original product GE is a linear combination of elements of
the form (A.2).

(i) We multiply the element (A.2) from the left by σi with i > j+1. The element σi commutes with
σ−1
j σ−1

j−1 . . . σ
−1
1 τα and thus moves through the combination σ−1

j σ−1
j−1 . . . σ

−1
1 τα to the right without

changes; then σi moves through σ1σ2 . . . σn−1 to the right, becoming σi−1; σi−1w̃ is again in W̃ and
we are done.

(ii) We multiply the element (A.2) from the left by σi with i < j. When σi moves through
σ−1
j σ−1

j−1 . . . σ
−1
1 it transforms into σi+1; the element σi+1 commutes through τα to the right without

changes and then σi+1 moves through σ1σ2 . . . σn−1 to the right, becoming σi; as in (i), σiw̃ ∈ W̃ .

(iii) The assertion is immediate when we multiply the element (A.2) from the left by σj .

(iv) When we multiply the element (A.2) from the left by σj+1, for the proof it is enough to write
σj+1 = σ−1

j+1 + (q − q−1).

(v) We multiply the element (A.2) from the left by τ . If j = 0, there is nothing to do. Let j > 0.
The element τ moves to the right until it reaches σ−1

1 . Then we use the Lemma 36 below and obtain
three terms. For the first term:

σ−1
j . . . σ−1

2 · τσ1τ
α · σ2 . . . σn−1 · w̃ = σ−1

j . . . σ−1
2 · τ · σ1σ2 . . . σn−1 · τ

αw̃

= τ · σ1σ2 . . . σn−1 · σ
−1
j−1 . . . σ

−1
1 ταw̃

and σ−1
j−1 . . . σ

−1
1 ταw̃ ∈ W̃ . For the second term:

σ−1
j . . . σ−1

2 · τα+1σ1σ2 . . . σn−1 · w̃ = τα+1σ1σ2 . . . σn−1 · σ
−1
j−1 . . . σ

−1
1 w̃

and σ−1
j−1 . . . σ

−1
1 w̃ ∈ W̃ . For the third term:

σ−1
j . . . σ−1

1 · τασ1τσ2 . . . σn−1 · w̃ = σ−1
j . . . σ−1

1 · τασ1σ2 . . . σn−1 · τw̃

and τw̃ ∈ W̃ . �

Lemma 36. For α ≥ 0 we have:

τσ−1
1 τασ1 = (q − q−1)

(

τσ1τ
α − τα+1σ1

)

+σ−1
1 τασ1τ . (A.3)

Proof of the Lemma. Multiplying the equality σ1τσ1τ
α = τασ1τσ1 by σ−1

1 from both sides, we get

τσ1τ
ασ−1

1 = σ−1
1 τασ1τ . (A.4)

Expanding τσ−1
1 τασ1 = τ

(

σ1 − (q − q−1)
)

τα
(

σ−1
1 + (q − q−1)

)

and using (A.4) we obtain (A.3). �
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2. Normal form for elements of H(m, 1, n); continuation. Consider an arbitraryH(m, 1, n−1)-
module Mn−1. We denote its elements by letters u, v etc. Let E = C[z]/ < χ > where χ(z) is the
characteristic polynomial for τ . Let V be a vector space with the basis vj , j = 0, . . . , n − 1. Let
Mn := V ⊗ E ⊗Mn−1. The elements vj ⊗ φ⊗ u we denote by Vj,φ,u. For brevity we write

βj := σ−1
j−1 . . . σ

−1
1 ;

the result of the action of an element ψ ∈ H(m, 1, n − 1) on an element u ∈ Mn−1 we denote simply
by ψu (without any symbol for the action).

Define operators Fσi
, i = 1, . . . , n−1, and Fτ on the spaceMn by (below the last index of V carries

information about the action of the elements of the algebra H(m, 1, n − 1) on the module Mn−1; φ
stands for an element of E, a polynomial in z, defined modulo χ(z); the element φ(τ) ∈ H(m, 1, n−1)
which appears in the last index of V is therefore well defined):

Fσi
: Vj,φ,u 7→



































Vj,φ,σi−1u , j < i− 1 ,

(q − q−1)Vi−1,φ,u + Vi,φ,u , j = i− 1 ,

Vi−1,φ,u , j = i ,

Vj,φ,σiu , j > i ,

(A.5)

and

Fτ :







V0,φ,u 7→ V0,zφ,u ,

Vj,φ,u 7→ (q − q−1)V0,z,βjφ(τ)u − (q − q−1)V0,zφ,βju + Vj,φ,τu , j > 0 .
(A.6)

Let, as above, W̃ denote the subalgebra of the algebra H(m, 1, n) generated by the elements τ and
σ1, . . . , σn−2. Take W̃ for the H(m, 1, n − 1)-module Mn−1 (in general, the algebra W̃ is a quotient
of H(m, 1, n − 1); we define the action of H(m, 1, n − 1) by the left multiplication on its quotient).
By a direct calculation one checks that the formulas (A.5) and (A.6) are valid if one substitutes
σ−1
j σ−1

j−1 . . . σ
−1
1 φ(τ)σ1σ2 . . . σn−1u, as in (A.2), for Vj,φ,u. More is true. The formulas (A.5) and (A.6)

have the following universal property.

Proposition 37. The map σi 7→ Fσi
, i = 1, . . . , n − 1, and τ 7→ Fτ equips Mn with a structure of a

H(m, 1, n)-module.

