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Digital expansions with negative real bases

Introduction

Digital expansions in real bases β > 1 were introduced by Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF]: The (greedy) β-expansion of a real number x ∈ [0, 1) is

x = ε 1 (x) β + ε 2 (x) β 2 + • • • with ε n (x) = ⌊β T n-1 β (x)⌋,
where ⌊•⌋ denotes the floor function and T β is the β-transformation T β : [0, 1) → [0, 1), x → βx -⌊βx⌋ .

Rényi suggested representing arbitrary x ∈ R by

x = ⌊x⌋ + ε 1 (⌊x⌋) β + ε 2 (⌊x⌋) β 2 + • • • ,
whereas nowadays it is more usual (for x ≥ 0) to multiply the β-expansion of xβ -k by β k , with k an arbitrary integer satisfying xβ -k ∈ [0, 1). Anyway, the possible expansions can be described by those of x ∈ [0, 1). A sequence b 1 b 2 • • • is called β-admissible if and only if it is (the digit sequence of) the β-expansion of a number x ∈ [0, 1), i.e., b n = ε n (x) for all n ≥ 1. Parry [START_REF] Parry | On the β-expansions of real numbers[END_REF] showed that an integer sequence b

1 b 2 • • • is β-admissible if and only if 00 • • • ≤ lex b k b k+1 • • • < lex a 1 a 2 • • • for all k ≥ 1,
where < lex denotes the lexicographic order and a 1 a 2 • • • is the (quasi-greedy) β-expansion of 1, i.e., a n = lim x→1-ε n (x). Moreover, a sequence of integers a 1 a 2 • • • is the (quasigreedy) β-expansion of 1 for some β > 1 if and only if 00

• • • < lex a k a k+1 • • • ≤ lex a 1 a 2 • • • for all k ≥ 2.
(These results are stated in a slightly different way in [START_REF] Parry | On the β-expansions of real numbers[END_REF].)

Part of this research was conducted while the author was visiting academic at the Department of Computing of the Macquarie University, Sydney.

Following [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF] and [START_REF] Parry | On the β-expansions of real numbers[END_REF], a lot of papers were dedicated to the study of β-expansions and β-transformations, but surprisingly little attention was given to digital expansions in negative bases. This changed only in recent years, after Ito and Sadahiro [START_REF] Ito | Beta-expansions with negative bases[END_REF] considered (-β)-expansions, β > 1, defined for x ∈ -β β+1 , 1 β+1 by

(1.1)

x = ε 1 (x) -β + ε 2 (x) (-β) 2 + • • • with ε n (x) = β β+1 -β T n-1 -β (x) ,
where the (-β)-transformation is defined by

T -β : -β β+1 , 1 β+1 → -β β+1 , 1 β+1 , x → -βx -β β+1 -βx . A sequence b 1 b 2 • • • is (-β)-admissible if
and only if it is the (-β)-expansion of some x ∈ -β β+1 , 1 β+1 , i.e., b n = ε n (x) for all n ≥ 1. Since the map x → -βx is order-reversing, the (-β)-admissible sequences are characterized using the alternating lexicographic order.

By [IS09], a sequence b 1 b 2 • • • is (-β)-admissible if and only if (1.2) a 1 a 2 • • • ≥ alt b k b k+1 • • • > alt 0a 1 a 2 • • • for all k ≥ 1,
where

a 1 a 2 • • • is the (-β)-expansion of the left endpoint -β β+1 , i.e., a n = ε n -β β+1 , which is supposed not to be periodic with odd period length. If a 1 a 2 • • • = a 1 a 2 • • • a 2ℓ+1
for some ℓ ≥ 0, and ℓ is minimal with this property, then the condition (1.2) is replaced by

(1.3) a 1 a 2 • • • ≥ alt b k b k+1 • • • > alt 0a 1 • • • a 2ℓ (a 2ℓ+1 -1) for all k ≥ 1.
Recall that the alternating lexicographic order is defined on sequences

x 1 x 2 • • • , y 1 y 2 • • • with x 1 • • • x k-1 = y 1 • • • y k-1 and x k = y k by x 1 x 2 • • • < alt y 1 y 2 • • • if and only if x k < y k when k is odd, y k < x k when k is even.
The main result of this paper is a characterization of the sequences a 1 a 2 • • • that are the (-β)-expansion of -β β+1 for some β > 1. This turns out to be more complicated than the corresponding problem for β-expansions, and we will see that several proofs cannot be directly carried over from positive to negative bases. From (1.2) and (1.3), one deduces that

(1.4) a k a k+1 • • • ≤ alt a 1 a 2 • • • for all k ≥ 2.
The proof of Proposition 3.5 in [LS] (see also Theorem 3 below) shows that

(1.5) a 1 a 2 • • • > alt u 1 u 2 • • • = 100111001001001110011 • • • ,
where u 1 u 2 • • • is the sequence starting with ϕ n (1) for all n ≥ 0, with ϕ being the morphism of words on the alphabet {0, 1} defined by ϕ(1) = 100, ϕ(0) = 1. (See the remarks following Theorem 3 and note that the alphabet is shifted by 1 in [LS].) Our first result states that a sequence satisfying (1.4) and (1.5) is "almost" the (-β)-expansion of -β β+1 for some β > 1.

