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Abstract—Reconfigurable hardware is now used in high performance
computers, introducing the high performance reconfigurable computing.
Dynamic hardware allows processors to devolve intensive computations
to dedicated hardware circuitry optimized for that purpose. Our aim
is to make larger use of hardware capabilities by pooling the hardware
and software computations resources in a unified design in order to allow
replacing the ones by the others depending on the application needs.
For that purpose, we needed a test platform to evaluate FPGA capabilities
to operate as a high performance computer node. We designed an
architecture allowing the separation of a parallel program communication
from its kernels computation in order to make easier the future partial
dynamic reconfiguration of the processing elements. This architecture
implements static softcores as test IPs, keeping in mind that the future
platform implementing dynamic reconfiguration will allow changing the
processing elements.
In this paper, we present this test architecture and its implementation
upon Xilinx Virtex 5 FPGAs. We then present a benchmark of the
platform using the NAS parallel benchmark integer sort in order to
compare various use cases.

Index Terms—FPGA, Architecture Exploration, High Performance
Reconfigurable Computing

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) consideration evolved
from original glue-logic purpose to a real status of component of
a design. Modern FPGAs allow mapping complex component such
as digital signal processors, video decoders or any other hardware
accelerator. FPGAs are flexible resources, allowing notably hosting
devices which nature is unknown at the time of circuit design. For
example, a video decoder can allow various compression types and
adapt the hardware circuitry according to the current played format.

Moreover, the late Partial Dynamic Reconfiguration (PDR) technol-
ogy breaks the monolithic status of FPGAs by allowing changing only
one part of the device. On a multi-IP design, this allows changing an
IP while others are running. FPGA can then be considered as an array
of independent IPs. Birk and Fiksman [1] compare reconfiguration
capabilities, such as multiple simultaneous IP instantiations, to the
software concept of dynamic libraries.

High Performance Computers (HPCs) are large pools of Processing
Elements (PEs) allowing massively parallel processing. The main
current HPC architectures are discussed by Hager and Wellein [2],
while a more abstract study including software is done by Skillicorn
[3]. The general topology is a system composed of nodes linked by a
network, each node being composed of various PEs. Most common
memory systems are globally distributed, locally shared. This means
a node’s PEs share the local memory, while the global system consists
of many separated memory mappings.

HPCs make use of dynamic hardware for a few years now, intro-
ducing the High Performance Reconfigurable Computers (HPRCs).
These systems add dynamic hardware resources jointly to the
General-Purpose Processors (GPPs). These resources can be used by

the GPPs to map a hardware circuitry specific to the running program
in order to increase performance of a specific computation.

El-Ghazawi [4] presents two approaches to reconfigurable archi-
tectures: Uniform Node, Nonuniform Systems (UNNSs) and Nonuni-
form Node, Uniform Systems (NNUSs). In UNNSs, the system
contains two kinds of nodes; software nodes containing processors,
and hardware nodes containing FPGAs. Conversely, in NNUSs, the
system consists in a single type of node, each containing both
hardware and software PEs. In NNUSs, dynamic resources are
generally deeply linked with software PEs located on the same node.
This allows high bandwidth between hard and soft resources thanks to
dedicated interconnections. Such systems consider the reconfigurable
resources as dynamic coprocessors, which are used to replace a
specific portion of code.

Our aim is to set up a NNUS-like HPRC architecture which
flexibility is increased compared to standard HPRCs. Instead of
standard HPC coupled to slave reconfigurable resources, we tend to
develop a fully FPGA-based system. In this system, hardware and
software resources should be same-level entities, meaning that the
type, number and repartition of PEs should be decided depending on
the application requirements. This differs from the standard behav-
ior of running the program on software processors that instantiate
hardware resources when needed. Additionally, the PDR technology
should be used to map various independent PEs on the same FPGA,
controlling their behavior separately. Doing so requires separating
kernels computations from program communication in order to handle
PEs reconfiguration independently of the global architecture and
interconnect.

To that extent, we needed to build a test platform in order to
make sure that such architecture is suitable for standard FPGA
resources. Especially, the major point was the communication and
memory accesses, which are known bottleneck in current designs.
In this paper, we focus on that test architecture. This architecture
is not intended to demonstrate the reconfiguration capabilities, and
though do not implement PDR of IPs. Instead, we use static software
processors to represent generic IPs and use SMP (Symmetric Multi-
Processing / Shared-Memory Paradigm) systems as a base.

