
HAL Id: hal-00648628
https://hal.science/hal-00648628

Submitted on 6 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Causality closure for a new class of curves in real-time
calculus

Karine Altisen, Matthieu Moy

To cite this version:
Karine Altisen, Matthieu Moy. Causality closure for a new class of curves in real-time calculus.
Proceedings of the 1st International Workshop on Worst-Case Traversal Time, Nov 2011, Vienna,
Austria. pp.3–10, �10.1145/2071589.2071590�. �hal-00648628�

https://hal.science/hal-00648628
https://hal.archives-ouvertes.fr

Causality Closure for a New Class of Curves
in Real-Time Calculus

Karine Altisen
Karine.Altisen@imag.fr

Matthieu Moy
Matthieu.Moy@imag.fr

Verimag (UMR CNRS 5104), Grenoble INP
Grenoble, F-38041, France

ABSTRACT

Real-Time Calculus (RTC) [14] is a framework to analyze
heterogeneous real-time systems that process event streams of
data. The streams are characterized by arrival curves which
express upper and lower bounds on the number of events
that may arrive over any specified time interval. System
properties may then be computed using algebraic techniques
in a compositional way.

The property of causality on arrival curves essentially
characterizes the absence of deadlock in the corresponding
generator. A mathematical operation called causality closure
transforms arbitrary curves into causal ones.

In this paper, we extend the existing theory on causality
to the class Upac of infinite curves represented by a finite
set of points plus piecewise affine functions, where existing
algorithms did not apply. We show how to apply the causal-
ity closure on this class of curves, prove that this causal
representative is still in the class and give algorithms to
compute it. This provides the tightest pair of curves among
the curves which accept the same sets of streams.

Categories and Subject Descriptors

I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms; D.4.8 [Computer Sys-

tems Organization]: Performance of Systems—Modeling
Techniques

General Terms

Performance

Keywords

Real-Time Calculus, Causality, Algorithms

1. INTRODUCTION
Modern embedded system design must deal with more

and more constraints in several domains: an ever increasing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WCTT ’11 November 29 2011, Vienna, UNK, Austria
Copyright 2011 ACM 978-1-4503-1008-6/11/11 ...$10.00.

size, deeply interdependent softwares and hardwares, timing
constraints, low power constraints with power management
mechanisms included. Furthermore, they have to be manu-
factured at low cost, and with an increasingly short life-cycle.
In this context, it is no longer possible to wait for the phys-
ical prototypes to validate the decisions on the design of a
system: hardware dimensioning (e.g. buffer size) and timing
performance should be evaluated at an early stage of the
development.

In this work, we focus on the performance evaluation of
embedded systems using the Real-Time Calculus framework
(RTC) [14]. It uses abstract models to analyze heterogeneous
systems in a compositional manner. It allows the character-
ization of streams of events to be treated by a component
with curves called arrival curves: they provide the worst and
best cases on the number of events that may arrive in any
window of time of a given length. RTC also uses the notion
of service curves, which count available resources instead of
events in a similar manner. A given component’s interface
is described with curves for its input stream and available
resources, and some other curves for the outputs. The huge
advantage of RTC is its ability, for already-modeled com-
ponents, to give exact bounds (i.e. both conservative and
as tight as possible) on the output stream of a component
as a function of its input stream. Unfortunately, complex
components can not be modeled in RTC. In particular, RTC
models cannot handle state-based components such as power
managed systems.

Some works proposed RTC extensions using Event Count
Automata [13], Timed Automata [9, 10, 15, 1], and Syn-
chronous Programs [2]; all of those approaches perform the
analysis using some formal verification tool (model-checking,
abstract interpretation) and they all face the causality prob-
lem [3] in a way or another. They express the input arrival
curves as a non-deterministic generator, or an observer of
events that encodes the constraints of the curves. Arrival
curves are functions of relative time that constrains the num-
ber of events that can occur in an interval of time: for any
sliding window of time, the functions explicitly express the
maximum and minimum number of events. But, arrival
curves may also contain implicit constraints deduced from
explicit ones. It may happen that the corresponding genera-
tor of events deadlocks, due to conflicting implicit constraints.
Curves exhibiting such contradictions are called non-causal.
They can thus lead to deadlocks in generators, but also to
spurious counter-examples in formal verification, or simply to
suboptimal results. Conversely, they can also be produced by
non-exact computations: e.g. when a curve is computed after

abstracting the system [1], using abstract interpretation [2],
or using a non-complete model-checking algorithm [13]. It is
therefore useful in some cases, mandatory in others, to solve
this issue by transforming non-causal curves into causal ones.

This causality problem has been studied theoretically in
[3]: this work provides an algebraic characterization of a
causal pair of curves and defines the causality closure which
makes the implicit constraints explicit. This operation, as a
free side effect, results in the best pair of curves among the
equivalent ones.

The present paper provides algorithms that extend and
apply the results in [3]; it computes the causality closure on
infinite curves with a particular shape. We focus on so-called
Upac curves defined by a finite set of points followed by a
piecewise convex/concave affine part. This class of curves
is interesting since it enables to have a finite and simple
computational encoding for the curves whereas curves are
infinite. They may include a precise description for short
windows of time, description with affine pieces for larger
windows and then the long term rate curve. The Upac class
includes (but is strictly larger than) the class of curves used
in [9], which cannot express non convex/concave curves. It is
the one used in [2] which computes the performance (given
as arrival curves) of a system modeled as a synchronous
program and uses bounded model-checking and abstract
interpretation. In [2], the causality closure is used to prevent
the tool from computing spurious counter-examples in the
proofs and to increase the precision of the result, but the
actual algorithm and the underlying theory that handles
causality for Upac curves were never published. This paper
fills this gap with the following contributions:

• We identify a normal form on Upac curves, on which
the causality closure can be computed easily; we prove
that the causal representatives of such curves are still
in the class;

• We provide an algorithm that transforms a pair of
curves of the class into normal form and then computes
the causality closure, i.e. the causal representative of
the curves.

