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ABSTRACT 40 

The interplay between CCR5 host genetic background, disease progression and intra-host HIV-1 41 

evolutionary dynamics remains unclear because differences in viral evolution between hosts limit 42 

the ability to draw conclusions across hosts stratified into clinically relevant populations. Similar 43 

inference problems are proliferating across many measurably evolving pathogens for which intra-44 

host sequence samples are readily available. To this end, we propose novel hierarchical 45 

phylogenetic models (HPMs) that incorporate fixed-effects to test for differences in dynamics 46 

across host-populations in a formal statistical framework employing stochastic search variable 47 

selection and model averaging. To clarify the role of CCR5 host genetic background and disease 48 

progression on viral evolutionary patterns, we obtain gp120 envelope sequences from clonal 49 

HIV-1 variants isolated at multiple time points in the course of infection from populations of 50 

HIV-1 infected individuals who only harbored CCR5-using HIV-1 variants at all time points. 51 

Presence or absence of a CCR5 wt/Δ32 genotype and progressive or long-term non-progressive 52 

course of infection stratify the clinical populations in a two-way design. As compared to the 53 

standard approach of analyzing sequences from each patient independently, the HPM provides 54 

more efficient estimation of evolutionary parameters such as nucleotide substitution rates and 55 

dN/dS rate ratios, as shown by significant shrinkage of the estimator variance. The fixed-effects 56 

also corrects for non-independence of data between populations and results in even further 57 

shrinkage of individual patient estimates. Model selection suggests an association between 58 

nucleotide substitution rate and disease progression, but a role for CCR5 genotype remains 59 

elusive. Given the absence of clear dN/dS differences between patient groups, delayed onset of 60 

AIDS symptoms appears to be solely associated with lower viral replication rates rather than with 61 

differences in selection on amino acid fixation. 62 

63 
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INTRODUCTION 63 

The high mutation rate and rapid viral turnover that characterize HIV-1 infection (Ho et al. 1995; 64 

Wei et al. 1995) generate a highly diverse genetic viral population within an HIV-1 infected 65 

individual (Shankarappa et al. 1999). Continuous emergence of new HIV-1 variants facilitates 66 

rapid viral adaptation to humoral and cellular immune responses of the host (Borrow et al. 1997; 67 

Goulder et al. 1997; Wei et al. 2003; Jones et al. 2004), escape from antiretroviral drugs (Coffin 68 

1995) and the selection for optimal biological properties such as replication capacity and use of 69 

the entry complex (Koning et al. 2003; Kwa et al. 2003) (Sterjovski et al. 2007; Repits et al. 70 

2008). 71 

Following primary infection, an asymptomatic phase with a gradual loss of CD4+ T cells and T-72 

cell function characterizes the clinical course of HIV-1 infection (Lane et al. 1985; Polk et al. 73 

1987; Miedema et al. 1988), resulting eventually in the development of AIDS. The duration of 74 

this asymptomatic phase in the absence of antiretroviral therapy varies among patients, from 75 

several months to more than two decades, and determines their rate of disease progression 76 

(Veugelers et al. 1994; Munoz, Sabin, and Phillips 1997). Many selective forces may play a role 77 

in intra-host viral evolution and disease progression such as neutralizing antibodies (nAbs) and 78 

cytotoxic T cell (CTL) response, immune activation, target cell availability, co-receptor 79 

expression levels and emergence of CXCR4-using viruses among others. The severity of HIV 80 

infection may be further complicated by co-infections and heritable viral genetic factors 81 

(Hollingsworth et al. 2010). Largely stimulated by a comprehensive longitudinal analysis 82 

demonstrating common patterns of sequence divergence, diversity and emergence of CXCR4-83 

using variants in chronic HIV-1 infections (Shankarappa et al. 1999), phylogenetic analyses have 84 

been widely used as a means of elucidating how host factors impact HIV within-host dynamics. 85 