Theorem 1. Let a 1 a 2 • • • be a sequence of non-negative integers satisfying (1.4) and (1.5).

Then there exists a unique β > 1 such that

(1.6) ∞ j=1 a j (-β) j = -β β + 1 and ∞ j=1 a k+j (-β) j ∈ -β β + 1 , 1 β + 1 for all k ≥ 1.
For a (-β)-expansion of -β β+1 , we have to exclude the possibility that ∞ j=1 a k+j

(-β) j = 1 β+1 for some k ≥ 1. If a 1 • • • a k > alt u 1 u 2 • • • , then out of {a 1 • • • a k , a 1 • • • a k-1 (a k -1)0} ω , which is the set of infinite sequences composed of blocks a 1 • • • a k and a 1 • • • a k-1 (a k -1)0, only the periodic sequence a 1 • • • a k is possibly the (-β)-expansion of -β β+1 for some β > 1, see Section 4. This implies that a 1 a 2 • • • ∈ {a 1 • • • a k , a 1 • • • a k-1 (a k -1)0} ω \ {a 1 • • • a k } (1.7) for all k ≥ 1 with a 1 • • • a k ≻ u 1 u 2 • • • , a 1 a 2 • • • ∈ {a 1 • • • a k 0, a 1 • • • a k-1 (a k +1)} ω (1.8) for all k ≥ 1 with a 1 • • • a k-1 (a k +1) ≻ u 1 u 2 • • • .
The main result states that there are no other conditions on a 1 a 2

• • • . Theorem 2. A sequence of non-negative integers a 1 a 2 • • • is the (-β)-expansion of -β β+1
for some (unique) β > 1 if and only if it satisfies (1.4), (1.5), (1.7), and (1.8).

It is easy to see that the natural order of bases β > 1 is reflected by the lexicographical order of the (quasi-greedy) β-expansions of 1 [START_REF] Parry | On the β-expansions of real numbers[END_REF]. For negative bases, a similar relation with the alternating lexicographic order holds, although it is a bit harder to prove.

Theorem 3. Let a 1 a 2 • • • be the (-β)-expansion of -β β+1 and a ′ 1 a ′ 2 • • • be the (-β ′ )-expansion of -β ′ β ′ +1 , with β, β ′ > 1. Then β < β ′ if and only if a 1 a 2 • • • < alt a ′ 1 a ′ 2 • • • .
It is often convenient to study a slightly different (-β)-transformation,

T -β : (0, 1] → (0, 1], x → -βx + ⌊βx⌋ + 1.
As already noted in [LS], the transformations T -β and T -β are conjugate via the involution

φ(x) = 1 β+1 -x, i.e., T -β • φ(x) = φ • T -β (x) for all x ∈ (0, 1]. Setting εn (x) = β T n-1 -β (x) for x ∈ (0, 1], we have x = -∞ n=1 εn(x)+1 (-β) n = 1 β+1 -∞ n=1 εn(x)
(-β) n , and εn (x) = ε n (φ(x)). Note that T -β (x) = -βx -⌊-βx⌋ except for finitely many points, hence T -β is a natural generalization of the beta-transformation. The map T -β was studied e.g. by Góra [START_REF] Góra | Invariant densities for generalized β-maps[END_REF], where it corresponds to the case E = [1, 1, . . . , 1], and in [LS]. The following corollary is an immediate consequence of Theorems 1 and 2.

Corollary 1. Let a 1 a 2 • • • be a sequence of non-negative integers satisfying (1.4) and (1.5). Then there exists a unique β > 1 such that

(1.9) - ∞ j=1 a j + 1 (-β) j = 1 and - ∞ j=1 a k+j + 1 (-β) j ∈ [0, 1] for all k ≥ 1.
Moreover, ∞ j=1 a k+j +1 (-β) j = 0 for all k ≥ 1 if and only if (1.7) and (1.8) hold. With the notation of [START_REF] Góra | Invariant densities for generalized β-maps[END_REF], this means, for