The algorithms are all in polynomial time (quadratic) and
have been implemented in ac2lus. The results of the
paper are all proved (due to space limitations, full proofs
only appear in the extended version of this paper [12], but the
intuition is given here). Furthermore, although all along
the paper we talk about arrival curves, the reader should
be convinced that the results and the algorithms also apply
to service curves in Real-Time Calculus, and strict service
curves in network calculus [4], which behave the same.

The outline of this paper is as follows: Section 2 sum-
marizes the Real-Time Calculus background and recalls the
notion of causality from [3]; Section 3 defines the above class
of curves and provides the first contribution of this paper:
a normal form and a normalization algorithm. Section 4
gives the second contribution: an algorithm for the causality
closure on those curves.

2. CAUSALITY IN REAL-TIME CALCULUS:

MOTIVATION AND FORMALIZATION

2.1 Real-Time Calculus Curves
The Real-Time Calculus focuses on components that pro-

cess events; it uses curves to characterize the streams of

events a component may compute. Event streams are ab-
stracted with cumulative curves that represent the number
of events that occurred since the origin of time t = 0. Arrival
curves characterize the timing properties of a set of event
streams using their cumulative curves. A pair of lower and
upper arrival curves defines lower and upper bounds on the
number of events allowed in a sliding window of ∆ unit of
time. Since the goal of the paper is to define algorithms, we
need the curves to be machine-representable. We consider
the discrete-time fluid-event model where the time is dis-
crete, but the event counters are rational-numbers. Notice
that the definitions and characterization of the causality are
nevertheless model-independent.

Formally, the cumulative curves and the arrival curves are
functions from N (time) to Q+ (number of events) where
N is the set of naturals and Q+ is the set of non-negative
rationals. We note C the set of wide-sense increasing curves
c from N to Q+ = Q+ ∪ {∞} and such that c(0) = 0; C is
the set of such curves from N to Q+ (no infinity value). The
order on curves is point-wise.

Definition 1 (Cumulative Curves, Arrival Curves).
Functions R ∈ C are called cumulative curves: R(t) rep-
resents the (finite) amount of events that occurred in the
interval of time [0, t]. A pair of arrival curves is a pair of
functions (αu, αl) in C × C, such that αl ≤ αu.

Let R be a cumulative curve and (αu, αl) be a pair of arrival
curves. R is said to satisfy (αu, αl) noted R |= (αu, αl) iff
∀x ∈ N , ∀∆ ∈ N , R(x + ∆) − R(x) ∈ [αl(∆), αu(∆)]. We
say that a pair of arrival curves (αu, αl) is satisfiable iff
there exists a cumulative curve R that satisfies (αu, αl).

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

0 1 2 3 4 5 6

∆

7

events

1

2

3

4

5

6

7

0

αl

αu

��
��
��
��

�������
�������
�������
�������

����

0 1 2 3 4 5 6

αl

αu

∆

7

events

0

1

2

3

4

5

6

7

(a) Unreachable Regions (b) Forbidden regions

Figure 1: Implicit constraints on arrival curves

The fact that arrival curves are defined on relative time
(windows of size ∆) involves many implicit constraints. Among
those constraints, some may be tighter than the constraints
explicitly given by the curves. In [3], two kinds of implicit
constraints were informally distinguished (see Figure 1). The
first ones (as in the above explanation) remove regions called
unreachable regions (see Figure 1(a)): no (finite nor infinite)
cumulative curve can cross through those regions. The re-
moval is done using the sub and super additive closures of
the curves which are briefly recalled here, but this result is
well-known and detailed in e.g. [11]. For example, splitting
a window of size ∆ into two windows of size ∆1 and ∆2 (s.t.
∆1 + ∆2 = ∆) may reveal a greater bound αl(∆1) + αl(∆2)
for αl(∆). This removes some regions from the curve and
leads to an equivalent but tighter pair of arrival curves.

Definition 2 (Sub and Super Additive Closures).
Let α ∈ C. α is said to be sub-additive (resp. super-
additive) iff ∀s, t ∈ N . α(t + s) ≤ α(t) + α(s) (resp

α(t + s) ≥ α(t) + α(s)). Among all the sub-additive (resp.
super-additive) curves that are smaller (resp. greater) than
α there exists an upper (resp. lower) bound called the sub-
additive (resp. super-additive) closure of α and denoted by
α (resp. α).

A pair of arrival curves (αu, αl) is sub-additive and super-
additive (denoted SA-SA for short) iff αu is sub-additive and
αl is super-additive. We note (αu, αl) the SA-SA closure of
(αu, αl).

The SA-SA closure makes explicit the unreachable regions
of the curves: they are the regions between αl and its super-
additive closure αl in the one side, between αu and its sub-
additive closure αu on the other.

2.2 Causality and the Causality Closure
The second kind of constraints removes the forbidden re-

gions: no execution can cross a forbidden region without
being blocked some time latter by some contradiction be-
tween lower and upper constraints (for example, being forced
to emit more than 2 events but less than 1 which is not
possible). In other words, there cannot exist an infinite
cumulative curve that crosses through such a region (see
Figure 1(b)). It may occur due to the forbidden regions of
some implicit constraints that an event stream (represented
by a cumulative curve) satisfies a pair of arrival curves up
to a certain time T , but then deadlocks since no time can
elapse and no event can be emitted without violating the
arrival curves. A pair of arrival curves for which this problem
cannot happen is called causal.