More specific evolutionary parameters such as evolutionary rate (Lemey et al. 2007; Lee et al. 86 
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2008), adaptation rates (Williamson 2003), positively selected sites (Ross and Rodrigo 2002), 87 

compartmentalization (Kemal et al. 2003) and recombination (Carvajal-Rodriguez et al. 2008) 88 

have been scrutinized, but consistent associations with disease progression have rarely been 89 

revealed. 90 

Here, we focus on a polymorphism in the CCR5 gene, which is a host factor known to influence 91 

disease progression. The CCR5 gene encodes one of the main coreceptors required for HIV-1 92 

entry, and a heterozygous genotype for a 32 base pair deletion (CCR5 wt/∆32) associates with a 93 

lower viral load set point, defined as the viral load between 18 and 24 months after 94 

seroconversion which is stable in most HIV-1 infected individuals and predictive for clinical 95 

course of infection (Mellors et al. 1996; de Wolf et al. 1997), and a slower HIV-1 disease 96 

progression (de Roda Husman et al. 1997; Ioannidis et al. 2001). Given the reported lower 97 

percentages of CCR5 expressing target cells and higher levels of RANTES production in HIV-1 98 

infected individuals with a CCR5 wt/∆32 genotype (de Roda Husman et al. 1999a; Blaak et al. 99 

2000), it is likely that target cell and CCR5 availability influence HIV-1 intra-patient evolution 100 

and contributes to the progression to AIDS.  101 

To investigate these influences, we compared the evolution of CCR5-using HIV-1 variants (R5) 102 

in individuals with either a CCR5 wt/wt or CCR5 wt/∆32 genotype who only harbored CCR5-103 

using HIV-1 variants in their progressive or long-term non-progressive course of infection. Such 104 

comparisons require asking questions across multiple populations of individuals about the 105 

evolutionary histories that occur within each individual. Traditional modelling of evolutionary 106 

histories across individuals generally assumes that within-individual processes vary 107 

independently and are fit separately from individual to individual (Shankarappa et al. 1999; Ross 108 

and Rodrigo 2002; Potter et al. 2006; Lemey et al. 2007; Carvajal-Rodriguez et al. 2008). Often, 109 

this approach results in poor estimates of the underlying evolutionary parameters, as the 110 
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informative content within a single intra-host dataset is sparse. Not surprisingly, Carvajal-111 

Rodriguez et al. (2008) arrived at the conclusion that the statistical characterization of HIV 112 

within-host evolutionary processes in relationship to disease progression is a difficult task and 113 

suffers from a lack of power. To overcome the data sparsity, one may enforce strict equality 114 

between within-individual evolutionary parameters (Rodrigo et al. 2003). In both cases, however, 115 

the ability to formally assess similarities or differences between populations of individuals is lost. 116 

Hierarchical modelling (Laird and Ware 1982)(Gelman et al. 1995), and in particular hierarchical 117 

phylogenetic models [HPMs] (Suchard et al. 2003), furnish an advantageous statistical 118 

framework in which to consider drawing conclusions across populations of individuals about the 119 

evolutionary processes within individuals. In general, the Bayesian hierarchical framework 120 

allows different evolutionary histories of the intra-host variants and pressures driving their 121 

evolution from individual to individual, while providing overall or across-individual summaries 122 

of important evolutionary measures, such as the DNA sequence mutation rate or 123 

synonymous/non-synonymous rate ratio (dN/dS) identifying positive selection. Critically, the 124 

HPM allows the within-individual-level parameters to vary about, for example, an unknown 125 

common mean for each population. This occurs through the employment of a hierarchical prior 126 

distribution on the parameters that are in turn characterized by unknown estimable 127 

hyperparameters. Then conveniently, hypothesis testing reduces to asking if these common mean 128 

parameters differ between populations. Fortuitously, the hierarchical prior embedded in the HPM 129 

also affords a borrowing of strength of information from one individual by another, providing 130 

more precise within-individual-level estimates (Suchard et al. 2003; Kitchen et al. 2004; Kitchen 131 

et al. 2006; Kitchen et al. 2009). 132 

In this study, we extend the HPM across multiple populations of individuals through the 133 

introduction of population-specific, fixed effects. These effects allow the expected evolutionary 134 
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parameter estimated within a population to potentially vary across populations. We then exploit 135 

ideas from Bayesian model averaging (Hoeting et al. 1999) and selection (Suchard, Weiss, and 136 

Sinsheimer 2001) to formally ask if these effects statistically differ between populations. We use 137 

this approach to estimate viral evolutionary rates and selective pressures within hosts and to 138 

evaluate whether these quantities differ with respect to CCR5 wt/Δ32 host genetic background 139 

and disease progression. 140 

141 
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MATERIALS AND METHODS 141 

