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In this work a local projection stabilization method is proposed to solve a fictitious domain problem. The method adds a suitable fluctuation term to the formulation thus rendering the natural space for the Lagrange multiplier stable. Stability and convergence are proved and these results are illustrated by a numerical experiment.

Introduction

The numerical solution of problems on smooth domains, but with complicated geometries, can be faced using different approaches, e.g., isoparametric elements, approximating the curved boundary by a polygonal one, etc. The problem becomes particularly complicated in the case the domain moves or changes shape, thus forcing a constant remeshing if the shape is to be tackled in time. To avoid this, and other complications, a fictitious domain method was proposed in [START_REF] Glowinski | A fictitious domain method for Dirichlet problem and applications[END_REF] and analyzed in [START_REF] Girault | Error analysis of a fictitious domain method applied to a Dirichlet problem[END_REF]. The ficticious domain approach replaces the original problem by a mixed one on a larger (and simpler) domain that seeks for the original variable and a Lagrange multiplier on the physical boundary. In the analysis given in [START_REF] Girault | Error analysis of a fictitious domain method applied to a Dirichlet problem[END_REF] it is proved that the combination of piecewise linear functions for the primal variable and piecewise constants for the multiplier are inf-sup stable and convergent under the geometrical restriction that the mesh on the physical boundary is coarser than the mesh induced by the triangulation of the larger domain. This is a limitation especially considering that the aforementioned intersection is needed to assemble the matrix associated to the discrete problem. Since then, some attempts have been made to overcome this restriction, such as cut elements (cf. [START_REF] Burman | Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method[END_REF][START_REF] Burman | Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche´s method[END_REF]), or XFEM approaches (cf. [START_REF] Moës | Imposing Dirichlet boundary conditions in the extended finite element method[END_REF][START_REF] Haslinger | A new fictitious domain approach inspired by the extended finite element method[END_REF]).

In this work we propose a simple solution to this problem by means of a LPS-like stabilized finite element method. The starting point is the observation that the mesh for the larger domain induces a partition of the physical boundary. The Lagrange multiplier space built from this partition contains a subspace such that the combination is inf-sup stable. Then, the present approach adds a fluctuation term to the formulation penalizing the distance between this natural finite element space and the underlying stable pair. The analysis of the new method follows then an approach related to the ones treating minimal stabilization frameworks, such as [START_REF] Brezzi | A minimal stabilisation procedure for mixed finite element methods[END_REF] and [START_REF] Burman | Pressure projection stabilizations for Galerkin approximations of Stokes' and Darcy's problem[END_REF].

The rest of the paper is organized as follows. Section 2 introduces the notations and the problem of interest. Then, the method is presented and its stability is proved in Section 3. Section 4 contains the error analysis which is illustrated by means of a numerical experiment in Section 5.

Notations

We consider ω ⊆ R 2 an open bounded domain with a Lipschitz continuous boundary γ and outward normal vector n. To avoid technical difficulties we will suppose that γ is polygonal and then it's the union of N straight segments γ 1 , γ 2 , ..., γ N . The analysis can nevertheless be extended with minor modifications to the general case. For D ⊂ R 2 , the inner product on L 2 (D) (or L 2 (D) 2 ) will be denoted by (•, •) D . We adopt the usual notations for Sobolev spaces. In particular, H 1 2 (γ) will be the space of traces of functions of H 1 (ω) on γ, with dual H -1 2 (γ). The duality product on H -1 2 (γ) × H 1 2 (γ) will be denoted by •, • γ . Also, for δ ∈ [0, 1 2 ] the following space will be useful in the sequel Π N j=1 H δ (γ j ) := {ξ ∈ L 2 (γ) : ξ| γj ∈ H δ (γ j )} . The problem of interest reads as follows:

-∆u = f in ω , u = g on γ , (1) 
where f ∈ L 2 (ω) and g ∈ H 1 2 (γ). The fictitious domain approach relies on the introduction of a larger (and simpler) domain Ω ⊃ ω, an extension f of f to Ω, and the solution of the following mixed problem:

Find (u, λ) ∈ W := H 1 0 (Ω) × H -1 2 (γ) such that (∇u, ∇v) Ω -λ, v γ + µ, u γ = (f, v) Ω + µ, g γ ∀(v, µ) ∈ W . (2) 
Problems ( 1) and ( 2) are linked by the fact that if (u, λ) satisfies ( 2), then u| ω satisfies (1) and λ coincides with the jump of the normal derivative of u on γ (see [START_REF] Glowinski | A fictitious domain method for Dirichlet problem and applications[END_REF][START_REF] Girault | Error analysis of a fictitious domain method applied to a Dirichlet problem[END_REF] for details).

To solve this weak problem, we introduce T h , a regular triangulation of Ω built using triangles K with diameter h K , and h := max K∈T h h K . Let γ h be the partition of γ induced by T h , this is, the collection of edges e such that their end points are the intersections of γ with the edges of the triangulation T h , plus the angular points of γ. Let also γ h be a partition of γ, whose vertices are also vertices of γ h , with edges ẽ satisfying the following (cf. [START_REF] Girault | Error analysis of a fictitious domain method applied to a Dirichlet problem[END_REF]): there exists C > 0 such that 3h ≤ |ẽ| ≤ Ch, for all ẽ ∈ γ h. Using the mesh regularity of T h it is easy to see that for all ẽ ∈ γ h, card{e ∈ γ h : e ⊂ ẽ} ≤ C, where C > 0 is independent of ẽ and h.

Over these partitions we define the following finite element spaces:

V h := {v h ∈ C 0 (Ω) ∩ H 1 0 (Ω) : v h | K ∈ P 1 (K) , ∀K ∈ T h } , Λ h := {q h ∈ L 2 (γ) : q h | e ∈ P 0 (e) , ∀e ∈ γ h } , Λ h := {q h ∈ L 2 (γ) : q h| ẽ ∈ P 0 (ẽ) , ∀ẽ ∈ γ h} ,
and W h := V h × Λ h . The pair V h × Λ h is not inf-sup stable, while, thanks to the hypothesis on T h and γ h, the pair V h × Λ h satisfies a discrete inf-sup condition (cf. [START_REF] Girault | Error analysis of a fictitious domain method applied to a Dirichlet problem[END_REF]).

The stabilized formulation and its stability

To avoid the need to use the space Λ h, in this work we propose the following alternative discrete problem:

Find (u h , λ h ) ∈ W h such that: B[(u h , λ h ), (v h , µ h )] = (f, v h ) Ω + g, µ h γ ∀ (v h , µ h ) ∈ W h , (3) 
where

B[(u h , λ h ), (v h , µ h )] = (∇u h , ∇v h ) Ω -λ h , v h γ + µ h , u h γ + ẽ∈γh C s |ẽ|(λ h -P λ h , µ h -P µ h ) ẽ , (4) 
C s > 0, and P : L 2 (ẽ) → P 0 (ẽ) stands for the orthogonal projection in L 2 (ẽ), i.e., P ξ| ẽ := |ẽ| -1 (ξ, 1) ẽ.

Before heading to stability, we state the following preliminary result.

Lemma 1. There exists β > 0 such that, for all

µ h ∈ Λ h β µ h -1 2 ,γ ≤ sup v h ∈V h -µ h , v h γ |v h | 1,Ω +    ẽ∈γh C s |ẽ| µ h -P µ h 2 0,ẽ    1 2 Proof. Let µ h ∈ Λ h . Then µ h -1 2 ,γ ≤ µ h -P µ h -1 2 ,γ + P µ h -1 2 ,γ . (6) 
Using the definition of the norm on H -1 2 (γ), the fact that P is the orthogonal projection, Cauchy-Schwarz's inequality and the approximation properties of P (cf. [START_REF] Ern | Theory and practice of finite elements[END_REF]) it follows that