Issues and Solutions with Non-Causal Curves. The causal-
ity problem has received surprisingly little attention in the
Real-Time Calculus community, although many of the exist-
ing approaches which connect Real-Time Calculus to other
formalisms (e.g. [9, 8, 13]) did produce, or have problems
with non-causal pairs of curves.

Indeed, non-causal curves can be produced by non-exact
algorithms, that is, whenever a conservative approximation
is performed in a computation. This is the case when using
techniques like abstract interpretation, model-checking algo-
rithms with a timeout like in [2], or when abstractions are
performed on the model before the computation [1]. It can
also happen when an algorithm computes only part of the
points of an arrival curve, like done in [13].

When an algorithm produces non-causal curves, the causal-
ity closure provides another pair of curve which is equivalent
and tighter, somehow increasing the precision of the result.
See [1] for an example where such a post-treatment of the
curve leads to a better precision.

In addition to their sub-optimality, non-causal curves can
be a real issue if used as input of some algorithms. Most
model-checking algorithms may produce spurious counter-
examples if fed with non-causal hypothesis. It is possible to
solve the non-causality during the state-space exploration
either in the tool itself (see for example the -causal option
of Lesar [6]) or with an appropriate temporal logic formula
as proposed in [10], but this leads to costly algorithms, and is
not applicable with any tool (for example, Nbac, used in [2]
cannot do it). As opposed to this, the causality closure can
be applied a priori on the curves regardless of the tool being
used for the analysis, and with much cheaper algorithms.

Non-causal curves would also greatly complexify the design
of an event generator for simulation-based approaches [7]: the

usual implementations generate event streams that satisfy
the constraints up to the current point in time, but doing so
may result in deadlocks in the future (contradiction between
the upper-bound and the lower-bound). A generator for non-
causal curves would therefore have to explore the reachable
state-space in the future to make sure a deadlock will not
occur. Again, it is much simpler, and cheaper algorithmically,
to make the curves causal a priori.

In summary, 1) when computing output curves as functions
of input curves, applying the causality closure on inputs
allows to get rid of the causality problem and therefore
to use any method, even if it is not robust to non-causal
inputs. And 2) applying the causality closure on the output
may increase the precision of the result, providing the best
equivalent output curves.

Characterization of Causality. The following paragraph
recalls the formal definition of causality and the main results
from [3] which are used in this paper.

Definition 3 (Causal Arrival Curves). Let (αu, αl)
be a pair of arrival curves. (αu, αl) is said to be causal iff for
any T ∈ N , any cumulative curve R that satisfies (αu, αl)
up to T can be extended forever into a cumulative curve R′

that also satisfies (αu, αl). In other words, (αu, αl) is causal
iff ∀T ≥ 0, ∀R,
(

R |=≤T (αu, αl)
)

=⇒
(

∃R′ | R′ |= (αu, αl) and ∀t ≤ T, R(t) = R′(t)
)

where the fact that R satisfies (αu, αl) up to T is defined
by: R |=≤T (αu, αl) iff ∀t ≤ T, ∀∆ ≤ t, R(t) − R(t − ∆) ∈
[αl(∆), αu(∆)].

We now give an algebraic characterization of causality.
Intuitively, let us consider some pair of curves (αu, αl), and
a cumulative curve R such that R(T) = αl(T). We now look
at an extension of R for x units of time after T . The number
of events to emit between T and T +x (i.e. R(T +x)−R(T))
has to be lower than αu(x), but the total number of event
since the beginning (i.e. R(T + x)) has to be greater than
αl(T + x). Since we have chosen R(T) = αl(T), this means
that the number of events emitted between T and T + x has
to be at least αl(T + x) − αl(T). Combining the constraints
on αu and αl, we deduce that for (αu, αl) to be causal, we
must have ∀x ≥ 0, αu(x) ≥ R(T + x) − R(T) ≥ αl(T +
x) − αl(T), hence αl(T) ≥ supx≥0

{

αl(T + x) − αu(x)
}

=
(

αl ⊘ αu
)

(T). This example is far from being a proof, but
gives a part of the intuition, and exhibits a formula using
the deconvolution operator ⊘. Following this intuition, it
was shown in [3] a necessary and sufficient condition for
the causality, based on this formula: a pair of curves is
causal iff its SA-SA closure is stable when applying some
deconvolutions on it. We use the classical (min, +) (resp.
(max, +)) deconvolution operators [11] ⊘ and ⊘ : for c and

d in C, for x ≥ 0, (c ⊘ d)(x)
def

= supt≥0{c(x + t) − d(t)} and

(c ⊘ d)(x)
def

= inft≥0{c(x + t) − d(t)}.

Theorem 1 (Characterization of Causality). Let
(αu, αl) be a pair of arrival curves:

(αu, αl) is causal ⇐⇒ αl = αl ⊘ αu and αu = αu ⊘ αl

Notice that the causality, unlike SA-SA properties, is a
property on a pair of curves; it does not make sense to say
that αu alone, or αl alone, is causal since the impossibility to
extend a cumulative curve can come only from a contradiction
between an upper bound and a lower bound.

Given a pair of arrival curves, the removal of its forbidden
regions is achieved using deconvolution operators, as a direct
consequence of the characterization.