Study subjects 142 

18 men who have sex with men (MSM) participants in the Amsterdam Cohort Studies on HIV 143 

and AIDS, 11 with a CCR5 wt/wt genotype (patients P1 to P11) and 7 with a CCR5 wt/∆32 144 

genotype (patients P12 to P18), who at all times tested during follow-up harbored only R5 HIV-1 145 

variants were selected. All patients were either seropositive at entry in the cohort studies 146 

(seroprevalent cases with an average imputed seroconversion (SC) date of 18 months before entry 147 

in the cohort (Geskus 2000)) or seroconverted during active follow-up in the cohort studies. Nine 148 

individuals were classified as long-term non-progressors (LTNP) (defined as HIV-1 infected 149 

patients that at the end of follow-up (April 1997) had an asymptomatic seropositive follow-up of 150 

at least 11 years with relatively stable CD4+ T cell counts that were still above 400 cells/ml in the 151 

ninth year of follow-up in the absence of antiretroviral therapy). The remaining nine individuals 152 

progressed to AIDS during the study period (median time to AIDS = 8.2 (2.7-10.8) years after SC 153 

or imputed SC date) and were classified as Progressors (P). Individuals included in this study did 154 

not receive effective antiretroviral therapy during the study period. Clinical parameters and time 155 

points of virus isolation are shown per patient in Figure 1. 156 

The Amsterdam Cohort Studies are conducted in accordance with the ethical principles set out in 157 

the declaration of Helsinki and written informed consent was obtained prior to data collection. 158 

The study was approved by the Academic Medical Center institutional medical ethics committee.  159 

 160 

Isolation of clonal HIV-1 variants 161 

Clonal HIV-1 variants were isolated by co-cultivation of serial dilutions of patient Peripheral 162 

Blood Mononuclear Cells (PBMC) from two to eight time points in the course of their infection 163 
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and expanded to viral stocks for further study as described previously (Schuitemaker et al. 1992; 164 

van 't Wout, Schuitemaker, and Kootstra 2008). For each patient, time points of virus isolation 165 

and number of clonal HIV-1 variants per time point are summarized in Supplementary Table S1. 166 

The R5 phenotype of all clonal HIV-1 variants that were isolated was confirmed by inability to 167 

replicate in the MT2 cell-line, in PHA-PBMC from a donor with a CCR5∆32 homozygous 168 

genotype and in astroglioma cells transfected with CD4 and CCR3 or CXCR4 (de Roda Husman 169 

et al. 1999b) and predicted co-receptor use based on the V3 amino acid sequence using the 170 

position specific scoring matrix (PSSM) NSI/SI 171 

(http://indra.mullins.microbiol.washington.edu/pssm/ )(Jensen et al. 2003). 172 

 173 

DNA isolation, PCR and sequencing 174 

Total DNA was isolated from PBMCs infected with clonal HIV-1 variants using a modification 175 

of the L6 isolation method (Kootstra and Schuitemaker 1999). Precipitated DNA was dissolved 176 

in 100µl of distilled water and 5µl were used for PCR amplification of the gp120 (C1-C4) region 177 

corresponding to HXB2 nucleotide positions 6444 to 7595. Amplification was performed by PCR 178 

with primers TB3 forward (5’-GGCCTTATTAGGACACATAGTTAGCC-3’) and OFM19 179 

reverse (5’-GCACTCAAGGCAAGCTTTATTGAGGCTTA-3’) using the expand high fidelity 180 

Taq polymerase kit (Roche) and the following amplification cycles: 2 min 30s 94˚C, 9 cycles of 181 

15s 94˚C, 45s 50˚C, 6 min 68˚C, 30 cycles of 15s 94˚C, 45s 53˚C, 6 min 68˚C, followed by a 10 182 

min extension at 68˚C and subsequent cooling to 4˚C. Nested PCR was performed with two 183 

different inner PCR primer combinations: Seq1 forward (5’- 184 

TACATAATGTTTGGGCCACACATGCC -3’), Seq4 reverse (5’- 185 

CTTGTATTGTTGTTGGGTCTTGTAC -3’), Seq5 forward (5’- 186 

GTCAACTCAACTGCTGTTAAATGGC   -3’) and Seq2 reverse (5’-187 
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TCCTTCATATCTCCTCCTCCAGGTC -3’). Nested PCRs were performed using Promega Taq 188 

polymerase in the presence of 2mM MgCl2 using the following amplification cycles: 5 min 94˚C, 189 