µ h -P µ h -1 2 ,γ = sup ξ∈H 1 2 (γ) µ h -P µ h , ξ γ ξ 1 2 ,γ = sup ξ∈H 1 2 (γ) ẽ∈γh (µ h -P µ h , ξ) ẽ ξ 1 2 ,γ = sup ξ∈H 1 2 (γ) ẽ∈γh (µ h -P µ h , ξ -P ξ) ẽ ξ 1 2 ,γ ≤ sup ξ∈H 1 2 (γ) ẽ∈γh µ h -P µ h 0,ẽ ξ -P ξ 0,ẽ ξ 1 2 ,γ ≤ sup ξ∈H 1 2 (γ) ẽ∈γh |ẽ| µ h -P µ h 2 0,ẽ 1 2 N j=1 ẽ⊂γj |ẽ| -1 ξ -P ξ 2 0,ẽ 1 2 ξ 1 2 ,γ ≤ C sup ξ∈H 1 2 (γ) ẽ∈γh C s |ẽ| µ h -P µ h 2 0,ẽ 1 2 N j=1 ξ 2 1 2 ,γj 1 2 ξ 1 2 ,γ ≤ C    ẽ∈γh C s |ẽ| µ h -P µ h 2 0,ẽ    1 2 . ( 7 
)
To bound the second term in [START_REF] Girault | Error analysis of a fictitious domain method applied to a Dirichlet problem[END_REF] we start noting that using the continuous inf-sup condition (cf. [START_REF] Girault | Error analysis of a fictitious domain method applied to a Dirichlet problem[END_REF]) there exists β > 0 such that

β P µ h -1 2 ,γ ≤ sup v∈H 1 0 (Ω) -P µ h , v γ |v| 1,Ω . (8) 
Next, since the pair V h × Λ h satisfies a discrete inf-sup condition (cf. [START_REF] Girault | Error analysis of a fictitious domain method applied to a Dirichlet problem[END_REF]) there exists a Fortin operator π h : H 1 0 (Ω) → V h , i.e., a continuous linear operator such that µ h, v γ = µ h, π h (v) γ for all µ h ∈ Λ h. Then, using [START_REF] Haslinger | A new fictitious domain approach inspired by the extended finite element method[END_REF], the properties of π h , Cauchy-Schwarz's inequality, the approximation properties of P and the trace theorem it follows that

β P µ h -1 2 ,γ ≤ sup v∈H 1 0 (Ω) -P µ h , π h (v) γ C|π h (v)| 1,Ω ≤ sup v∈H 1 0 (Ω) µ h -P µ h , π h (v) γ C|π h (v)| 1,Ω + sup v∈H 1 0 (Ω) -µ h , π h (v) γ C|π h (v)| 1,Ω ≤ sup v∈H 1 0 (Ω) ẽ∈γh (µ h -P µ h , π h (v) -P π h (v)) ẽ C|π h (v)| 1,Ω + sup v∈H 1 0 (Ω) -µ h , π h (v) γ C|π h (v)| 1,Ω ≤ C sup v∈H 1 0 (Ω) ẽ∈γh C s |ẽ| µ h -P µ h 2 0,ẽ 1 2 N j=1 π h (v) 2 1 2 ,γj 1 2 |π h (v)| 1,Ω + C sup v h ∈V h -µ h , v h γ |v h | 1,Ω ,
and the result follows.

We next state the main stability result for [START_REF] Burman | Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method[END_REF]. For this, we introduce the following mesh-dependent norm on W h :

(v h , µ h ) 2 W h := |v h | 2 1,Ω + β 2 µ h 2 -1 2 ,γ + ẽ∈γh C s |ẽ| µ h -P µ h 2 0,ẽ . (9) 
Theorem 2. The bilinear form B satisfies sup

(v h ,µ h )∈W h B[(u h , λ h ), (v h , µ h )] (v h , µ h ) W h ≥ 1 6 (u h , λ h ) W h , (10) 
for all (u h , λ h ) ∈ W h . Hence, problem (3) is well-posed.