E = [1, 1, . . . , 1], that a 1 a 2 • • • is the itinerary It β (1)
for some β > 1 if and only if (1.4), (1.5), (1.7), and (1.8) hold. Note that Góra [Gór07, Theorems 25 and 28] claims that already (1.4) is sufficient when a 1 ≥ 2, and he has a less explicit statement for a 1 = 1. However, his proof deals only with the first part of the theorem, i.e., that there exists a unique β > 1 satisfying (1.9). To see that this is not sufficient, consider the sequences a 1 a 2 • • • ∈ {2, 1 0} ω . They all satisfy (1.9) with β = 2, and there are uncountably many of them satisfying (1.4) and a 1 = 2. All these uncountably many sequences would have to be equal to It 2 (1) by [Gór07, Theorem 25], which is of course not true. (See also [START_REF] Dombek | Number representation using generalized (-β)transformation[END_REF].) Moreover, Góra's proof of the existence of a unique β > 1 satisfying (1.9) is incorrect when β is small, see Remark 1. Lemma 1. For any β > 1, we have that lim n→∞

Proof of Theorem 3

Let β > 1. For a sequence of digits b 1 • • • b n , set I b 1 •••bn = x ∈ -β β+1 , 1 β+1 : ε 1 (x) • • • ε n (x) = b 1 • • • b n , with ε j (x) as in (1.1). Let L β,n be the number of different sequences b 1 • • • b n such that I b 1 •••bn = ∅,
1 n log L β,n = lim n→∞ 1 n log L ′ β,n = log β. Proof.
It is well known that the entropy of T -β , which is a piecewise linear map of constant slope -β, is log β. The lemma can be derived from this fact, see [START_REF] Frougny | Negative bases and automata[END_REF], but we prefer giving a short elementary proof, following Faller [START_REF] Faller | Contribution to the ergodic theory of piecewise monotone continuous maps[END_REF]Proposition 3.6

]. As d dx T n -β (x) = β n at all points of continuity of T n -β , the length of any interval I b 1 •••bn is at most β -n . Since the intervals I b 1 •••bn form a partition of an interval of length 1, we obtain that L β,n ≥ L ′ β,n ≥ β n .
To get an upper bound for L ′ β,n , let m be the smallest positive integer such that β m > 2, and let δ be the minimal positive length of an interval

I b 1 •••bm . Consider an interval I b 1 •••bn , n > m, such that b 1 • • • b n is
neither the minimal nor the maximal sequence (with respect to the alternating lexicographic order) starting with b

1 • • • b n-m and satisfying I b 1 •••bn = ∅. Then each prolongation b 1 b 2 • • • satisfies the inequalities in (1.2) and (1.3), respectively, for 1 ≤ k ≤ n -m. Therefore, b 1 b 2 • • • is (-β)-admissible if and only if b n-m+1 b n-m+2 • • • is (-β)-admissible. This implies that T n-m -β (I b 1 •••bn ) = I b n-m+1 •••bm , and the length of I b 1 •••bn is β m-n times the length of I b n-m+1 •••bm , thus at least β m-n δ when the length is positive. There are at least L ′ β,n -2L ′ β,n-m sequences b 1 • • • b n such that I b 1 •••bn has positive length and b 1 • • • b n is neither the minimal nor the maximal sequence starting with b 1 • • • b n-m and satisfying I b 1 •••bn = ∅. This yields that (L ′ β,n -2L ′ β,n-m )β m-n δ ≤ 1 for all n > m, thus L ′ β,n ≤ β n-m δ + 2L ′ β,n-m ≤ β n-m δ + 2β n-2m δ + 4L ′ β,n-2m ≤ • • • ≤ β n-m δ ⌈n/m⌉-2 j=0 2 β m j + 2 ⌈n/m⌉-1 L ′ β,n-⌈n/m⌉m+m < β n δ 1 β m -2 + β n L ′ β,m ≤ β n δ β m -1 β m -2 .
This shows that lim n→∞

1 n log L ′ β,n = β. An interval I b 1 •••bn consists only of one point if and only if I b 1 •••b k = -β β+1 and b k+1 • • • b n = a 1 • • • a n-k for some k ≤ n. (This can happen only in case that a 1 a 2 • • • is periodic with odd period length.) Therefore, we can estimate L β,n -L ′ β,n ≤ L ′ β,0 +L ′ β,1 +• • •+L ′ β,n ≤ Cβ n for some constant C > 0, thus lim n→∞ 1 n log L β,n = lim n→∞ 1 n log L ′ β,n .
For the proof of Theorem 3, let β)-admissible sequences are equal to the (-β ′ )-admissible sequences, thus L β,n = L β ′ ,n for all n ≥ 1, and β = β ′ by Lemma 1. Therefore, the equations β)-admissible sequence. By (1.2) and (1.3) respectively, we have that