40 cycles of 15s 95˚C, 30s 59˚C, 2 min 72˚C, followed by a 10 min extension at 72˚C and 190 

subsequent cooling to 4˚C. 191 

PCR products were purified using ExoSAP-IT (USB, Cleveland, Ohio, USA) according to 192 

manufacturer’s protocol. Sequencing conditions consisted of 5’ at 94˚C, 30 cycles of 15’’ at 94˚C, 193 

10’’ at 50˚C, 2’ at 60˚C and a 10’ extension at 60˚C. Sequencing was performed using BigDye 194 

Terminator v1.1 Cycle Sequencing kit (ABI Prism, Applied Biosystems, Warrington, UK) 195 

according to the manufacturer’s protocol using the nested PCR primers. Sequences were analyzed 196 

on the Applied Biosystems 3130 xl Genetic Analyzer. The nucleotide sequences are available 197 

from Genbank under the accession numbers EU743973.1-EU44009.1, EU744014.1-EU744046.1, 198 

EU744055.1-EU744093.1, EU744097.1-EU744129.1, EU744146.1-EU744175.1, GU455514-199 

GU455525 and HQ644787-HQ645012. 200 

 201 

Bayesian inference of within-host HIV evolutionary rates and selection pressures 202 

Nucleotide sequences for all clonal HIV-1 gp120 (C1-C4) variants isolated from the individual 203 

patients were aligned using ClustalW (Thompson, Higgins, and Gibson 1994) and manually 204 

edited. Cross-contamination was excluded using phylogenetic analysis. 205 

(a) Independent estimates of within-host evolutionary rates. Nucleotide substitution rates were 206 

estimated for each patient using strict and relaxed (uncorrelated lognormal) molecular clock 207 

models implemented in BEAST v.1.4.8 (Drummond et al. 2006; Drummond and Rambaut 2007). 208 

We used a general time-reversible (GTR) model of nucleotide substitution with discrete gamma-209 

distributed rate variation among sites. Posterior distributions were obtained using Bayesian 210 
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Markov chain Monte Carlo (MCMC) analysis. MCMC chains were run sufficiently long to 211 

ensure stationarity and adequate effective sample sizes (ESS > 100) as diagnosed using Tracer 212 

(http://tree.bio.ed.ac.uk/software/tracer/). The uncertainty of continuous parameter estimates is 213 

expressed as 95% highest posterior density (HPD) intervals. 214 

(b) Hierarchical estimates of evolutionary parameters. To draw inference about different 215 

evolutionary patterns across populations of patients, we implement a novel HPM in BEAST 216 

(Suchard et al. 2003). HPMs analyze viral sequence data from multiple patients simultaneously 217 

and have found extensive use in uncovering common patterns of intra-host HIV evolution 218 

(Kitchen et al. 2004; Kitchen et al. 2006; Kitchen et al. 2009). At the heart of the HPM lies a 219 

Bayesian mixed effects model that pools information across patients. Pooling information 220 

through random effects affords more precise individual-patient parameter estimates when the data 221 

are sparse for a patient. Further, unique to the work here, the introduction of fixed effects (see 222 

below) offers a formal hypothesis testing framework from which to identify differences in 223 

evolutionary process between patient population groups. 224 

Let θi for i = 1, …, N patients represent the evolutionary process parameter of interest; this could 225 

be, for example, the overall rate of nucleotide substitution or the nonsynonymous/synonymous 226 

substitution rate ratio (dN/dS) in a codon substitution process across the unknown genealogy 227 

relating the sequences from within patient i. In the analysis of four different patient groups: 228 