Proof. Let (u h , λ h ) ∈ W h . From the definition of B it easily follows that

B[(u h , λ h ), (u h , λ h )] = |u h | 2 1,Ω + ẽ∈γh C s |ẽ| λ h -P λ h 2 0,ẽ . (11) 
Next, from Lemma 1 there exists

w h ∈ V h such that |w h | 1,Ω = β λ h -1 2 ,γ and 
β 2 λ h 2 -1 2 ,γ -β λ h -1 2 ,γ    ẽ∈γh C s |ẽ| λ h -P λ h 2 0,ẽ    1 2 ≤ -λ h , w h γ .
Then, applying Cauchy-Schwarz's and Young's inequalities we obtain

B[(u h , λ h ), (u h + 1 2 w h , λ h )] = |u h | 2 1,Ω + ẽ∈γh C s |ẽ| λ h -P λ h 2 0,ẽ + 1 2 (∇u h , ∇w h ) Ω -λ h , w h γ ≥ 1 2 |u h | 2 1,Ω + ẽ∈γh C s |ẽ| λ h -P λ h 2 0,ẽ - 1 8 β 2 λ h 2 -1 2 ,γ + 3β 2 8 λ h 2 -1 2 ,γ - 1 2 ẽ∈γh C s |ẽ| λ h -P λ h 2 0,ẽ = 1 2 |u h | 2 1,Ω + β 2 4 λ h 2 -1 2 ,γ + 1 2 ẽ∈γh C s |ẽ| λ h -P λ h 2 0,ẽ ,
and the proof is finished noting that (

u h + 1 2 w h , λ h ) W h ≤ 3 2 (u h , λ h ) W h .

Error analysis

Supposing that λ ∈ L 2 (γ) we split the error into interpolation and discrete errors as follows (e u , e λ ) :=

(u -u h , λ -λ h ) = (u -I h u, λ -J h λ) + (I h u -u h , J h λ -λ h ) =: (η u , η λ ) -(e h
u , e h λ ), where I h stands for the Lagrange interpolation operator, and J h λ ∈ Λ h is defined by J h λ| e := |e| -1 (λ, 1) e . As most of LPS-like methods, (3) introduces a consistency error. Using (2), (3) and the definition of B, the following result is readily established.

Lemma 3. Let us suppose that λ ∈ L 2 (γ). Then, for all (v h , µ h ) ∈ W h B[(e u , e λ ), (v h , µ h )] = ẽ∈γh C s |ẽ|(λ -P λ, µ h -P µ h ) ẽ.
Note that, though solution of (1) can be supposed in H 2 (ω), we can not expect the same regularity for the solution u of (2), which only belongs to H s (Ω), with 3 2ε ≤ s ≤ 2 for any ε > 0 (see [START_REF] Girault | Error analysis of a fictitious domain method applied to a Dirichlet problem[END_REF]). For the Lagrange multiplier λ, it belongs to L 2 (γ) in the worst case and to Π N j=1 H 1 2 (γ j ) in the best case. The main result of this section, namely the convergence of method (3), is stated next.

Theorem 4. Let us suppose that u ∈ H s (Ω) ( 3 2 -ε ≤ s ≤ 2) and that λ ∈ Π N j=1 H δ (γ j ) (0 ≤ δ ≤ 1 2 )
. Then there exists a constant C > 0, independent of h, such that:

(e u , e λ ) W h ≤ C   h s-1 |u| s,Ω + h 1 2 +δ   N j=1 λ 2 δ,γj   1 2    . (12) 
Proof. The first step is to bound the discrete error. For this, let (w h , t h ) ∈ W h such that (w h , t h ) W h = 1 and the maximum on Theorem 2 is attained. Then, using Lemma 3 and Cauchy-Schwarz's inequality we arrive at

1 6 (e h u , e h λ ) W h ≤ B[(e h u , e h λ ), (w h , t h )] = -B[(e u , e λ ), (w h , t h )] + B[(η u , η λ ), (w h , t h )] = - ẽ∈γh C s |ẽ|(λ -P λ, t h -P t h ) ẽ + (∇η u , ∇w h ) Ω -η λ , w h γ + t h , η u γ + ẽ∈γh C s |ẽ|(η λ -P η λ , t h -P t h ) ẽ ≤ |η u | 1,Ω |w h | 1,Ω + η λ -1 2 ,γ w h 1 2 ,γ + t h -1 2 ,γ η u 1 2 ,γ + √ 2   ẽ∈γh C s |ẽ| λ -P λ 2 0,ẽ + η λ -P η λ 2 0,ẽ   1 2   ẽ∈γh C s |ẽ| t h -P t h 2 0,ẽ   1 2
.