Definition 4 (The C operator). A pair (αu, αl) of
arrival curves has been defined as functions in C × C such
that αu ≥ αl (see Definition 1). We note ⊥AC the set of pairs
of functions in C×C such that the former constraint is false;
⊥AC will be considered as a single element, for simplicity,
even if it represents an infinite set of objects. Let AC be the
set of all pairs of arrival curves plus ⊥AC. The operator C,
is defined from AC to AC as:

C (⊥AC)
def
= ⊥AC

C
(

αu, αl
)

def
=

(

let C
u = αu ⊘ αl,Cl = αl ⊘ αu

if Cu ≥ C
l then (Cu,Cl)

else ⊥AC

The operator C makes explicit some implicit constraints of
the curves and removes some forbidden regions. In some
cases, it may occur that the lower and the upper curve cross
over: this means that the curves were not satisfiable (i.e. no
cumulative curve satisfies it); this is denoted with the ⊥AC

value. As opposed to this, when the curves were satisfiable,
the operator computes a causal pair of curves equivalent to
the original ones.

Theorem 2. For any pair of arrival curves (αu, αl),
• C(αu, αl) = ⊥AC ⇐⇒ (αu, αl) is non-satisfiable;
• C(αu, αl) is causal, SA-SA and equivalent to (αu, αl),

otherwise.
When (αu, αl) is satisfiable, C(αu, αl) is the tightest pair
of curves equivalent to (αu, αl). Conversely, if (αu, αl) is
the tightest pair of curves representing a set of cumulative
curves, then (αu, αl) is causal.

By tightest, we mean the smallest (resp. the greatest) curve
for the upper (resp. lower) part among the set of equivalent
pairs of arrival curves. Given a pair of curves, one can
compute the causality closure C(αu, αl), and get either the
information that the curves are not satisfiable, or the tightest
causal representative of the original arrival curves.

3. ULTIMATELY PIECEWISE AFFINE CURVES

We now study the set of Upac curves comprising both a
finite prefix given by a set of points and a long-term rate
given by a piecewise-affine, convex/concave pairs of curves.
This class of curves is the one used in the tool ac2lus [2]. It
was chosen to be both expressive and adapted to interfacing
with other formalisms.

A wider class is the one of ultimately periodic curves,
widely used in analytical models (like the MPA-RTC tool-
box [16]). This class is expressive, but hard to use in the
interfacing with state-based formalisms. Most interfacing
approaches restrict to a much stricter class. For example, [9]
use convex/concave piecewise affine curves. An extension to
non-convex/concave curves is proposed in [10], but involves
more complex synchronization of automata, hence a greater

algorithmic complexity. [1] and [15] use discrete, finite curves,
which are not able to express precisely the long-term rate of
the streams. [13] can use any ultimately periodic curve to
model the input of a component, but the output computed
has a periodic part limited to a single entry (a long term
period), hence, the generality of the model is not exploited.

The Upac class is basically a combination of the finite,
discrete curves from [15], with the convex/concave curves
of [9]. It allows a precise and possibly non-convex/concave
description of the initial portion of the curves, as well as a
set of constraints on the long-term rate of the event stream;
it may be easily machine-representable: the finite portion is
basically an array and each affine piece is encoded with its
slope and its Y -intercept.

We first define this class of curves. The goal is to obtain an
algorithm that computes the causality closure on Upac. In
order to do that, we define a normal form and we propose an
algorithm to compute for each curve in Upac its normal form.
This is the first step for the computation of the causality
closure: the normal form is SA-SA and the C operator will
be easily (in a computational manner) applicable on the
normal form of the curve.

3.1 Upac: Formal Definitions

Definition 5 (Upac). We define the class of Upac curves
as the set of pairs of curves (αu, αl) such that there exists

• P (αu), P (αl) ∈ N : size of the finite prefix (i.e. ab-
scissa of the last point explicitly given in the represen-
tation);

• N(αu), N(αl) ∈ N : number of pieces of the piecewise
affine part of the curves;

• a set of values pu
i ∈ N , i ∈ [0, P (αu)], and a set of

rational values au
j , bu

j , j ∈ [1, N(αu)]: representation of
the curve αu;

• a set of values pl
i ∈ N , i ∈ [0, P (αl)], and a set of

rational values al
j , bl

j, j ∈ [1, N(αl)]: representation of

the curve αl;
such that, ∀∆ ≥ 0:

F u(∆) = if ∆ ∈ [0, P (αu)] then pu
∆ else + ∞;

F l(∆) = if ∆ ∈ [0, P (αl)] then pl
∆ else pl

P (αl);

Iu(∆) =

{

if N(αu) > 0
then minj∈[1,N(αu)]

{

au
j ∆ + bu

j

}

else + ∞;

Il(∆) =







if N(αl) > 0
then maxj∈[1,N(αl)]

{

al
j∆ + bl

j

}

else 0;

with αu(∆) = min {F u(∆), Iu(∆)}
and αl(∆) = max

{

F l(∆), Il(∆)
}

.

The tuple
(

P (αu), P (αl), N(αu), N(αl), {pu
i }i∈[0,P (αu)],

{au
j , bu

j }j∈[1,N(αu)], {pl
i}i∈[0,P (αl)], {al

j , bl
j}i∈[1,P (αl)]

)

is called

the representation of the pair (αu, αl). It corresponds to the
data-structure to be used in algorithms. We call the set of
points pu

i and pl
i the finite prefix and each line aj∆ + bj the

affine pieces of (αu, αl).