Proof. A straightforward although lengthy calculation. Given a defining relation from the list
(2.1)–(2.4) and (2.7)–(2.8) we verify it on each vector Vj,φ,u. Below we mention different placements
of the index j in a verification of a given relation.

(i) For the relation σiσk = σkσi with i < k − 1 one considers separately the following positions of
the index j:

j < i− 1 , j = i− 1 , j = i , i < j < k − 1 , j = k − 1 , j = k and j > k .
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(ii) For the Artin relation σiσi+1σi = σi+1σiσi+1 one considers separately the following positions
of the index j:

j < i− 1 , j = i− 1 , j = i , j = i+ 1 and j > i+ 1 .

(iii) For the relation σ2i − (q − q−1)σi − 1 = 0 one considers separately the following positions of
the index j:

j < i− 1 , j = i− 1 , j = i and j > i .

(iv) For the relation τσi = σiτ with i > 1 one considers separately the following positions of the
index j:

j = 0 , j < i− 1 , j = i− 1 , j = i and j > i .

(v) For the relation τσ1τσ1 = σ1τσ1τ it is enough to consider separately the following positions
of the index j:

j = 0 , j = 1 and j > 1 .

The following observation simplifies a verification here:

FτFσ1Fτ :











































V0,φ,u 7→ (q − q−1)V0,z,τφ(τ)u + V1,zφ,τu ,

V1,φ,u 7→ (q − q−1)V1,z,τφ(τ)u − (q − q−1)V1,zφ,τu + V0,zφ,τu ,

Vj,φ,u 7→ (q − q−1)2 V0,z,τ [βj ,φ(τ)]u + (q − q−1)V1,z,τβjφ(τ)u − (q − q−1)V1,zφ,τβju

+(q − q−1)V0,z,βjφ(τ)σ1τu − (q − q−1)V0,zφ,βjσ1τu + Vj,φ,τσ1τu , j > 1 .

(A.7)

Here [βj , φ(τ)] is the commutator of βj and φ(τ); in the verification of the relation τσ1τσ1 = σ1τσ1τ
on Vj,φ,u with j > 1 we use the formula (A.3) in the form

τσ−1
1 φ(τ)σ1 = (q − q−1)

(

τσ1φ(τ)− τφ(τ)σ1
)

+σ−1
1 φ(τ)σ1τ .

(vi) For the relation (τ − v1) . . . (τ − vm) = 0 one considers separately the following positions of
the index j:

j = 0 and j > 0 .

A verification of this relation for j > 0 is the only place in the proof which maybe requires a comment.
For j > 0 one proves by induction the following formula:

F l
τ : Vj,φ,u 7→ (q − q−1)

l
∑

i=1

V0,zi,βjφ(τ)τ l−iu − (q − q−1)
l
∑

i=1

V0,ziφ,βjτ l−iu + Vj,φ,τ lu , j > 0 . (A.8)

The first sum in (A.8) can be seen as the image of an element

(z ⊗ φ) ·
1⊗ zl − zl ⊗ 1

1⊗ z − z ⊗ 1
(A.9)
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from the space E ⊗ E to Mn with respect to the map κu, defined for each u ∈Mn−1 by

κu : f ⊗ g 7→ V0,f,βjg(τ)u .

In (A.9), the fraction 1⊗zl−zl⊗1
1⊗z−z⊗1 is understood as the image of a polynomial which is the result of the

division of the numerator by the denominator (as polynomials of two unrestricted variables) in the

space E⊗E. Similarly, the second sum in (A.8) can be understood as the image of (zφ⊗1) · 1⊗zl−zl⊗1
1⊗z−z⊗1

with respect to the same map κu. Thus the first sum minus the second sum (the combination which
appears in (A.8)) is the image of

(1⊗ φ− φ⊗ 1) · (z ⊗ 1) ·
1⊗ zl − zl ⊗ 1

1⊗ z − z ⊗ 1
. (A.10)

The element (A.10) already as a polynomial (and therefore as an element in E⊗E) can be written in
the form

1⊗ φ− φ⊗ 1

1⊗ z − z ⊗ 1
· (z ⊗ 1) · (1⊗ zl − zl ⊗ 1) , (A.11)

where the fraction 1⊗φ−φ⊗1
1⊗z−z⊗1 is understood again as the image of a polynomial which is the result of

the division of the numerator by the denominator (as polynomials of two unrestricted variables) in
the space E ⊗ E.

Writing now χ(z) =
∑m

l=0 cmz
m one verifies the relation χ(Fτ ) = 0 immediately with the help of

(A.11) (recall that E = C[z]/ < χ >). �

Remark. The action of Fτ on the vectors of the form Vj,1,u with j > 0 is simply the action of τ on
Mn−1, that is,

Fτ : Vj,1,u 7→ Vj,1,τu for j > 0 . (A.12)

Remark. The operators Fσi
and Fτ defined in (A.5) and (A.6) can be represented by n×n matrices

(with indices related to the space V ) whose elements are operators acting in the space E ⊗Mn−1.
By ẑ we denote the operator of the multiplication by z in the space E. To fit formulas in the line,
we denote the operator IdE ⊗ σi simply by σi, the operator IdE ⊗ τ simply by τ and the operator
ẑ ⊗ IdMn−1 simply by ẑ.

The operator Fσi
reads (recall that the elements of the basis of the space V are labeled by numbers

from 0 to n− 1)

Fσi
=



























σi−1

. . .