We present a theoretical view of this architecture, also with a
platform implementing this architecture based on the Xilinx Virtex 5
FPGA device. We use the industry standard Message Passing Inter-
face (MPI) for the program communication to ensure compatibility
with most existing programs. We benchmarked this platform using the
NAS Parallel Benchmark Integer Sort (NPB IS) in order to evaluate
what improvements will be needed for the future dynamic platform.

In section II, we present the model of the architecture we devel-
oped, and its implementation on Xilinx Virtex 5 FPGA. In section III,
we detail the benchmarking process we run on the platform and its
conclusion. Lastly, in section IV, we present related work showing
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Fig. 1. System Architecture.

the importance of the memory bandwidth, the weak point of our
architecture.

II. ARCHITECTURE AND PLATFORM

The following architecture is intended as a test architecture for the
execution of MPI programs. One concern was that it should be easy to
run existing programs while making as few changes as possible to the
source code. Ideally, these changes could be done automatically by a
pre-compiler, so that existing MPI programs could be used directly
without any manual changes being required. We present the method
we used to adapt the existing bench to our platform.

A. Architecture

The main constraint of our architecture is that communications
have to be separated from computations. Communications have to
use the MPI protocol, while the kernel computation must be run
on separate PEs in order to be easily replaceable by hardware
accelerators.

In our model, the system consists in nodes, themselves containing
various PEs called cells. On each node, one special cell, called the
host cell, is dedicated to communication. The other cells, called the
computing cells, are intended to run the kernels. Fig. 1 shows a
generic implementation of this system with n nodes, each containing
a varying number of computation cells and one host cell.

The host cell should have an external connection such as Ethernet
linking the nodes, and must be able to run an implementation of the
MPI protocol. The MPI protocol needs a substantial software stack
to manage jobs and network communication; thus, we need to use an
Operating System (OS) which is able to manage these constraints.
By contrast, the computing cells only need to run a single computing
thread at any given time, which means that there is no need for a
complex OS; a simple standalone application able to run a task and
to retrieve the results is sufficient.

Since based on MPI, any computer connected to the same network
as the nodes and running the same MPI implementation should be
able to start an application on the system. We call such a computer
a server on our system.

B. FPGA-based Platform

To implement our nodes, we chose the Xilinx ml507 board, shipped
with a Virtex 5 fx70t FPGA, which contains a hardwired PowerPC
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440.
The host cell has an Ethernet Media Access Component (MAC) to

communicate with other cells. The local memory is a 256 MB DDR2
RAM accessed through a Multi-Port Memory Controller (MPMC)
that manages up to 8 accesses to the memory. The mass storage is
provided by a CompactFlash card. All these elements are linked to
the PowerPC through a PLB bus.

Each computation cell is composed of a MicroBlaze processor
plugged into a PLB bus, and of a local memory containing the runtime
program. This memory is implemented via Virtex 5’s Block RAMs
(BRAMs), and so it has one-cycle access, which is as fast as cache
memory. Processor cache is enabled on the DDR memory range. The
MicroBlaze has two MPMC connections, for data and instruction
cache links. Because MPMC is limited to 8 memory accesses, we
also built an uncached version, where all memory accesses are done
through the PLB bus, in which case only one link is used for data and
instructions alike. Thus, with uncached implementation, we can have
up to seven computing cells, whereas the cached version is limited
to three cells.

The platform’s buses and processors run at 100 MHz, except for
the PowerPC, which runs at 400 MHz. Each computation cell has a
link to the host cell using a mailbox component. The mailbox is a
simple bidirectional FIFO thanks to which 32-bit messages can be
sent between two buses. By plugging one end into the host cell’s bus,
and the other end into a computation cell’s bus, we have a very simple
message passing mechanism. This mechanism is not optimized, but
sufficient for short orders transmission.

Since both the PowerPC and the MicroBlazes are linked to the
same DDR through the MPMC, data can be exchanged using the
shared memory paradigm, with the mailbox being used for short
control messages (e.g. transmitting the pointer to a shared memory
section). The whole node configuration is displayed in Fig. 2 (exam-
ple of two computing cells uncached, and one cached).

The Virtex 5 fx70t contains 44,800 Look-Up Tables (LUTs), 5,328
KB of BRAM and 128 DSP48Es, which are small DSPs allowing for
example a multiplication. After synthesis of the platform, we check
the device occupation. Table I presents the used resources along with
the FPGA occupation.