Progressors, Long-term non-progressors (LTNP), CCR5 wt/wt (WT) and CCR5 wt/Δ32 (Δ32), 229 

we assume that either log θi or θi is drawn from an underlying normal distribution where the 230 

mean and variance of this underlying prior distribution are also unknown and simultaneously 231 

estimated along with all sequence data. The choice of a log transform is convenient for modeling 232 

strictly positive parameters. Importantly, fixing this mean and variance to known values does not 233 
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return a hierarchical model, but rather results in complete independence across individuals. On 234 

the other hand, estimating the mean or variance imparts both an approach to make comparisons 235 

across populations and the borrowing of strength for poorly informed within-individual model 236 

parameters. 237 

For nucleotide analyses, we apply this hierarchical setup to the strict clock evolutionary rate (on 238 

the log-scale), the mean evolutionary rate parameter of the lognormal relaxed clock (log), the 239 

constant population size (log) of the demographic prior, the GTR substitution parameters (log) 240 

and the shape parameter (log) of the discrete gamma distribution modeling rate variation among 241 

sites. For codon model analyses, a hierarchical transition/transversion rate parameter and a 242 

hierarchical dN/dS rate ratio (Goldman and Yang 1994) replace the GTR model parameters. 243 

(c) Hierarchical estimation with population-specific, fixed effects. For hypothesis testing 244 

purposes, we extend the HPM to include across-population fixed effects. Each patient belongs to 245 

one of four fixed population groups that we can designate using two indicator factors:  LTNPi = 0 246 

(1) for short (long) term progressors and Δ32i = 0 (1) for deletion 32 absent (present) patients.  247 

Our HPM assumes 248 

 249 

, 250 

 251 

where  is an unknown grand-mean, δLTNP and δΔ32 are binary indicator variables, βLTNP and βΔ32 252 

are conditional effective sizes and εi are independent and normally distributed random variables 253 

with mean 0 and an estimable variance.  The inclusion of the indicator variables follows from a 254 

Bayesian stochastic search variable selection approach (Kuo and Mallick 1998; Chipman, George, 255 

and McCulloch 2001) that simultaneously estimates the posterior probabilities of all possible 256 
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linear models that may or may not include LTNP or Δ32 status effects. When an indicator equals 257 

1, this effect is included in the model, demonstrating that the evolutionary process parameter 258 

differs with high probability between patient population groups. Lemey et al. (2009) discuss 259 

Bayesian stochastic search variable selection in further detail (Lemey et al. 2009). 260 

We complete this HPM model with variable selection through assigning independent Bernoulli 261 

prior probability distributions on δLTNP and δΔ32.  These distributions place equal probability on 262 

each factor's inclusion and exclusion.  We further assume diffuse priors on the unknown grand-263 

mean and error variance and specify that a priori βLTNP and βΔ32 are normally distributed with 264 

mean 0 and a variance of 1/2. We choose 1/2 as, before seeing the data, we believe that, if a 265 

factor does result in different evolutionary parameters across population groups, process 266 

parameters should differ by at most an order of magnitude on their original scale. The 267 

introduction of HPMs into BEAST necessitates the development of MCMC transition kernels to 268 

efficiently explore that space of the grand-mean and effect-size, model indicator, and random-269 

effects variance parameters.  Given our judicious prior choices, the full conditional distributions 270 

of these parameters are in standard-form: multivariate-normal, binomial and inverse-gamma, 271 

respectively.  This enables us to build highly effective Gibbs samplers (Casella and George 1992; 272 

Suchard et al. 2003) over the joint space of these parameters. Suchard et al. (2003) provide 273 

detailed derivations of the full condition distributions and their Gibbs samplers (Suchard et al. 274 

2003).  We implement these Gibbs samplers as regular BEAST “operators” that are now 275 

accessible to interested readers through BEAST’s XML model specification language. 276 

Supplementary material to this paper reports the transition kernels’ XML syntax and gives 277 

examples on their use to implement HPMs. 278 
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To assign statistical significance to differences between population groups, we employ Bayes 279 

factors (Jeffreys 1998; Suchard, Weiss, and Sinsheimer 2001) that report how much the data 280 

change our prior opinion (here, 1:1 odds) about the inclusion of each factor.  These Bayes factors 281 

are straightforward to estimate through the variable selection procedure, as the Bayes factor 282 

equals the posterior odds that a factor indicator equals 1 divided by the corresponding prior odds.  283 