a 1 a 2 • • • be the (-β)-expansion of -β β+1 and a ′ 1 a ′ 2 • • • be the (-β ′ )-expansion of -β ′ β ′ +1 , β, β ′ > 1. If β = β ′ , then we clearly have that a 1 a 2 • • • = a ′ 1 a ′ 2 • • • . If a 1 a 2 • • • = a ′ 1 a ′ 2 • • • , then the (-
β = β ′ and a 1 a 2 • • • = a ′ 1 a ′ 2 • • • are equivalent. Hence, it suffices to show that a 1 a 2 • • • < alt a ′ 1 a ′ 2 • • • implies that β < β ′ , as the other direction follows by contraposition. Assume that a 1 a 2 • • • < alt a ′ 1 a ′ 2 • • • , and let b 1 b 2 • • • be a (-
(2.1) b k b k+1 • • • ≤ alt a 1 a 2 • • • < alt a ′ 1 a ′ 2 • • • . Furthermore, as 0a 1 • • • a 2ℓ (a 2ℓ+1 -1) > alt 0a 1 a 2 • • • for all ℓ ≥ 0, we obtain that (2.2) b k b k+1 • • • > alt 0a 1 a 2 • • • > alt 0a ′ 1 a ′ 2 • • • . If a ′ 1 a ′ 2 • • • is not periodic with odd period length, then (2.1) and (2.2) show that b 1 b 2 • • • is (-β ′ )-admissible, thus L β,n ≤ L β ′ ,n for all n ≥ 1, and β ≤ β ′ by Lemma 1. Since a 1 a 2 • • • = a ′ 1 a ′ 2 • • • , this yields that β < β ′ . In case a ′ 1 a ′ 2 • • • = a ′ 1 • • • a ′ 2ℓ ′ +1 , we show that (2.3) a 1 a 2 • • • ≤ alt a ′ 1 • • • a ′ 2ℓ ′ (a ′ 2ℓ ′ +1 -1)0.

This is clearly true when

a 1 • • • a 2ℓ ′ +1 < alt a ′ 1 • • • a ′ 2ℓ ′ (a ′ 2ℓ ′ +1 -1). If a 1 • • • a 2ℓ ′ +1 = a ′ 1 • • • a ′ 2ℓ ′ +1 , then a 2ℓ ′ +2 a 2ℓ ′ +3 • • • > alt a ′ 2ℓ ′ +2 a ′ 2ℓ ′ +3 • • • = a ′ 1 a ′ 2 • • • > alt a 1 a 2 • • • , contradicting (1.4). It remains to consider the case that a 1 • • • a 2ℓ ′ +1 = a ′ 1 • • • a ′ 2ℓ ′ (a ′ 2ℓ ′ +1 -1). If a 2ℓ ′ +1 > 0, then (2.3) holds, otherwise a 1 • • • a 2ℓ ′ +2 = a ′ 1 • • • a ′ 2ℓ ′ (a ′ 2ℓ ′ +1 -1)0. In the latter case, (1.4) implies that a 2ℓ ′ +3 • • • a 4ℓ ′ +4 ≤ alt a 1 • • • a 2ℓ ′ +2 = a ′ 1 • • • a ′ 2ℓ ′ (a ′ 2ℓ ′ +1
-1)0, and we obtain inductively that (2.3) holds. Now, (2.1), (2.2), and (2.3) show that b 1 b 2 • • • is (-β ′ )-admissible, which yields as above that β < β ′ .

Proof of Theorem 1

Let a 1 a 2 • • • be a sequence of non-negative integers satisfying (1.4) and (1.5). We show that there exists a unique β > 1 satisfying (1.9), which is equivalent to (1.6). For n ≥ 1, set

P n (x) = (-x) n + n j=1 (a j + 1) (-x) n-j , J n = x > 1 | P j (x) ∈ [0, 1] for all 1 ≤ j ≤ n . Then J 1 ⊇ J 2 ⊇ J 3 ⊇ • • • , and J n is compact if and only if inf J n = 1.
First note that, for β > 1, (1.9) is equivalent to β ∈ n≥1 J n . Indeed, if (1.9) holds, then

P n (β) = -∞ j=1 a n+j +1 (-β) j ∈ [0, 1] for all n ≥ 1. On the other hand, if P n (β) ∈ [0, 1] for all n ≥ 1, then 1 + ∞ j=1 a j +1 (-β) j = lim n→∞ Pn(β)
(-β) n = 0, thus (1.9) holds. Inductively for n ≥ 1, we show the following statements, where we use the abbreviations

v [j,k] for v j v j+1 • • • v k and v [j,k) for v j v j+1 • • • v k-1 :
(1) J n is a non-empty interval, with inf