σi−1

q − q−1 1

1 0
σi

. . .



























; (A.13)
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here the 2 × 2 block with ones (that is, the identity operators) outside the main diagonal is in the
(i− 1)st and ith lines and columns.

The operator Fτ reads

Fτ =



































ẑ (q − q−1)ẑ(µ− 1) (q − q−1)ẑσ−1
1 (µ− 1) (q − q−1)ẑσ−1

2 σ−1
1 (µ− 1) . . .

τ . . .

τ . . .

τ . . .

...
...

...
...

. . .



































; (A.14)

here only the first line and the main diagonal have non-zero entries. The operator µ on the space
E ⊗Mn−1 is defined as follows:

µ(φ⊗ u) := 1⊗ φ(τ)u ,

where φ is a polynomial in z. The operator µ has the following properties:

µẑ = τµ , µτ = τµ , µ2 = µ .

A.3 Flatness of deformation. Normal form for elements of H(m, 1, n)

We are now ready to prove that the deformation H(m, 1, n) of the group ring CG(m, 1, n) is flat and
to give the normal form for the elements of the algebra H(m, 1, n).

1. Flatness of deformation.

As above, W̃ denotes the subalgebra of the algebra H(m, 1, n) generated by the elements τ and
σ1, . . . , σn−2.

Proposition 38. (i) The algebra H(m, 1, n) is a flat deformation of the group ring CG(m, 1, n); in
other words, H(m, 1, n) is a free C[q, q−1, v1, . . . , vm]-module of dimension

dim
(

H(m, 1, n)
)

= |G(m, 1, n)| = n!mn . (A.15)

(ii) Moreover the subalgebra W̃ is isomorphic to H(m, 1, n− 1).

Proof. We may assume, by induction, that

dim
(

H(m, 1, n− 1)
)

= (n− 1)! ·mn−1 . (A.16)

The induction starts with the algebra H(m, 1, 1) (with only one generator τ) for which the formula
dim

(

H(m, 1, 1)
)

= m clearly holds.
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The Proposition 35 implies that

dim
(

H(m, 1, n)
)

≤ mn dim(W̃ ) . (A.17)

In general W̃ is a quotient of H(m, 1, n− 1). Thus, by (A.16),

dim
(

H(m, 1, n)
)

≤ n!mn . (A.18)

LetMn−1 be a left regular module for H(m, 1, n−1); that is, the space of the module is the algebra
itself and the elements of the algebra act by left multiplication.

By (A.16), Mn = V ⊗E⊗Mn−1 is a vector space of dimension n ·m · (n− 1)! ·mn−1 = n!mn. The
vector space Mn has a structure of an H(m, 1, n)-module given by the Proposition 37.

We denote by Fa the operator corresponding to an element a. Using the formulas (A.5) and (A.6)
for the action of H(m, 1, n) on Mn and also the formula (A.12), we have

Fσ−1
j ...σ−1

1 φ(τ)σ1...σn−1u
: Vn−1,1,1 7→ Vj,φ,u . (A.19)

Choosing an arbitrary basis {uc}, c = 1, . . . , (n−1)! ·mn−1, of H(m, 1, n−1), we see that the operators
Fσ−1

j ...σ−1
1 φ(τ)σ1...σn−1uc

are independent. We deduce that

dim
(

H(m, 1, n)
)

≥ n!mn . (A.20)

The combination of (A.18) and (A.20) implies the statement (i) of the Proposition.

If W̃ is a non-trivial quotient of H(m, 1, n − 1) then dim(W̃ ) < (n − 1)! ·mn−1 and, by (A.17),
dim

(

H(m, 1, n)
)

< n!mn, contradicting to the already established statement (i); the assertion (ii)
follows completing the proof of the Proposition. �

2. Normal form. We can, in the same way as we did for G(m, 1, n), construct recursively a global
normal form for elements ofH(m, 1, n) using now the Proposition 35 and the Proposition 38, statement
(ii). Let Rk be the set of elements {σ−1

j σ−1
j−1 . . . σ

−1
1 τασ1σ2 . . . σk−1, j = 0, . . . , k−1, α = 0, . . . ,m−1}.

Corollary 39. Any element x ∈ H(m, 1, n) can be written uniquely as a linear combination of ele-
ments

x = unun−1 . . . u1 , (A.21)

where uk ∈ Rk for k = 1, . . . , n.

In other words, the products unun−1 . . . u1, where uk ranges over Rk for k = 1, . . . , n, form a basis
of the vector space H(m, 1, n).
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Remark. Define the homomorphism ς : Hn → H(m, 1, n) from the Hecke algebra Hn to the cyclo-
tomic Hecke algebra H(m, 1, n) by sending the generator σi of Hn to the generator σi of H(m, 1, n) for
i = 1, . . . , n−1. Words (A.21) in which τ does not enter are contained in the subalgebra of H(m, 1, n)
generated by σi, i = 1, . . . , n− 1 and therefore in the image of the algebra Hn under the map ς. The
cardinality of the set of such words is n!. Since dim(Hn) = n!, the uniqueness from the Corollary 39
implies that ς is an embedding.

There is another way, without the use of the Corollary 39, to check that ς is an embedding. Fix
a number e, 1 ≤ e ≤ m. The map which sends the generator σi of H(m, 1, n) to the generator σi
of Hn for i = 1, . . . , n − 1 and the generator τ of H(m, 1, n) to the number ve clearly extends to a
homomorphism πe : H(m, 1, n) → Hn. One has πe ◦ ς = IdHn so πe is a left inverse to ς (for each e);
in particular, ς is an embedding.