We see that the BRAMs are the limiting factor, allowing a
maximum of 7 uncached computation cells or 3 cached computation



TABLE I
RESOURCES

Resource Uncached Cached Host cell
occupation computing cell computing cell

LUTs 3870 (8.6%) 4441 (9.9%) 2559 (5.7%)
BRAMs 17 (11.5%) 34 (23.0%) 23 (15.5%)
DSP48Es 6 (4.7%) 6 (4.7%) 0 (0.0%)

cells along with 1 host cell, meeting the memory accesses limitation.
Nevertheless, current devices like Xilinx Virtex 6 and Virtex 7
are denser in terms of elements, and thus allow bigger IPs. This
allows a great flexibility for the future hardware accelerators that
will replace the PEs, and could allow for IPs duplication for SIMD
implementation.

C. Software Stack

The host cell runs an embedded Linux system. For the MPI
implementation, we chose MPICH2 due to its modularity (the sched-
uler can be changed, for example). This will be helpful in future
developments of the platform in order to take into account the
hardware, reconfigurable characteristics of the PEs.

To run an existing MPI program on our platform, it must be split
into two parts: first, the computation kernels, and second, the MPI
calls for the communication between processes. These two parts are
run respectively on the computing cells and the host cell. The stack
used for the communication between the host cell and the computing
cells is shown in Fig. 3.

The bottom level of the stack consists in a layer known as the
interface, which is able to send and receive orders and basic data
types through the mailboxes. The interface is independent from the
MPI program. The upper level consists in a proxy, which transforms
calls to kernels into a succession of calls to the interface in order to
transmit the parameters and the run order to the computing cells.
Conversely, on the MicroBlazes, the calls to MPI primitives are
replaced by calls to the proxy, which transmits the orders to the
PowerPC, eventually making the MPI call.

Unlike the interface, the proxy is deeply linked to the running
program. Indeed, it takes on the appearance of the existing C
functions so as to be invisible to the original program. In this way,
the program does not need to be modified, the only change being the
separation of the kernels from the MPI calls, and the writing of a
simple proxy layer.

III. EXPERIMENTAL RESULTS

As the benchmark, we chose a simple integer sort. Integer sort
implies exchanging arrays of integers between the PEs, what allows
testing the communications performances. It is not intended to check
the computation performances, rather the impact of jobs dispatching.

A. The NPB IS Bench

NASA Advanced Supercomputing (NAS) proposes a set of bench-
marks, the NAS Parallel Benchmarks (NPB) [5], containing eleven
tests intended to check HPC performance. Each benchmark tests
a particular aspect, such as communication between processes or
Fourier transform computation performances. The benchmarks are
proposed using different implementations, including MPI for message
passing platforms and OpenMP for shared memory machines.

We chose the Integer Sort (IS) benchmark because it can be used
to test communication speeds and computation times, and because
of its C implementation, whereas most of the benches are written
in Fortran (there is no Fortran compiler for MicroBlaze). The NPB
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Fig. 3. Software Stack.

benches can be run using various classes, each class representing a
different amount of data to match different HPC sizes. The possible
classes for the IS bench are, in ascending order, S, W, A, B, C and
D.

IS is a simple program that sorts an integer array using the bucket
sort algorithm. The number of buckets depends on the number of
processes, and can be adjusted to choose the parallelism level. The
number of processes should always be a power of two.

Each MPI job owns some buckets, in ascending order (job 0 will
get the lower-range buckets). Each MPI job also owns a part of a big
randomly-filled array of integers. Each job performs a local ranking to
identify the bucket to which each integer belongs. Then, total number
of integers in each bucket is summed upon all the jobs. Finally, the
content of each bucket on each job is sent to the job owning that
bucket.

B. Establishing the Bench

In order to run the NPB IS bench on our platform, we had
to modify it to match our architecture, the first step being to
separate the MPI communication from the sorting algorithm. The
basic test includes an option to separate communication timings from
computation timings, what has been enabled to have a detailed view
of the repartition impact.

We build the proxy the following way: the function intended to
reside on the host cell and on the computing cells are separated. In
the host cell code, the kernel function headers are preserved, while
their body is replaced by calls to the interface to build the proxy.
On the computing cells, we build a proxy layer that calls the kernels
when receiving an order from the host cells. The computing cells do
not have the notion of MPI. So a dummy MPI interface is written in
the proxy, which does the calls to the interface in order to transmit
the communication orders to the host cell.

We chose class A for the bench as a tradeoff between a minimum
size correctly representing HPC applications and a maximum size
that was reasonable given our limited number of boards.