J n = 1 if and only if a [1,n] = u [1,n] . If P n (β) = P n (β ′ ) ∈ {0, 1} with β, β ′ ∈ J n , then β = β ′ . (2) If n is even, a [1,n-2m+1] = u [1,n-2m+1] or a [n-2m+2,n] = a [1,2m) for all 1 ≤ m ≤ n/2, and a [1,n] = u [1,n] , then P n (min J n ) = 0. If n is odd and a [n-2m+2,n] = a [1,2m) for all 1 ≤ m ≤ n/2, then P n (max J n ) = 0. (3) If n is even, a [1,n-2m+1] = u [1,n-2m+1] and a [n-2m+2,n] = a [1,2m) for some 1 ≤ m ≤ n/2,
and m is maximal with this property, then P n (min

J n ) = P 2m-1 (min J n ). If n is odd, a [n-2m+2,n] = a [1,2m)
for some 1 ≤ m ≤ n/2, and m is maximal with this property, then P n (max

J n ) = P 2m-1 (max J n ). (4) If n is even and a [n-2m+1,n] = a [1,2m] for all 1 ≤ m < n/2, then P n (max J n ) = 1. If n is odd, a [1,n-2m] = u [1,n-2m] or a [n-2m+1,n] = a [1,2m] for all 1 ≤ m < n/2, and a [1,n] = u [1,n] , then P n (min J n ) = 1. (5) If n is even, a [n-2m+1,n] = a [1,2m]
for some 1 ≤ m < n/2, and m is maximal with this property, then P n (max

J n ) = P 2m (max J n ). If n is odd, a [1,n-2m] = u [1,n-2m] and a [n-2m+1,n] = a [1,2m]
for some 1 ≤ m < n/2, and m is maximal with this property, then P n (min J n ) = P 2m (min J n ). We have that P 1 (x) = a 1 + 1x, and a 1 ≥ 1 by (1.5). If a 1 ≥ 2, then J 1 = [a 1 , a 1 + 1], P 1 (a 1 ) = 1 and P 1 (a 1 + 1) = 0; if a 1 = 1, then J 1 = (1, 2] and P 1 (2) = 0. Therefore, the statements hold for n = 1. Assume that they hold for n -1, and set

B = b ∈ {0, 1, . . . , a 1 } : b + 1 -xP n-1 (x) ∈ [0, 1] for some x ∈ J n-1 , i.e., J n = ∅ if and only if a n ∈ B. Assume first that a [1,n) = u [1,n) , i.e., inf J n-1 = min J n-1 > 1, and that n is even. (i) If a [n-2m+1,n) = a [1,2m) for all 1 ≤ m < n/2, then P n-1 (max J n-1 ) = 0, thus 1 -(max J n-1 ) P n-1 (max J n-1 ) = 1.
This implies that 0 ∈ B, and P n (max J n ) = P n (max J n-1 ) = 1 if a n = 0. Since the map x → xP n-1 (x) is continuous and J n-1 is an interval, we get that P n (max

J n ) = 1
for a n > 0 as well, when J n = ∅. Moreover, we clearly have that a

[n-2m+1,n] = a [1,2m] for all 1 ≤ m < n/2, thus (4) holds when a n ∈ B. (ii) If a [n-2m+1,n) = a [1,2m)
for some 1 ≤ m < n/2, and m is maximal with this property, then P n-1 (max J n-1 ) = P 2m-1 (max J n-1 ), thus

a 2m + 1 -(max J n-1 ) P n-1 (max J n-1 ) = P 2m (max J n-1 ) ∈ [0, 1],
where we have used that J n-1 ⊆ J 2m and P 2m (J 2m ) ⊆ [0, 1]. This gives a 2m ∈ B.

If a n = a 2m , then max J n = max J n-1 and P n (max J n-1 ) = P 2m (max J n-1 ), thus

P n (max J n ) = P 2m (max J n ) and a [n-2m+1,n] = a [1,2m]
. By the maximality of m, we have that a

[n-2ℓ+1,n] = a [1,2ℓ] for all m < ℓ < n/2, thus (5) holds. If a n = a 2m , then the equation a [n-2m+1,n) = a [1,2m) and (1.4) yield that a n > a 2m , thus P n (max J n ) = 1 when J n = ∅, similarly to (i). If a [1,2ℓ) = a [n-2ℓ+1,n) , 1 ≤ ℓ < m, then we also have that a [1,2ℓ) = a [2m-2ℓ+1,2m) , thus a 2ℓ ≤ a 2m < a n . This implies that a [n-2ℓ+1,n] = a [1,2ℓ] for all 1 ≤ ℓ < n/2, thus (4) holds when a n ∈ B. (iii) If a [1,n-2m) = u [1,n-2m) or a [n-2m,n) = a [1,2m] for all 1 ≤ m ≤ n/2 -1, then we have that P n-1 (min J n-1 ) = 1, thus a 1 + 1 -(min J n-1 ) P n-1 (min J n-1 ) = P 1 (min J n-1 ) ∈ [0, 1],
and a 1 ∈ B. If a n = a 1 , then min J n = min J n-1 and P n (min J n-1 ) = P 1 (min J n-1 ), thus P n (min