Note that we require the individual points to be integers
(this will be necessary to ensure the convergence of the algo-
rithms later), but remain in the fluid-event model. Figure 2

shows an example: the upper part is made of 3 points and
two affine pieces; the lower part, 3 points, one affine piece.

10

9

8

αu(∆)

affine piece:
(∆ − 2)/2

affine piece:
(∆ + 12)/2

affine piece:
∆ + 3

αl(∆)

109876543210

7

6

5

4

3
2

1

0

#events

∆

Figure 2: Example of a Upac curve

3.2 Normal form in Upac
To compute the causality closure on Upac curves, the

difficulty comes from the points of αu and αl, which can
interact together, or with the affine pieces of the other curve.
In particular, arbitrary curves with points and affine pieces
are not necessarily SA-SA. We will first transform the curves
to ones that obey a few well-formedness properties, which
we call the normal form.

The causality closure is trivial if the curves have only affine
pieces, as expressed later in Theorem 5. Curves compris-
ing only points are not SA-SA, and could not be made so
algorithmically (since their SA-SA closure has an infinite
number of points). This difficulty can be eliminated thanks
to the piecewise affine part of the curves: we can apply the
SA-SA closure to the points of the curves, and only a finite
number of points will remain under or above the affine pieces.
If this is not the case, then it means the affine pieces add
no information and can be removed. This transformation is
called the normalization, and is presented in Algorithm 1;
it leads to a SA-SA curve (Theorem 4) made of points and
affine pieces. This allows to apply the C operator on it to
get a causal pair of curves. The computation of C is made
easier by Theorem 6, which reduces the computation of C
to a version where all the operators are bounded.

3.2.1 Properties of SA-SA Closure of Finite Prefix

We first focus on the finite prefix (i.e. the points) of Upac
curves, in order to introduce two intermediate results that
will be useful in the computation of the normal form and of
the causality closure.

We first need to define properly the notion of “finite curves”
and the associated operators. We define “finite curves” as
restriction of infinite ones: the restriction of (αu, αl) to [0, T]
is defined as:

∀t ≤ T, αu∣
∣

T
(t)

def

= αu(t) and αl∣
∣

T
(t)

def

= αl(t)

∀t > T, αu∣
∣

T
(t)

def

= +∞ and αl∣
∣

T
(t)

def

= αl(T)

This way, αu∣
∣

T
and αl∣

∣

T
match the intuition of finite curves,

can be easily represented with a finite set of points, but
are still infinite objects on which the usual theorems apply.
This notion matches the Upac subset of curves with no affine
pieces (N(αl) = N(αu) = 0).

The SA-SA closure
(

αu
∣

∣

T
, αl∣
∣

T

)

represent the same set of

cumulative curves as (αu∣
∣

T
, αl∣
∣

T
). The situation is illustrated

on Figure 3, representing an upper curve defined explicitly
up to ∆ = 3, and its sub-additive closure.

It should be noted that, in this case, (αu, αl) is no longer
a Upac curve, since it has an infinite number of points (as
far as ∃t > 0.αu(t) < +∞). However, one can define the
property SA-SA up to P and the associated closure (see [3]
for details): the SA-SA closure up to P and (αu, αl) will be
identical on [0, P]. Additionally, [5] (page 7), provides an
efficient way to compute the sub-additive closure in discrete
events. It can easily be adapted to compute the SA-SA
closure over [0, P] leading to a simple, quadratic algorithm.
The SA-SA closure up to P (αl) (resp. P (αu)) can be applied
to the finite prefix of any pair of curves in Upac. The finite
prefix of αu (resp. αl) allows us to compute the slope SP (αu)
(resp. SP (αl)) of the curve, the point of maximal influence
∆P (αu) (resp. ∆P (αl)), and the maximal drift dP

m(αu) (resp.
dP

m(αl)) defined as follows and illustrated in Figure 3.

Definition 6. Let (αu, αl) be a pair of arrival curves,
and P > 0. We define the following:

SP (αu)
def
= min

∆≤P
{αu(∆)/∆}

∆P (αu)
def
= min{∆ ∈ [0, P] | SP (αu) × ∆ = αu(∆)}

dP
m(αu)

def
= sup

∆≤∆P (αu)

{αu(∆) − SP (αu) × ∆}

SP (αl), ∆P (αl) and dP
m(αl) are defined in a symmetrical

way.

Since we work here in discrete time, the min and max are
over finite sets and are well-defined.

Interesting properties of the definitions are given by the
following lemma. The sub-additive closure of the curve
remains above the line SP (αu) × ∆ defined by the slope
(Lemma 2). The distance of the curve to this line remains
bounded, and the bound dP

m(αu) depends only on the finite
prefix (Lemma 3). Also, αu will actually have contact with
the line SP (αu) × ∆ at least periodically, with a period of
∆P (αu) which is smaller than the size of the finite prefix
(Lemma 1).

Lemma 1. Let (αu, αl) be a pair of arrival curves and
T > 0. Then:

∀k ∈ N , αu
∣

∣

T
(k × ∆P (αu)) = k × ∆P (αu) × SP (αu)

αl∣
∣

T
(k × ∆P (αl)) = k × ∆P (αl) × SP (αl)

Lemma 2. Let (αu, αl) be a pair of arrival curves and
T > 0. Then:

∀∆, αu(∆) ≥ αu
∣

∣

T
(∆) ≥ SP (αu) × ∆

αl(∆) ≤ αl∣
∣

T
(∆) ≤ SP (αl) × ∆

Lemma 3. Let (αu, αl) be a pair of arrival curves. Then:

∀∆ ≥ 0, αu(∆) − SP (αu) × ∆ ≤ dP
m(αu)

SP (αl) × ∆ − αl(∆) ≤ dP
m(αl)

10

9

8

αu

7654310

7

6

5

4

3
2

1

0

#events

∆

SP (αu)

2

αu

SP (αu) × ∆

∆P (αu)

dP
m(αu)

Figure 3: Point of maximal influence of αu. The

curve αu remains in the greyed area and has contact

with SP (αu) × ∆ at least with period ∆P (αu).