The maps used in the last argument play the same role as the maps ι̂ and π, see (6.13) and (6.14),
for the embedding CG(m, 1, n) → Am,n. Likewise, we have embeddings Hn → Ĥn and, on the level of
groups, Bn → αBn defined each time by a map, tautological on generators.

3. Induced representations. Let B be an associative subalgebra of an associative algebra A. Let
W be a left B-module. The vector space A ⊗B W carries a natural A-module structure defined by
a.(a′ ⊗ w) := aa′ ⊗ w. This is the induced A-module.

The Proposition 38 (or the Corollary 39) implies the uniqueness of the form (A.2) for the elements
of H(m, 1, n). Taking into account the Proposition 37 we arrive at the following conclusion.

Corollary 40. The module Mn is the induced H(m, 1, n)-module (with respect to the subalgebra
H(m, 1, n − 1) and the module Mn−1 over it). The formulas (A.5) and (A.6) give an explicit re-
alization of the induced module Mn.

4. Comments on formulas (A.5) and (A.6).

(a) With the help of the formulas (A.5) and (A.6) we have constructed the H(m, 1, n)-module
structure on the space V ⊗ E ⊗Mn−1, where Mn−1 is an arbitrary H(m − 1, 1, n)-module. In the
particular situation when m equals 1 the space E is one-dimensional and we can canonically identify
it with the field C. As a result we obtain the operators Fσi

acting on the space V ⊗Mn−1:

Fσi
: Vj,u 7→



































Vj,σi−1u , j < i− 1 ,

(q − q−1)Vi−1,u + Vi,u , j = i− 1 ,

Vi−1,u , j = i ,

Vj,σiu , j > i .

(A.22)

The formula (A.22) constructs, now on the vector space Mn := V ⊗Mn−1, a module over the Hecke
algebra Hn: the operator Fτ was not used in verifying the Hecke algebra relations (that is, relations
(2.1)–(2.2) and (2.7)) for the operators Fσi

(we leave the check of it as an exercise for the reader) in
the proof of the Proposition 37.
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Another way to arrive at (A.22) is to notice that in the formula (A.5) alone, the label φ of vectors
Vj,φ,u is not touched by the action of the operators Fσi

, so one may omit the label φ and reproduce
the formula (A.22).

(a′) In particular, taking for Mn−1 the one-dimensional module of the Hecke algebra Hn−1, in
which the generators σi are mapped to q, the resulting module Mn is the Burau module for the Hecke
algebra Hn.

(b) In verifying relations (2.3)–(2.4) for the operators Fσi
and Fτ given by the formulas (A.5) and

(A.6) we used the characteristic equation for σ but we did not use the characteristic equation for τ
(we leave the check of it as an exercise for the reader). So in fact the formulas (A.5) and (A.6) define a
module over the affine Hecke algebra5 Ĥn starting from a module over the affine Hecke algebra Ĥn−1.
Note that E = C[z] in this situation.

(b′) Taking now for Mn−1 the one-dimensional module of the cyclotomic Hecke algebra Hm,1,n−1

(respectively, the affine Hecke algebra Ĥn−1), in which the generators σi are mapped to q and the
generator τ is mapped to ve for some e, 1 ≤ e ≤ m, (ve is arbitrary for the affine Hecke algebra), the
resulting Hm,1,n-module (respectively, Ĥn-module) on the spaceMn = V ⊗E is the natural analogue of
the Burau module (with E = C[z] in the affine Hecke algebra situation) . The action of the generators
σi is given by the usual Burau matrices (these are the matrices (A.13) in which every σ is replaced by
q; these matrices act trivially in the space E) while the matrix of the operator τ is given by

Fτ =



































ẑ (q − q−1)ẑ(µe − 1) (q − q−1)q−1ẑ(µe − 1) (q − q−1)q−2ẑ(µe − 1) . . .

ve . . .

ve . . .

ve . . .

...
...

...
...

. . .



































; (A.23)

here µe is defined by µe(φ) := φ(ve), where φ is a polynomial in z.

(c) Naturality.

For a vector space M let ΥA(M) := V ⊗M and ΥB(M) := V ⊗E ⊗M . Here V is a vector space
with the fixed basis vj , j = 0, . . . , n− 1. The space E will be specified below. For a map α :M →M ′

let ΥA(α) := IdV ⊗ α and ΥB(α) := IdV ⊗ IdE ⊗ α.

The constructions (A.5)–(A.6) and (A.22) possess the following functoriality properties. This fol-
lows from the observation stating that the constructions (A.5)–(A.6) and (A.22) provide a realizations

5We recall that the affine Hecke algebra Ĥn is the algebra generated by the elements σ1, . . . , σn−1 and τ with the
defining relations (2.1)–(2.4) and (2.7).
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of induced representations (see the Corollary 40 for the cyclotomic algebras H(m, 1, n); the asser-
tion about the induced representations can be extended to the other two cases listed below); these
functoriality properties can be checked directly as well.

• ΥB is a functor from the category of Hm,1,n−1-modules to the category of Hm,1,n-modules,

ΥB : Hm,1,n−1-mod → Hm,1,n-mod ;

here E = C[z]/ < χ > where χ(z) is the characteristic polynomial for τ .