J n ) = P 1 (min J n ), and a [1,n-2m+1] = u [1,n-2m+1] or a [n-2m+2,n] = a [1,2m) for all 2 ≤ m ≤ n/2. Therefore, (3) holds. If a n < a 1 , then P n (min J n ) = 0 when J n = ∅, a [1,n-2m+1] = u [1,n-2m+1] or a [n-2m+2,n] = a [1,2m) for all 1 ≤ m ≤ n/2, thus (2) holds when a n ∈ B. (iv) If a [1,n-2m) = u [1,n-2m) and a [n-2m,n) = a [1,2m]
for some 1 ≤ m ≤ n/2 -1, and m is maximal with this property, then P n-1 (min J n-1 ) = P 2m (min J n-1 ), thus

a 2m+1 + 1 -(min J n-1 ) P n-1 (min J n-1 ) = P 2m+1 (min J n-1 ) ∈ [0, 1],
hence a 2m+1 ∈ B. If a n = a 2m+1 , then min J n = min J n-1 and P n (min J n-1 ) = P 2m+1 (min J n-1 ), thus P n (min

J n ) = P 2m+1 (min J n ), and a [n-2m,n] = a [1,2m+1] . The maximality of m yields that a [1,n-2ℓ+1] = u [1,n-2ℓ+1] or a [n-2ℓ+2,n] = a [1,2ℓ) for all m + 1 < ℓ ≤ n/2, thus (3) holds. If a n = a 2m+1 , then a n < a 2m+1 by (1.4). If moreover a [1,2ℓ-2] = a [n-2ℓ+2,n) , 1 ≤ ℓ ≤ m, then we have that a [1,2ℓ-2] = a [2m-2ℓ+3,2m] , thus a 2ℓ-1 ≥ a 2m+1 > a n . Then we get that P n (min J n ) = 0 when J n = ∅, a [1,n-2ℓ+1] = u [1,n-2ℓ+1] and a [n-2ℓ+2,n] = a [1,2ℓ) for all 1 ≤ ℓ ≤ n/2, thus (2) holds when a n ∈ B. Since x → xP n-1 (x)
is continuous and J n-1 is an interval, the set B is an interval of integers. The paragraphs (i) and (ii) show that a n is not smaller than the smallest element of B, (iii) and (iv) show that a n is not larger than the largest element of B, thus a n ∈ B. We have therefore proved that J n = ∅ and (2)-(5) hold, when a [1,n) = u [1,n) and n is even. For odd n, the proof runs along the same lines and is left to the reader.

If

a [1,n) = u [1,n) , then inf J n-1 = 1.
From [LS, Proposition 3.5], we know that u n ∈ B, that inf J n = 1 when a n = u n , and that min J n > 1 when u n = a n ∈ B. Let first n be even, thus a n ≤ u n by (1.5). If a [n-2m+1,n) = a [1,2m) for all 1 ≤ m < n/2, then we obtain as in (i) that 0 ∈ B, thus a n ∈ B, and (4) holds. If a [n-2m+1,n) = a [1,2m) for some 1 ≤ m < n/2, and m is maximal with this property, then (ii) yields that a 2m ∈ B and a 2m ≤ a n , thus a n ∈ B. If a n = a 2m , then (5) holds; if a n > a 2m , then (4) holds. Moreover, if a n < u n , then we get that P n (min J n ) = 0, thus (2) holds. Again, if n is odd, then similar arguments apply. Hence, we have proved that J n = ∅ and (2)-(5) hold for the case that a

[1,n) = u [1,n) too.
If J n is not an interval, then the continuity of x → xP n-1 (x) on the interval J n-1 implies that P n meets the lower bound 0 or the upper bound 1 at least twice within J n . Therefore, suppose that P n (β) = P n (β ′ ) ∈ {0, 1} for β, β ′ ∈ J n . If P j (β) ∈ (0, 1] and P j (β ′ ) ∈ (0, 1] for all 1 ≤ j < n, then the (-β)-expansion of -β β+1 and the (-

β ′ )-expansion of -β ′ β ′ +1 are both a [1,n] (if P n (β) = 1) or a [1,n) (a n +1) (if P n (β) = 0), thus β = β ′ by Theorem 3.
Suppose in the following that P j (β ′ ) = 0 for some 1 ≤ j < n, and let ℓ ≥ 1 be minimal such that P ℓ (β ′ ) ∈ {0, 1}. If P ℓ (β ′ ) = 0, then a ℓ+1 = 0 and P ℓ+1 (β ′ ) = 1, hence a [1,n] is a concatenation of blocks a [1,ℓ] 0 and a [1,ℓ) (a ℓ +1), except possibly for the last block, which is a [1,ℓ] when P n (β ′ ) = 0. If P ℓ (β ′ ) = 1, then a [1,n] is a concatenation of blocks a [1,ℓ] and a [1,ℓ) (a ℓ -1)0, ending with a [1,ℓ) (a ℓ -1) when P n (β ′ ) = 0. We obtain that