As a consequence, affine pieces a∆ + b with a slope steeper
than SP (αu) × ∆ do not add information to the curve (pro-
vided the explicit points of αu are below the affine piece),
and can be removed.

Theorem 3. Let (αu, αl) be a pair of arrival curves in
Upac, different from ⊥AC, and J ∈ [1, N(αu)] such that these
two conditions are satisfied:

∀i ∈ [0, P (αu)], ∀j ∈ [1, N(αu)], pu
i ≤ au

j × i + bu
j

au
J ≥ SP (αu)

Then, removing the affine piece au
J + bu

J from (αu, αl) yields
an equivalent curve. In this case, we say that the affine piece
au

J + bu
J is not relevant.

Similarly for αl, if

∀i ∈ [0, P (αl)], ∀j ∈ [1, N(αl)], pl
i ≤ al

j × i + bl
j

al
J ≥ SP (αl)

Then, removing the affine piece al
J + bl

J from (αu, αl) yields
an equivalent curve.

3.2.2 Normal Form: Definition and Algorithm

We now have the necessary background to introduce the
normal form, on which the causality closure will be computed:

Definition 7 (Normal form of curves in Upac). A
pair of arrival curves (αu, αl) in Upac is said to be in normal
form if P (αu) = P (αl) = P and at least one of the following
conditions is satisfied:

1. (αu, αl) = ⊥AC

2. N(αu) = N(αl) = 0 and (αu, αl) is SA-SA up to P
3. N(αu) = 0, αu is sub-additive up to P and αl is super-

additive.
4. N(αl) = 0, αl is super-additive up to P and αu is

sub-additive.
5. (αu, αl) is SA-SA
Case 2 corresponds to the case of finite curves [3]. In

this case, we say that (αu, αl) has no relevant affine pieces.
Cases 3 and 4 correspond to asymmetric cases where only one
of αu and αl has relevant affine pieces. In these cases, we
consider the SA-SA curves in theory, but the representation
is restricted to the SA-SA set of points on the prefix.

Converting an arbitrary pair of curves into a normal-form
is straightforward using the properties stated in Section 3.2.1;

the algorithm is given below. For the common case where
both curves have relevant affine pieces (case 5), the transfor-
mation of a pair of curves into normal form is illustrated by
Figure 4. It essentially consists in adding explicit points to
the curve until one can be sure all the points are above the
affine pieces. In the general case, the transformation is as
follows.

Algorithm 1 (Normalization of curves in Upac).
For any curve in Upac, we apply the steps:

1. Make sure all the explicit points pu
i (resp. pl

i) are under
(resp. above) all affine pieces; if not, modify pu

i (resp.
pl

i), keeping integer abscissa; add points on αu or αl

until P (αu) = P (αl) = P . See Figure 4.(b).
2. Eliminate affine pieces of αu (resp. αl) which have a

slope greater or equal (resp. lower or equal) to SP (αu)
(resp. SP (αl)). It can be proved that this does not
change the curve. See Figure 4.(c).

Then, multiple cases can occur:
If N(αu) = N(αl) = 0 then

3. Apply the SA-SA closure up to P .
If N(αu) 6= 0 and N(αl) 6= 0 then

3. Compute the abscissa Mu
j of the intersection be-

tween SP (αu) × ∆ and the affine piece j of αu

(and similarly M l for αl). Set Mu = minj{Mu
j },

M l = minj{M l
j}, M = max{Mu, M l}.

4. Add explicit points pu and pl to the curves, so that
P (αu) = P (αl) = M .

5. Apply the SA-SA closure up to M to (αu, αl). See
Figure 4.(d).

If N(αu) 6= 0 and N(αl) = 0 then

3. Compute the abscissa Mu
j of the intersection be-

tween SP (αu) × ∆ and the affine piece j of αu.
Set M = minj{Mu

j }.

4. Add explicit points pu and pl to the curves, so that
P (αu) = P (αl) = M .

5. Apply the SA-SA closure up to M to (αu, αl).
If N(αu) = 0 and N(αl) 6= 0 then apply the same trans-

formation as above, replacing αl by αu and vice-versa
in the text.

The normalization trivially implies SA-SA closure up to
M . The SA-SA property is actually true for the whole curve,
when it has some relevant affine pieces:

Theorem 4. Let (αu, αl) be a pair of curves obtained by
applying the normalization (Algorithm 1) on a pair of curves
in Upac. Then (αu, αl) is in Upac and in normal form. In
particular, if αl (resp. αu) has at least one relevant affine
piece, then αl is super-additive (resp. sub-additive).

4. CAUSALITY CLOSURE IN Upac
First, the algorithm for the causality closure applies the

normalization on the curves. Then, the idea is to apply
Theorem 2 with the operator C (see Definition 4) on the
curves: the theorem states that C

(

αu, αl
)

is the causality
closure of (αu, αl). This step is divided into 2 parts. The
part where the curves have no relevant affine pieces at all was
treated in [3] and is quickly recalled in Section 4.1; it requires
a fix-point computation. The other part of the algorithm
factorizes the three other cases where curves have at least
one affine piece (no affine pieces on αl, no affine pieces on αu,
both curves with affine pieces) and is provided in Section 4.2.