• In particular, for m = 1, ΥA is a functor from the category of Hn−1-modules to the category of
Hn-modules,

ΥA : Hn−1-mod → Hn-mod .

• Also, ΥB is a functor on the level of the affine Hecke algebras

ΥB : Ĥn−1-mod → Ĥn-mod .

Here E = C[z].

The classical limit does not cause any difficulties: one simply sets q to 1 in the formulas (A.5)–
(A.6) and (A.22) (note that the parameters ve participate in the formulas (A.5)–(A.6) only through
the action of τ on Mn−1).

5. Other normal forms. There exist three other normal forms for elements of H(m, 1, n) with
respect to W̃ similar to the form from the Proposition 35. Any x ∈ H(m, 1, n) can be written as a
linear combination of elements of the set






σk+1σk+2 . . . σn−1w̃ , where k ∈ {0, . . . , n− 1} and w̃ ∈ W̃ ,

σjσj−1 . . . σ1τ
ασ1 . . . σn−1w̃ , where j ∈ {0, . . . , n− 1}, α ∈ {1, . . . ,m− 1} and w̃ ∈ W̃ ,

(A.24)

or of the set

σjσj−1 . . . σ1τ
ασ−1

1 . . . σ−1
n−1w̃ , where j ∈ {0, . . . , n− 1}, α ∈ {0, . . . ,m− 1} and w̃ ∈ W̃ , (A.25)

or of the set






σ−1
k+1σ

−1
k+2 . . . σ

−1
n−1w̃ , where k ∈ {0, . . . , n− 1} and w̃ ∈ W̃ ,

σ−1
j σ−1

j−1 . . . σ
−1
1 τασ−1

1 . . . σ−1
n−1w̃ , where j ∈ {0, . . . , n− 1}, α ∈ {1, . . . ,m− 1} and w̃ ∈ W̃ ,

(A.26)
where W̃ is, as above, the subalgebra generated by τ, σ1, . . . , σn−2.

Concerning the normal form (A.24), the proof goes along the same lines as the proof of the
Proposition 35.

The forms (A.25) and (A.26) can be reduced to the normal forms (A.2) and (A.24) by applying
standard automorphisms of the cyclotomic Hecke algebras.
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Appendix B. Bratteli diagrams and their products

Here we recall several facts about Bratteli diagrams (see, e.g., [10]) and their graded products. Then
we recall the information, needed in the main body of the text, about the dimensions of the vertices
in the powers of the Young graph.

B.2 Bratteli diagrams

A Bratteli diagram is a graded graph; this means that there is a function, called degree, from the set of
vertices to the set of non-negative integers. There is only one degree 0 vertex which is denoted by ∅.
The edges of the graph can only connect two vertices with neighboring degrees (“neighboring” means
that the absolute value of the difference of the degrees is 1). When one draws a Bratteli diagram it is
convenient to place on the level a all the vertices of degree a (the level a stands for the value of the
ordinate (−a)). Then a vertex on the level a has “incoming” edges from the level a−1 and “outgoing”
edges to the level a+ 1. The dimension of a vertex x is the number of paths which go down from the
vertex ∅ to x.

In the representation theory, one associates a Bratteli diagram to an ascending chain

A0 = C ⊂ A1 ⊂ · · · ⊂ An ⊂ . . . (B.1)

of associative algebras: vertices of degree k correspond to representations (depending on circumstances,
indecomposable, irreducible etc.) of the algebra Ak and the Bratteli diagram visualizes the branching
rules for the pairs (Ak+1,Ak), k ∈ Z. In this situation, the dimension of a vertex is simply equal to
the dimension of the corresponding representation.

Let G(1) and G(2) be two Bratteli diagrams. The vertices of the product G(1)×G(2) are by definition
couples (x, y) where x is a vertex of G(1) and y is a vertex of G(2). The degree of (x, y) is the sum
of the degree of x and the degree of y. The top vertex G(1) × G(2) which is denoted again by ∅ is
therefore (∅,∅). If there is an edge between x and x′ in G(1) one draws an edge between (x, y) and
(x′, y) for all y; we say that these edges are of type 1. If there is an edge between y and y′ in G(2) one
draws an edge between (x, y) and (x, y′) for all x; we say that these edges are of type 2. By definition
these are all edges: each edge is either of type 1 or of type 2.

Iterating, we define the product of an arbitrary number m of Bratteli diagrams.

B.2 Dimensions of vertices of the product

Let G be a Bratteli diagram. Denote by P(G) the set of paths which begin at the top vertex of G
and go down. For p ∈ P(G) denote by E(p) the collection of edges of p and by end(p) the end point of
p; if z = end(p) then deg(z) equals the length of p, the cardinality of E(p). The set E(p) is naturally
ordered: the steps in the path follow one after another.