P n (x) = P n (β ′ ) + P ℓ (x) -P ℓ (β ′ ) Q(x)
for some polynomial Q(x) = n-ℓ j=0 q j (-x) j with coefficients q j ∈ {0, 1}, and q j-1 = q j-2 = • • • = q j-ℓ+1 = 0 whenever q j = 1. If P ℓ (β) = P ℓ (β ′ ), then the induction hypotheses yield that

β = β ′ . If P ℓ (β) = P ℓ (β ′ ), then Q(β) = 0, which implies that 1 < 1 β ℓ+1 + 1 β 2ℓ+1 + • • • = 1 β ℓ+1 -β when ℓ is even, 1 < 1 β ℓ + 1 β 2ℓ+1 + • • • = β β ℓ+1
-1 when ℓ is odd, i.e., β ℓ+1 < β + 1. To exclude the latter case, suppose that P n (β) = P n (β ′ ) ∈ {0, 1} for β, β ′ ∈ J n , β = β ′ , and that β ℓ+1 < β + 1 for the minimal ℓ ≥ 1 such that P ℓ (β ′ ) ∈ {0, 1}. Set g k = ⌊2 k+1 /3⌋, and let, for k ≥ 1, γ k and η k be the real numbers greater than 1 satisfying

γ g k +1 k = γ k + 1, η g k +1 k = η g k-1 +1 k +1 when k is even, η g k k = η g k-1 k
+1 when k is odd, as in [LS]. For the positive integer m satisfying g m ≤ ℓ < g m+1 , we have that β < γ m < η m . By Proposition 3.5 in [LS] and its proof, β < η m implies that the (-β)-expansion of -β β+1 starts with ϕ m (1) and that

T j -β (1) ∈ {0, 1} for all 1 ≤ j ≤ |ϕ m (1)| = g m+1 + 1-(-1) m 2
, where |w| denotes the length of the word w. Since β ∈ J n and P n (β) ∈ {0, 1}, we obtain that a 1 a 2 • • • starts with ϕ m (1) and that n > |ϕ m (1)|. By equation (3.2) in [LS], we have that P 2 m (x) > 1 for all x > η m (note that 2 m = |ϕ m-1 (10)| < |ϕ m (1)|), thus J 2 m = (1, η m ], and ℓ < g m+1 yields that β ′ = η m , ℓ = 2 m . As β and β ′ are in the interval J n-1 , we also have that γ m ∈ J n-1 . The (-γ m )-expansion of -γm γm+1 is ϕ m-1 (1) ϕ m-1 (0) by [LS, Theorem 2.5]. Since n ≥ 2ℓ by the above block decomposition of a [1,n] , we obtain that a 1 a 2 • • • starts with ϕ m-1 (1000) if m ≥ 2, and with 100 if m = 1. In case m = 1, we get that P [LS] and, using the notation of [LS], the function f γm,ϕ m-1 (0) is order-reversing. Again, this contradicts that η m = β ′ ∈ J n . Therefore, we have shown that β = β ′ whenever P n (β) = P n (β ′ ) ∈ {0, 1}, β, β ′ ∈ J n . Hence, J n is an interval, and (1)-( 5) hold for all n ≥ 1.

3 (2) ∈ J 3 , contradicting that 2 = η 1 = β ′ ∈ J n . For m ≥ 2, we have that P |ϕ m-1 (1000)| (η m ) > P |ϕ m-1 (10)| (η m ) = 1 because P |ϕ m-1 (100)| (η m ) = P |ϕ m (1)| (η m ) < P |ϕ m-1 (1)| (η m ) by equation (3.4) in
As the J n form a sequence of nested non-empty intervals that are compact for sufficiently large n, we have that n≥1 J n = ∅, thus there exists some β > 1 satisfying (1.9), which is equivalent to (1.6). To show that β is unique, suppose that n≥1 J n is not a single point. Then n≥1 J n is an interval of positive length, thus there exist β, β ′ ∈ n≥1 J n , β = β ′ , such that P n (β) ∈ (0, 1] and P n (β ′ ) ∈ (0, 1] for all n ≥ 1. This means that a 1 a 2 • • • is both the (-β)-expansion of -β β+1 and the (-β ′ )-expansion of -β ′ β ′ +1 , which contradicts that β = β ′ by Theorem 3. This concludes the proof of Theorem 1.