C. Bench Results

We had thirteen ml507 boards based on Xilinx Virtex 5 that we
configured with the cached or uncached platform, and linked using
Ethernet. The server, connected to the same network, was a standard
x86 64 PC running Linux and MPICH2. Whenever possible we put,



0

50

100

150

200

250

4 8 16 32 

B
e

n
ch

 e
xe

cu
ti

o
n

 t
im

e
 (

s)

Total number of jobs

4 jobs / board (no cache)

2 jobs / board (no cache)

1 job / board (no cache)

2 jobs / board (cache)

1 job / board (cache)

Number of jobs on
each board

Fig. 4. NPB IS Bench Execution Times versus Jobs Number and Repartition.

on each board, a number of processes equal to a power of two. Since
the number of boards was however limited, not all configurations
were available: for example, having 32 cached processes would
require at least 16 boards; or attempting to run the entire bench on
a single board would have exceeded the memory available.

For the cached version, we activated only the instruction cache,
and disabled the data cache. This was necessary since, while the
instruction part consists of a relatively small loop applied to the data
(clearly in line with the cache principle), the data itself is composed of
very large arrays which are processed once before being modified by
a send and receive MPI call. Thus, caching the data means that more
time is spent flushing and updating cache lines than is saved thanks
to the cache. Activating cache upon data not only takes more time
than the instruction-only cached version, but also than the uncached
version, the additional time being about 10% of the uncached version
time. Note that this is entirely application-dependant, and enabling
data cache could be of potential interest on an application that does
more iterations on smaller arrays.

Fig. 4 shows the total execution times, including computation
and communication, versus the number of processes composing the
bench. The different curves represent the dispatching of the processes.

The horizontal axis tells us that the higher the number of processes,
the shorter the execution time, as one would expect from a parallel
application. By contrast, the vertical axis tells us that more processes
on the same board means a longer execution time. This is because
access to the memory is shared: when cells are working, there are
concurrent accesses, since the bench is being run in Single Program
Multiple Data (SPMD) mode. Since however the memory can be
accessed only by one cell at a time, there is often a cell waiting
to access memory, and no computation can take place during this
waiting time. This issue of waiting time is even more of a concern for
uncached platforms, due to the need to constantly fetch the instruction
from the memory. The more computation cells are active on the same
node, the more concurrent access there are, and the more time is lost
waiting.

Much of the time spent waiting could be avoided by using local
memory containing computing cells’ data, and using a dedicated
Network On Chip (NOC) to exchange data between cells on the
same node.

IV. RELATED WORK

Gothandaraman [6] implements a Quantum Monte Carlo chemistry
application on FPGA-based machines. They implement the kernels
the hardware way, drawing on the hardware’s pipelining capabilities.

The tests are run on two platforms: an Amirix Systems AP130 FPGA
connected to a dual-processor 2.4 GHz Intel Xeon, and a Cray-XD1
HPC. The main difference between the systems is that the first one
has a standard PCI connection between the processor and the FPGAs,
while the other implements a high bandwidth Cray’s proprietary
RapidArray fabric. Their tests also highlight the memory bandwidth
issue, with the acceleration ratio compared to software varying from
3x in the first architecture to 25x in the second one.

The work done by Kuusilinna [7] attempt to reduce memories
parallel access issues by using parallel memories. These memories
allow non-sequential accesses by following pre-defined patterns. This
technique relies on the bank-based memory repartition to store data.

V. CONCLUSION

The FPGA-based nodes architecture we depicted in this article
differs from general HPC nodes by introducing a physical
separation of the PEs intended for communication and computation,
whereas classic configurations use GPPs to do both. With classic
configurations, an OS manages the whole node, including
communication and task scheduling, even if in HPRC, some
tasks are delocalized on the hardware accelerators. In our design,
the OS is only intended for MPI management, and ideally could be
avoided and replaced by a hardware-based communicating stack.

Our work highlights the memory issues inherent to shared memory
architectures. We conclude that a SMP platform is not adapted to the
FPGA implementation we target. Concurrent data treatment requires
not only sufficient bandwidth, but also the ability to supply data to
processes in a parallel manner.

This means a distributed memory architecture should be more
suited for this use, meeting the manycore architectures. Like
manycore architecture, a NOC should be more adapted. This implies
adding local memory to the cells, but we saw that the BRAM
capacity is limited. Fortunately, current and future FPGA releases
will include growing memory sizes. As an example, a Virtex 7
v2000t does contain 55,440Kb of BRAM, where our Virtex 5 fx70t
contains only 2,160Kb.

Because of ARM predominance in low power IP cores, which
are adapted to FPGAs, one course of future exploration will be to
center our platform on ARM processors. In particular, we will study
the ARM AMBA AXI bus to check if its characteristics make it
suitable for use as a NOC.
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