Let (x, y) be a vertex of G(1) × G(2). Let p be a path from P(G(1) × G(2)) with end(p) = (x, y).
The set E(p) is the disjoint union of two subsets, E1(p) and E2(p), where E1(p) (respectively, E2(p)) is
the subset of E(p) consisting of edges of type 1 (respectively, type 2). Each edge from E1(p) naturally

81



defines an edge in the graph G(1) and the set of edges thus defined form a path p1 in the graph G(1)

going down from ∅ of G(1) to x, p1 ∈ P(G(1)); similarly, each edge from E2(p) naturally defines an
edge in the graph G(2) and the set of edges thus defined form a path p2 in the graph G(2) going down
from ∅ of G(2) to y, p2 ∈ P(G(2)). We have therefore a map from P(G(1) × G(2)) to the product
P(G(1))×P(G(2)), defined by

π : p 7→ (p1, p2) . (B.2)

One cannot reconstruct uniquely the path p knowing the paths p1 and p2. Let a be the degree of x
and b the degree of y. Any order ≻ on the union E(p1) ∪ E(p2) which is compatible with the natural
orders on E1(p) and E2(p) (in the sense that if a step γ is after a step γ′ in E1(p) or E2(p) then γ is
after γ′ with respect to the order ≻) determines a path from P(G(1) × G(2)) In other words, in the
sequence of a + b edges of a path of length a + b from P(G(1) × G(2)) one can assign the type 1 to
an arbitrarily chosen subset of a edges so the cardinality of the preimage of the element (p1, p2) with

respect to the map π given by (B.2) is

(

a+ b
b

)

; this cardinality depends only on the end points x

and y of the paths p1 and p2 so we have

dim
(

(x, y)
)

=

(

a+ b
b

)

dim(x) dim(y) . (B.3)

For a Bratteli diagram G define D(G)a by

D(G)a :=
∑

x:deg(x)=a

(

dim(x)
)2
. (B.4)

When the Bratteli diagram is associated to an ascending chain of finite-dimensional semi-simple
associative algebras, like (B.1), and the vertices correspond to irreducible representations, the number
D(G)a is the dimension of the algebra Aa.

By (B.3), we have for the product

D(G(1) ×G(2))c =
∑

a, b : a+ b = c

x : deg(x) = a

y : deg(y) = b

(dim
(

(x, y)
)2

=
∑

a, b : a+ b = c

x : deg(x) = a

y : deg(y) = b

(

a+ b
b

)2
(

dim(x)
)2(

dim(y)
)2

=
c
∑

a=0

(

c
a

)2

D(G(1))a D(G(2))c−a .

(B.5)

B.3 Powers of Young graph

As we have seen in Section 3 (respectively, Section 6), the vertices of the Bratteli diagram for the
chain (with respect to n) of the algebras H(m, 1, n) (respectively, the groups G(m, 1, n)) naturally
correspond to m-partitions, the level a consists of all m-partitions of a; the edges outgoing from the
level a correspond to inclusions of m-partitions of a into m-partitions of a + 1. Thus the Bratteli
diagram for the chain H(m, 1, n) (or G(m, 1, n)) is the m-th power of the Young graph.

82



1. Dimensions. We need to determine the dimensions of the vertices of the powers of the Young
graph. We recall the definition of the hook length and the formula for the dimensions of the vertices
of the Young graph. For a node α of a Young diagram the hook of α is the set of nodes containing α
and the nodes which lie either under α in the same column or to the right of α in the same row. The
hook length hα of α is the number of nodes in the hook of α. The dimension of a representation (of a
symmetric group) corresponding to a partition λ of n is given by the classical hook formula,

dim(Vλ) =
n!
∏

α∈λ

hα
, (B.6)

where the product
∏

α∈λ

hα means the product of the hook lengths of all nodes α of the Young diagram

of shape λ.

Consider an m-partition λ(m) := (λ1, . . . , λm) such that |λ(m)| = n (we remind that |λ(m)| =
|λ1| + · · · + |λm|). We denote by Vλ(m) the irreducible representation of H(m, 1, n) associated with
λ(m). By the generalization of (B.3) to the product of m graded graphs, the dimension of Vλ(m) is

dim(Vλ(m)) =
n!

|λ1|! . . . |λm|!

|λ1|!
∏

α∈λ1

hα
. . .

|λm|!
∏

α∈λm

hα
=

n!
m
∏

i=1

∏

α∈λi

hα

, (B.7)

Lemma 41. We have
∑

λ(m)

(dim(Vλ(m)))2 = n!mn , (B.8)

where the sum is over all m-partitions λ(m) = (λ1, . . . , λm) such that |λ(m)| = n.

Proof. For m = 1, we know that the representations Vλ where λ is a partition of n are all the
irreducible representations of the symmetric group Sn and so:

∑

λ

(dim(Vλ))
2 =

∑

λ







n!
∏

α∈λ

hα







2

= n! . (B.9)

The proof of (B.8) is by induction on m. We have:

∑

λ(m):|λ(m)|=n

(dim(Vλ(m)))2 =
n
∑

j=0

(

n!
(n−j)!j!

)2
∑

λ(1):|λ(1)|=j

(

dim(Vλ(1))
)2 ∑

λ(m−1):|λ(m−1)|=n−j

(

dim(Vλ(m−1))
)2

=
n
∑

j=0

(

(

n!
(n−j)!j!

)2
· j! · (n− j)! · (m− 1)n−j

)

= n! ·
n
∑

j=0

n!
(n−j)!j!(m− 1)n−j = n!mn ;
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here λ(1) is a usual partition and λ(m−1) is an (m− 1)-partition. In the first equality we used (B.5); in
the second equality we used (B.9) and the induction hypothesis; we simplified the result in the third
equality and used the binomial theorem in the fourth equality. �

Remark. The m-th power of the Young graph is an m-differential poset; the formula (B.8) holds
for arbitrary m-differential posets (see [36] for definitions and details).