Next, the fact that (w h , t h ) W h = 1, the trace Theorem and Poincaré's inequality lead to

(e h u , e h λ ) W h ≤ C   |η u | 1,Ω + η λ -1 2 ,γ +   ẽ∈γh C s |ẽ| λ -P λ 2 0,ẽ + η λ -P η λ 2 0,ẽ   1 2    . ( 13 
)
Using a standard interpolation result (cf. [START_REF] Ern | Theory and practice of finite elements[END_REF]), we have |η u | 1,Ω ≤ Ch s-1 |u| s,Ω . In addition, the approximation properties of P , its continuity and the approximation properties of J h lead to 

Finally, to bound the term η λ -1 2 ,γ , we follow steps analogous to [START_REF] Glowinski | A fictitious domain method for Dirichlet problem and applications[END_REF] and use |ẽ| ≤ Ch to arrive at:

λ -J h λ -1 2 ,γ = sup ξ∈H 1 2 (γ) N j=1 (λ -J h λ, ξ -J h ξ) γj ξ 1 2 ,γ ≤ Ch 1 2 +δ   N j=1 λ 2 δ,γj   1 2 . (15) 
Hence, gathering (13), ( 15) and ( 14) we obtain

(e h u , e h λ ) W h ≤ C   h s-1 |u| s,Ω + h 1 2 +δ   N j=1 λ 2 δ,γj   1 2    .
The interpolation error (η u , η λ ) W h is bounded in the same way and we get

|η u | 1,Ω + β η λ -1 2 ,γ +   ẽ∈γh C s |ẽ| η λ -P η λ 2 0,ẽ   1 2 ≤ C   h s-1 |u| s,Ω + h 1 2 +δ   N j=1 λ 2 δ,γj   1 2    .
The error estimate then follows from the triangular inequality. In order to illustrate the above theoretical results, a numerical test has been performed. Problem (1) has been solved using method (3)-( 4). We chose ω = [0; 1] 2 , Ω = [-a; 1 + a] 2 (with a > 0), and f (x, y) = 2((x + a)(1 + ax) + (y + a)(1 + ay)) so that problem (1) has an analytical solution u a (x, y) = (x+ a)(1+ a-x)(y + a)(1+ a-y). We set g = u a | γ and use a = 0.5. A structured mesh T h of Ω is built, from which the boundary meshes γ h and γ h were obtained automatically, with γ h satisfying 3h ≤ |ẽ| ≤ 6h. The computations have been performed with Matlab TM / Octave. The errors appear to be fearly independent of the value of C s in the range 0.1 ≤ C s ≤ 1000, and then we have fixed C s = 0.1 in our experiments. Convergence results are displayed Figure 1. Note that for the errors |uu h | 1,Ω and λλ h 0,γ the optimal convergence order O(h) is recovered, with a faster convergence rate for the latter (in our case λ = 0, which helps to explain the faster convergence). This confirms our theoretical result (12). Without stabilization (C s = 0), a singular matrix is obtained if the condition 3h ≤ |ẽ| is violated. This confirms the necessity of the geometric condition 3h ≤ |ẽ| ≤ Ch of [START_REF] Girault | Error analysis of a fictitious domain method applied to a Dirichlet problem[END_REF] without stabilization, and the interest of our stabilized formulation.

ẽ⊂γj λ -P λ 2 0

 2 ,ẽ ≤ Ch 2δ λ 2 δ,γj and ẽ⊂γj η λ -P η λ 2 0,ẽ ≤ Ch 2δ λ 2 δ,γj .
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 1 Figure 1: Convergence of the method (3)-(4): errors |uu h | 1,Ω (left) and λλ h 0,γ (right).
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