The posterior odds follow immediately from the marginal posterior probability that a factor 284 

indicator equals 1 that we estimate through the posterior expectation of the factor indicator.  In 285 

cases where an estimate of this expectation approaches very closely to 0 or 1, an estimator based 286 

on a Rao-Blackwellization procedure is available (Casella and Robert 1996).  287 

288 
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RESULTS 288 

Independent versus hierarchical estimation of evolutionary parameters 289 

We first explored the nucleotide substitution rate as a hierarchical parameter estimated across 290 

patients in four separate patient groups: Progressors, LTNP, CCR5 wt/wt and CCR5 wt/Δ32. 291 

Using a strict clock model, a higher mean evolutionary rate was estimated in the Progressors 292 

group (mean = 7.65x10-4, 95% HPD = [6.45x10-4,8.84x10-4]) compared to the LTNP group 293 

(5.87x10-4 [4.30·10-4-7.55x10-4]) (Figure 2A). While these estimates demonstrate overlapping 294 

marginal posterior credible intervals (CIs), immediately concluding that their difference is not 295 

significant ignores the correlation between the rates; we return to a formal test later. A less 296 

pronounced difference in evolutionary rate was estimated between the CCR5 wt/wt (7.27x10-4 297 

[5.74x10-4-8.75x10-4]) and CCR5 wt/Δ32 (6.00x10-4 [4.21x10-4-7.89x10-4]) groups. Similar rate 298 

differences, with somewhat less overlapping CIs between Progressors (7.57x10-4 [6.49x10-4-299 

8.67x10-4]) and LTNPs (5.63x10-4 [4.19x10-4-7.06x10-4]), were observed using a relaxed clock 300 

model (Figure 2B), in which the log of the mean evolutionary rate across all branches in a patient 301 

genealogy is drawn from an underlying normal distribution. For both strict and relaxed 302 

evolutionary rate estimates (Figure 3 A and B), as well as other substitution model and 303 

population genetic parameters (data not shown), we observed significant shrinkage in uncertainty 304 

under the standard hierarchical fit, which clearly demonstrates the HPM improvement. Moreover, 305 

separate fit of parameter-rich models such as the uncorrelated relaxed clock required informative 306 

priors to achieve efficient sampling. To demonstrate the impact of such priors on our posterior 307 

rate estimates obtained by separate model fitting, and compare these with the hierarchical 308 

estimates that did not require such priors, we plot the marginal posterior rate estimates for the 309 

three least informative (lowest number of time points and/or sequences per time point) and three 310 
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most informative patients within the LTNP group (P10, P16 and P17 versus P9, P11 and P13 311 

respectively) as violin plots in Figure 4. Violin plots are box plots overlaid with (rotated) kernel 312 

density estimates in order to show to the probability density at different parameter values. The 313 

patients for which only two or three time points were available resulted in rate estimates that only 314 

weakly diverged from their respective prior (uniform[0,0.004] or lognormal(-7.5,1); Figure 4A 315 

and C respectively), whereas many time points provide sufficient information to dominate over 316 

these priors (Figure 4 B and D). Under the hierarchical model, even weakly informative patient-317 

specific data sets with extremely diffuse priors on the rate yield relative precise posteriors (Figure 318 

4E), and the individual patient estimates are only marginally higher than for the three most 319 

informative patients (Figure 4F). This demonstrates that comparing the mean rates for individual 320 

estimates would is inappropriate to assess differences among patient groups. Weakly informative 321 

patients result in relatively high mean rates, but their high variances ensure that the contribution 322 

to the population rate (LTNP group) in the hierarchical model remains low. 323 

While the application of relaxed clock models to individual data sets with few time points or 324 

sequences may be questionable, analysis under a HPM, in which information is pooled between 325 

patients, enables us to side-step this limitation.  Marginal likelihood estimates for the both strict 326 

and relaxed clock analyses of the different patient groups (Supplementary Table S2) indicate a 327 

better fit of the relaxed clock model, with log Bayes factors (BFs) of 7.8, 6.1, 4.4 and 4.2 in favor 328 

of the relaxed clock for Progressors, LTNP, CCR5 wt/wt and CCR5 wt/Δ32 respectively. The 329 

fact that a strict clock could often not be rejected for individual patient analysis also indicates the 330 

HPM draws on increased statistical power of HPMs to reject simpler models. Because of the 331 

increased model fit, we employ relaxed clocks in further codon model analyses and hypothesis 332 

tests incorporating fixed effects. 333 
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Analyses using a codon model revealed comparable codon substitution rate differences between 334 