Remark 1. Some parts of the proofs of Theorems 1 and 3 can be simplified when one is only interested in β > 1 not too close to 1. Since P n (x) = a n + 1 -xP n-1 (x) for n ≥ 2, and P ′ 1 (x) = -1, the derivative of P n (x) is

P ′ n (x) = (-1) P n-1 (x) + xP ′ n-1 (x) = • • • = (-1) n x n-1 1 + n-1 j=1 P j (x) (-x) j . If x ∈ J n-1 , then 1 + n-1 j=1 P j (x) (-x) j > 1 -1 x -1 x 3 -• • • = x 2 -x-1 x 2 -1 . If moreover x ≥ (1+ √ 
5)/2, then we get that (-1) n P ′ n (x) > 0, hence P n is a strictly increasing (decreasing) function on

J n-1 ∩ [(1+ √ 5)/2, ∞) when n is even (odd). Moreover, lim n→∞ |P ′ n (x)| = ∞ if x ≥ (1+ √ 
5)/2 and x ∈ J n for all n ≥ 1. However, it is not true that P n is always increasing (decreasing) on J n-1 when n is even (odd). For instance, if a 1 a 2 • • • starts with 1001, then P 4 (x) = x 4 -2x 3 + x 2x + 2 and J 3 = (1, β] with β 3 = 2β 2β + 1 (β ≈ 1.755). The function P 4 decreases on (1, β ′ ], with β ′ ≈ 1.261, and increases on [β ′ , ∞). Note that this is a major flaw in the proof of Theorem 28 of [START_REF] Góra | Invariant densities for generalized β-maps[END_REF] (besides the fact that the statement is incorrect, as explained in the Introduction). This lack of monotonicity is what makes Theorems 1 and 3 more difficult to prove than the corresponding statements for β-expansions.

Proof of Theorem 2

Let a 1 a 2 • • • be a sequence of non-negative integers satisfying (1.4) and (1.5). We have already seen in the Introduction that these conditions are necessary to be the (-β)-expansion of -β β+1 for some β > 1. Moreover, β can only be the number given by Theorem 1. Then a 1 a 2 • • • is the (-β)-expansion of -β β+1 if and only if ∞ j=1 a k+j (-β) j = 1 β+1 for all k ≥ 1. Suppose first that ∞ j=1 a k+j (-β) j = 1 β+1 for some k ≥ 1, and let ℓ ≥ 1 be minimal such that β+1 , then the (-β)-expansion of -β β+1 is a [1,ℓ) (a ℓ +1), a 1 a 2 • • • is composed of blocks a [1,ℓ] 0 and a [1,ℓ) (a ℓ +1), and we have that a [1,ℓ) (a ℓ +1) > alt u 1 u 2 • • • , thus (1.8) does not hold. Therefore, (1.4), (1.5), (1.7), and (1.8) imply that a 1 a 2 • • • is the (-β)-expansion of -β β+1 for some (unique) β > 1. Suppose now that (1.7) does not hold, i.e., a 1 a 2 • • • ∈ {a [1,k] , a [1,k) (a k -1)0} ω \ {a [1,k] } for some k ≥ 1 with a [1,k] > alt u 1 u 2 • • • . We show that the sequence a [1,k] satisfies (1.4).

  and let L ′ β,n be the number of different sequences b 1 • • • b n such that I b 1 •••bn is an interval of positive length. (The latter is called the lap number of T n -β .)

  ) j = -β β+1 , then the (-β)-expansion of -β β+1 is a [1,ℓ] . Then a 1 a 2 • • • is composed of blocks a [1,ℓ] and a [1,ℓ) (a ℓ -1)0. Since ∞ j=1 a k+j (-β) j = 1 β+1 for some k ≥ 1, we have at least one block a [1,ℓ) (a ℓ -1)0, i.e., a 1 a 2 • • • ∈ {a [1,ℓ] , a [1,ℓ) (a ℓ -1)0} ω \ {a [1,ℓ] }. As a [1,ℓ] is the (-β)-expansion of -β β+1 , we have that a [1,ℓ] > alt u 1 u 2 • • • , thus (1.7) does not hold. If ∞ j=1 a ℓ+j (-β) j = 1
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Suppose on the contrary that a [j,k] a [1,k] > alt a [1,k] for some 2 ≤ j ≤ k. This implies that a

satisfies (1.4) and (1.5), and we can apply Theorem 1 for this sequence. Let β ′ > 1 be the number satisfying (1.6) for the sequence a

β+1 . Suppose finally that (1.8) does not hold, i.e., a

As in the preceding paragraph, the number given by Theorem 1 for the sequence a

β+1 . Therefore, (1.7) and (1.8) are necessary for a 1 a 2 • • • to be the (-β)-expansion of -β β+1 for some β > 1.