2. Standard m-tableaux and dimensions. It is well known that the dimension of a represen-
tation of a symmetric group corresponding to some Young diagram λ equals the dimension of the
corresponding vertex in the Young graph and equals the number of standard tableaux of the shape λ.
It is straightforward to generalize these equalities to the cyclotomic case: the dimension of a represen-
tation of the group G(m, 1, n) corresponding to some Young m-diagram λ(m) equals the dimension of
the corresponding vertex in the m-th power of the Young graph and equals the number of standard
m-tableaux of the shape λ(m).

With the help of the Lemma 41 we check that the sum of the squares of the dimensions of the
representations constructed in Subsection 4.3 (respectively, in Subsection 6.8) equals the dimension of
the algebra H(m, 1, n) (respectively, the order of the group G(m, 1, n)):

∑

λ(m)

(dim(Vλ(m)))2 = dim(H(m, 1, n)) = |G(m, 1, n)| . (B.10)

3. Example: square of the Young graph. Below the beginning of the Bratteli diagram for
the chain of algebras H(2, 1, n), the square of the Young graph, is drawn. The labels on the edges
correspond to the eigenvalues of the Jucys–Murphy elements of H(2, 1, n) (the edges going down from
the level i to the level i+1 are labeled by the eigenvalues of the element Ji+1; the top vertex is situated
at level 0).
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Fig. 2. Bratteli diagram (four first levels) for H(m, 1, n) with m = 2.
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Appendix C. Examples

Here we illustrate the construction of irreducible representations of the algebras H(m, 1, n) on several
examples with m = 2 and small n. For these examples we write down the formulas (4.8)-(4.9) and
(4.16)-(4.17) from Section 4.

1. The representation of H(2, 1, 2) corresponding to the 2-partition (� ,�).

The dimension of this representation is 2. We choose a basis

X1 := X(
1 , 2

) , X2 := X(
2 , 1

) .

The formulas (4.8)-(4.9) take the form

(

σ1 +
(q−q−1)v2

v1−v2

)

X1 = X2

(

σ1 +
(q−q−1)v1

v2−v1

)

,
(

σ1 +
(q−q−1)v1

v2−v1

)

X2 = X1

(

σ1 +
(q−q−1)v2

v1−v2

)

and
(τ − v1)X1 = 0 , (τ − v2)X2 = 0 .

The matrices corresponding to the action (4.16)-(4.17) of the generators of H(2, 1, 2) in the basis
above are given by:

σ1 7→





−(q − q−1) v2
v1−v2

qv1−q−1v2
v1−v2

qv2−q−1v1
v2−v1

−(q − q−1) v1
v2−v1



 , τ 7→ diag(v1, v2) . (C.1)

The Gram matrix of the invariant ω-sesquilinear scalar product in the basis {X1,X2} reads

diag

(

q−1v1 − qv2
v1 − v2

,
qv1 − q−1v2
v1 − v2

)

.

2. The representation of H(2, 1, 3) corresponding to the 2-partition
(

�
� ,�

)

.

The representation has dimension 3 and we choose a basis

X1 := X



1

2
, 3





, X2 := X



1

3
, 2





, X3 := X



2

3
, 1





.

The formulas (4.8)-(4.9) take the form

(

σ1 +
(q−q−1)v1q−2

v1−v1q−2

)

X1 = 0 ,
(

σ1 +
(q−q−1)v2

v1−v2

)

X2 = X3

(

σ1 +
(q−q−1)v1

v2−v1

)

,

(

σ1 +
(q−q−1)v1

v2−v1

)

X3 = X2

(

σ1 +
(q−q−1)v2

v1−v2

)

,
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(

σ2 +
(q−q−1)v2
v1q−2−v2

)

X1 = X2

(

σ2 +
(q−q−1)v1q−2

v2−v1q−2

)

,
(

σ2 +
(q−q−1)v1q−2

v2−v1q−2

)

X2 = X1

(

σ2 +
(q−q−1)v2
v1q−2−v2

)

,

(

σ2 +
(q−q−1)v1q−2

v1−v1q−2

)

X3 = 0 ,

and
(τ − v1)X1 = 0 , (τ − v1)X2 = 0 , (τ − v2)X3 = 0 .

The matrices corresponding to the action (4.16)-(4.17) of the generators of H(2, 1, 3) in the basis
above are given by:

σ1 7→













−q−1 0 0

0 − (q−q−1)v2
v1−v2

qv1−q−1v2
v1−v2

0 qv2−q−1v1
v2−v1

− (q−q−1)v1
v2−v1













, σ2 7→













− (q−q−1)v2
v1q−2−v2

v1q−1−q−1v2
v1q−2−v2

0

qv2−v1q−3

v2−v1q−2 − (q−q−1)v1q−2

v2−v1q−2 0

0 0 −q−1













and
τ 7→ diag(v1, v1, v2) .

The Gram matrix of the invariant ω-sesquilinear scalar product in the basis {X1,X2,X3} reads

diag

(

q−2v1 − q2v2
v1 − v2

, 1,
qv1 − q−1v2
q−1v1 − qv2

)

.

3. The representation of H(2, 1, 4) labeled by the 2-partition
(

�
� ,��

)

.

The representation has dimension 6 and we choose a basis

X1 := X



1

2
, 3 4





, X2 := X



1

3
, 2 4





, X3 := X



1

4
, 2 3





, X4 := X



2

3
, 1 4





,

X5 := X



2

4
, 1 3





, X6 := X



3

4
, 1 2





.