10

9

8

876543210

7

6

5

4

3
2

1

0

#events

αu(∆)

∆

αl(∆)

(a) Original curve.

10

9

8

876543210

7

6

5

4

3
2

1

0

#events

αl(∆)

αu(∆)

∆

(b) After step 1: pu
1 pulled

below the affine piece.

10

9

8

876543210

7

6

5

4

3
2

1

0

#events

αu(∆)

αl(∆)

∆

(c) After step 2: one
affine piece removed.

10

9

8

876543210

7

6

5

4

3
2

1

0

#events

αu(∆)Mu

M l

∆

αl(∆)

(d) After steps 3-6: Curve in
normal form.

Figure 4: Step by step transformation into normal form

4.1 Curves With No Affine Pieces
For curves in normal form in Upac with no relevant affine

pieces at all (case 2 of the normal form), the algorithm has
been proposed in [3] and is briefly summarized here. The
major difficulty for the curves with only a finite prefix is that
their SA-SA closure is not representable with a finite number
of points; so we cannot directly use the result of Theorem 2.
Instead, we use the fact that any fix-point of C is causal.
Therefore, the algorithm iterates the computation of C on
the finite prefix of the curves; the termination is ensured by
the fact that the points of the prefix are natural numbers.
The iteration either reaches the ⊥AC value (the curves were
not satisfiable) or a causal curve equivalent to the original
one. Computing the finite SA-SA closure on the resulting
curves provides the expected result.

4.2 C for Curves With at Least One Affine Piece

As a first remark, let us consider the particular case of
convex/concave affine piecewise curves. This is an interesting
class of curves in Upac, used for example in [9, 10]. It
corresponds to the particular case where the finite prefix
uniquely contains (0, 0). An interesting property is that αu

(resp αl) can be expressed as the minimum (resp. maximum)
of a set of affine functions. When reasoning about these
curves, the minimum and maximum are naturally translated
in conjunction of conditions. Those curves are always causal:

Theorem 5. Let (αu, αl) 6= ⊥AC be a pair of piecewise
affine, concave/convex curves. Then (αu, αl) is causal.

We now focus on the general case, i.e. curves in normal
form in Upac, with either αl, αu or both having affine pieces:
N(αu) > 0 or N(αl) > 0. We show that we can directly
apply the operator C on the curves and that its computation
can be done in quadratic time.

Theorem 6. Let (αu, αl) be a pair of curves in Upac, in
normal form, such that (αu, αl) 6= ⊥AC, with either αu or
αl having relevant affine pieces. Let M = P (αl) = P (αu) be
the index of the last point of (αu, αl) given explicitly (as it

was computed in Algorithm 1). Let C
∣

∣

M
=
(

C
∣

∣

M

u ,C
∣

∣

M

l

)

be

the following operator: ∀∆ ≥ 0,
C
∣

∣

M

u
(

αu, αl
)

(∆) = inft∈[0,M]{αu(∆ + t) − αl(t)} and

C
∣

∣

M

l
(

αu, αl
)

(∆) = supt∈[0,M]{αl(∆ + t) − αu(t)}

1. ∀∆ ≥ 0,C
(

αu, αl
)

(∆) = C
∣

∣

M

(

αu, αl
)

(∆)

2. If N(αu) 6= 0
then ∀∆ > M , Cu

(

αu, αl
)

(∆) = αu(∆)
3. If N(αl) 6= 0

then ∀∆ > M , Cl
(

αu, αl
)

(∆) = αl(∆)

We give the intuition of the proof (see [12] for details) with
an affine piece of αl, and consider its interaction with the
finite prefix of αu. We consider the slope SP (αu) of the finite
prefix and the slope a of the affine piece. If SP (αu) ≥ a, then
according to the results of Section 3.2.1, the curve αu will
remain above SP (αu)×∆ and it cannot create any forbidden
region with the affine piece. If SP (αu) is lower than a, then
we know that αu will “touch” periodically SP (αu) × ∆ and
will eventually end up below the affine piece. This implies
that the curves are not satisfiable.

As a consequence, the C operator can easily be computed
algorithmically: for each point to compute, the inf{} and the
sup{} can be computed with a simple for loop iterating from
0 to M . The expression of C

∣

∣

M

(

αu, αl
)

includes a SA-SA
closure. When the curve has affine pieces, it is already SA-
SA, hence no SA-SA closure needs to be applied. However,
for curve with no affine pieces, since we only use the values
of the SA-SA curves for ∆ ≤ 2M , it is sufficient to compute
the SA-SA closure up to 2M . Furthermore, when the curve
has at least one affine piece, this computation has to be done
for the points of abscissa from 0 to M , the other points are
given by the original curve itself.

Based on these remarks, the causality closure algorithm
for Upac curves with at least one relevant affine piece follows:

Algorithm 2. Given a pair of curves (αu, αl) in Upac
in normal form represented by pu

i , au
j , bu

j , pl
i, al

k, bl
k (i ∈

[0, M], j ∈ [1, N(αu)], k ∈ [1, N(αl)]), we denote by pu∗
i ,

au∗
j , bu∗

j , pl∗
i , al∗

k , bl∗
k the representation of the causality clo-

sure C
(

αu, αl
)

. This representation is computed as follows:

• In all cases, the affine pieces do not change (this is
ensured by cases 2 and 3 of theorem 6):

au∗
j = au

j , bu∗
j = bu

j , al∗
k = al

k, bl∗
k = bl

k

• To compute the points p∗
i of the finite prefix, define

(αu
2M , αl

2M), a pair of curves: if N(αu) 6= 0 then
αu

2M = αu else the finite prefix of αu
2M is the subadditive

closure of αu up to 2M and it has no affine pieces
(likewise for αl

2M). Then:

pu∗
i = C

∣

∣

M

u (αu
2M , αu

2M) (i), pl∗
i = C

∣

∣

M

l (αu
2M , αu

2M) (i)

6

4
3

0
0 3 5 10 15

∆

αu

P (αl) = 5
P (αu) = 3
Finite prefix

αl

events

Affine piece
αl(∆) = ∆ − 3

(a) Original curve

��
��
��
��

��������������

9

6

4
3

0
0 3 5 10 15

∆

αl

events

αu

Forbidden region
not found

at iteration 1

(b) One C-iteration,
no normalization

12

9

6

4
3

0
0 3 5 10 15

αu

αl

SP (αl) × ∆

∆

events

M
=

15

(c) Normalization

��
��
��
��

����

����

������

���
���
���
���

����

����������

����

12

9

6

4
3

0
0 3 5 10 15

∆

αu

αl

events

(d) Result of Algorithm 2

Figure 5: Causality Closure on a Upac Curve With One Affine Piece

Figure 5 illustrates the whole causality closure algorithm
on an example. The pair of curves is given in Figure 5.(a):
αu has no affine piece, and αl has one. Figure 5.(b) shows
an attempt to use the C operator on the curves without
performing a normalization. Since the curves are not SA-SA,
C is able to remove some forbidden regions but misses one
(the point αl(4) = 2). On the other hand, the normalization
algorithm (5.(c)) adds some points to the prefix of the curves,
and applying C

∣

∣

M
on the result yields a causal pair of curves,

without further iteration (5.(d)).

5. CONCLUSION
This paper provides an algorithm to compute the causality

closure on an interesting class of curves, already used in
several tools [9, 2]: curves with a finite prefix made of points,
followed by convex/concave affine pieces. This class enables
the precise modeling of the beginning of the curves together
with the long term rate information. For this class of curves,
the operators which compute the causality closure cannot be
straightforwardly deduced from the initial work on causality
closure [3]. This new algorithm can handle all the cases of
curves in the class; it is efficient, quadratic in complexity
(with reasonably-sized curves, this means the computation is
almost instantaneous).

Furthermore, while the problem appeared to be relatively
simple, the algorithm relies on several theorems, whose proofs
were indeed non-trivial [12].

This work completes the theoretical and computational
foundations for the connection of Real-Time Calculus to
synchronous languages, implemented in the tool ac2lus [2].
Further works include to apply it to larger and more realistic
case studies. This may involve using other verification tools
and may require changes in the abstractions used to represent
the set of streams.

6. REFERENCES
[1] K. Altisen, Y. Liu, and M. Moy. Performance

evaluation of components using a granularity-based
interface between real-time calculus and timed
automata. In QAPL, 2010.

[2] K. Altisen and M. Moy. ac2lus: Bringing SMT-solving
and abstract interpretation techniques to real-time
calculus through the synchronous language Lustre. In
ECRTS, Brussels, Belgium, Jully 2010.

[3] K. Altisen and M. Moy. Arrival curves for real-time
calculus: the causality problem and its solutions. In
TACAS, March 2010.

[4] A. Bouillard, L. Jouhet, and E. Thierry. Service curves
in Network Calculus: dos and don’ts. Technical report.

[5] A. Bouillard and É. Thierry. An algorithmic toolbox
for network calculus. Discrete Event Dynamic Systems,
18(1):3–49, 2008.

[6] N. Halbwachs, F. Lagnier, and C. Ratel. Programming
and verifying critical systems by means of the
synchronous data-flow programming language lustre.
Transactions on Software Engineering, 1992.

[7] S. Künzli, F. Poletti, L. Benini, and L. Thiele.
Combining simulation and formal methods for
system-level performance analysis. In DATE, pages
236–241, 3001 Leuven, Belgium, Belgium, 2006.

[8] S. Künzli and L. Thiele. Generating event traces based
on arrival curves. In MMB, 2006.

[9] K. Lampka, S. Perathoner, and L. Thiele. Analytic
real-time analysis and timed automata: A hybrid
method for analyzing embedded real-time systems. In
EMSOFT, 2009.

[10] K. Lampka, S. Perathoner, and L. Thiele. Analytic
real-time analysis and timed automata: a hybrid
methodology for the performance analysis of embedded
real-time systems. Design Automation for Embedded
Systems, pages 1–35, June 2010.

[11] J.-Y. Le Boudec and P. Thiran. Network Calculus.
Springer Verlag, 2001.

[12] M. Moy and K. Altisen. Causality closure for a new
class of curves in real-time calculus full version.
Technical Report TR-2011-13, Verimag Research
Report, 2011.

[13] L. T. Phan, S. Chakraborty, P. Thiagarajan, and
L. Thiele. Composing functional and state-based
performance models for analyzing heterogeneous
real-time systems. In RTSS, 2007.

[14] L. Thiele, S. Chakraborty, and M. Naedele. Real-time
calculus for scheduling hard real-time systems. In
ISCAS, 2000.

[15] Uppsala University. Cats tool, 2007.
http://www.timestool.com/cats.

[16] E. Wandeler. Modular Performance Analysis and
Interface-Based Design for Embedded Real-Time
Systems. PhD thesis, PhD Thesis ETH Zurich, 2006.