The formulas (4.8)-(4.9) take the form

(

σ1 +
(q−q−1)v1q−2

v1−v1q−2

)

X1 = 0 ,
(

σ1 +
(q−q−1)v2

v1−v2

)

X2 = X4

(

σ1 +
(q−q−1)v1

v2−v1

)

,

(

σ1 +
(q−q−1)v2

v1−v2

)

X3 = X5

(

σ1 +
(q−q−1)v1

v2−v1

)

,
(

σ1 +
(q−q−1)v1

v2−v1

)

X4 = X2

(

σ1 +
v2

(q−q−1)v1−v2

)

,

(

σ1 +
(q−q−1)v1

v2−v1

)

X5 = X3

(

σ1 +
(q−q−1)v2

v1−v2

)

,
(

σ1 +
(q−q−1)v2q2

v2−v2q2

)

X6 = 0 ,
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(

σ2 +
(q−q−1)v2
v1q−2−v2

)

X1 = X2

(

σ2 +
(q−q−1)v1q−2

v2−v1q−2

)

,
(

σ2 +
(q−q−1)v1q−2

v2−v1q−2

)

X2 = X1

(

σ2 +
(q−q−1)v2
v1q−2−v2

)

,

(

σ2 +
(q−q−1)v2q2

v2−v2q2

)

X3 = 0 ,
(

σ2 +
(q−q−1)v1q−2

v1−v1q−2

)

X4 = 0 ,

(

σ2 +
(q−q−1)v2q2

v1−v2q2

)

X5 = X6

(

σ2 +
(q−q−1)v1
v2q2−v1

)

,
(

σ2 +
(q−q−1)v1
v2q2−v1

)

X6 = X5

(

σ2 +
(q−q−1)v2q2

v1−v2q2

)

,

(

σ3 +
(q−q−1)v2q2

v2−v2q2

)

X1 = 0 ,
(

σ3 +
(q−q−1)v2q2

v1q−2−v2q2

)

X2 = X3

(

σ3 +
(q−q−1)v1q−2

v2q2−v1q−2

)

,

(

σ3 +
(q−q−1)v1q−2

v2q2−v1q−2

)

X3 = X2

(

σ3 +
(q−q−1)v2q2

v1q−2−v2q2

)

,
(

σ3 +
(q−q−1)v2q2

v1q−2−v2q2

)

X4 = X5

(

σ3 +
(q−q−1)v1q−2

v2q2−v1q−2

)

,

(

σ3 +
(q−q−1)v1q−2

v2q2−v1q−2

)

X5 = X6

(

σ3 +
(q−q−1)v2q2

v1q−2−v2q2

)

,
(

σ3 +
(q−q−1)v1q−2

v1−v1q−2

)

X6 = 0 ,

and
(τ − v1)X1 = 0 , (τ − v1)X2 = 0 , (τ − v1)X3 = 0 ,

(τ − v2)X4 = 0 , (τ − v2)X5 = 0 , (τ − v2)X6 = 0 .

The matrices corresponding to the action (4.16)-(4.17) of the generators of H(2, 1, 4) in the basis
above are given by:

σ1 7→





































−q−1 0 0 0 0 0

0 − (q−q−1)v2
v1−v2

0 qv1−q−1v2
v1−v2

0 0

0 0 − (q−q−1)v2
v1−v2

0 qv1−q−1v2
v1−v2

0

0 qv2−q−1v1
v2−v1

0 − (q−q−1)v1
v2−v1

0 0

0 0 qv2−q−1v1
v2−v1

0 − (q−q−1)v1
v2−v1

0

0 0 0 0 0 q





































,
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σ2 7→





































− (q−q−1)v2
v1q−2−v2

v1q−1−q−1v2
v1q−2−v2

0 0 0 0

qv2−v1q−3

v2−v1q−2 − (q−q−1)v1q−2

v2−v1q−2 0 0 0 0

0 0 q 0 0 0

0 0 0 −q−1 0 0

0 0 0 0 − (q−q−1)v2q2

v1−v2q2
qv1−v2q
v1−v2q2

0 0 0 0 v2q3−q−1v1
v2q2−v1

− (q−q−1)v1
v2q2−v1





































,

σ3 7→





































q 0 0 0 0 0

0 − (q−q−1)v2q2

v1q−2−v2q2
v1q−1−v2q
v1q−2−v2q2

0 0 0

0 v2q3−v1q−3

v2q2−v1q−2 − (q−q−1)v1q−2

v2q2−v1q−1 0 0 0

0 0 0 − (q−q−1)v2q2

v1q−2−v2q2
v1q−1−v2q
v1q−2−v2q2

0

0 0 0 v2q3−v1q−3

v2q2−v1q−2 − (q−q−1)v1q−2

v2q2−v1q−2 0

0 0 0 0 0 −q−1





































,

τ 7→ diag(v1, v1, v1, v2, v2, v2) .

The Gram matrix of the invariant ω-sesquilinear scalar product in the basis {X1,X2,X3,X4,X5,X6}
is diag(z1, z2, z3, z4, z5, z6) where

z1 =
(q−2v1−q2v2)(q−3v1−q3v2)

(v1−v2)(q−1v1−qv2)
, z2 =

q−3v1−q3v2
q−1v1−qv2

, z3 = 1 , z4 =
(qv1−q−1v2)(q−3v1−q3v2)

(q−1v1−qv2)2
,

z5 =
qv1−q−1v2
q−1v1−qv2

, z6 =
(v1−v2)(qv1−q−1v2)

(q−1v1−qv2)(q−2v1−q2v2)
.
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