Progressors/LTNP and between CCR5 wt/wt and CCR5 wt/Δ32 compared to the nucleotide 335 

analyses (Supplementary Figure 1A vs. Figure 2B). Hierarchical dN/dS estimates, however, were 336 

comparable for the four patient groups (Supplementary Figure 1B). 337 

 338 

Hypothesis testing using HPMs incorporating across-population fixed effects 339 

The four different groups considered previously are not comprised of independent patient sets; 340 

some patients fall in more than one group. Hence, direct comparison of the marginal parameter 341 

estimates fit to each group independently does not generate independent estimates. For more 342 

appropriate hypothesis testing of difference, the HPM for the evolutionary rate was extended to 343 

accommodate fixed effects (see methods), enabling estimation of hierarchical parameters across 344 

all patients. Successfully, hierarchical estimation with fixed effects across all patients resulted in 345 

even further shrinkage of individual patient estimates compared to hierarchal models applied to 346 

separate groups (Figure 3B). Bayes factor comparison of the fixed-effects HPM model to a model 347 

that assumes either completely linked or unlinked parameters (log BF of 51.7 and 57.2 348 

respectively) provides strong evidence that the shrinkage is accompanied by improved goodness-349 

of-fit.	
   The main results of the fixed effect HPM analyses are listed in Table 1. For the nucleotide 350 

analysis, the LTNP versus Progressor and CCR5 wt/wt versus CCR5 wt/Δ32 effects were 351 

employed to model the evolutionary rates. Through examining the posterior distribution of the 352 

rate indicators (δeffect), we estimate the posterior probability for including the LTNP versus 353 

Progressor effect at 0.72 resulting in a moderate Bayes factor support of 2.6 in agreement with 354 

the group-by-group hierarchical rate estimates obtained above. Importantly, the rate decrease 355 

attributable to this fixed-effect returns a credible interval that does not include 0. This approach 356 
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appropriately controls for the non-independence missed in the group-by-group analyses and 357 

rejects the null hypothesis of no difference between LTNP and Progressor patients. 358 

There was no support in favor of a CCR5 wt/Δ32 effect. Even after conditioning on the effect-359 

indicator equaling 1 to estimate the potential effect-size, the posterior CCR5 wt/Δ32 effect-size 360 

parameter distribution remained centered close to 0 with symmetric CIs. In the codon analysis, 361 

the same effects were tested on both the substitution rate and dN/dS. A very similar LTNP effect 362 

was observed for the codon substitution rate, although the CIs now included 0. Interestingly, the 363 

conditional effect size of LTNP versus Progressor on codon substitution rate remains very similar 364 

to the effect size on nucleotide substitution rate. Further, there was more support against than in 365 

favor of a CCR5 wt/Δ32 effect. Finally, no support for a LTNP effect or CCR5 wt/Δ32 effect was 366 

observed on the hierarchical dN/dS estimates. 367 

368 
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DISCUSSION 368 

In this study, we adopted a HPM approach to estimate within-host HIV evolutionary parameters 369 

and test evolutionary hypotheses regarding host susceptibility and disease progression. We 370 

sought to investigate whether the CCR5 wt/∆32 genotype, which is associated with a lower viral 371 

load set point and a slower HIV-1 disease progression (de Roda Husman et al. 1997; Ioannidis et 372 

al. 2001), also impacts the evolutionary rate of the virus by limiting target cell or CCR5 373 

availability. Furthermore, we wanted to evaluate the contribution of CCR5 availability and CCR5 374 

use on the selection pressure directed against the viral envelope protein by estimating dN/dS. 375 

HPMs have been used for HIV evolutionary enquiry before, but this is the first study that 376 

develops HPMs to estimate evolutionary rate, dN/dS and demographic parameters. In a HPM 377 

framework, we assume that the patient-specific HIV-1 evolutionary parameters can be drawn 378 

from a population distribution. Estimations of the evolutionary process based on a limited sample 379 

from each patient are riddled with noise and the improvement of a HPM follows from the 380 

reduced uncertainty on individual patient estimates. Bayes factor comparison further confirms a 381 

considerable improvement in goodness-of-fit of the HPM with respect to a completely linked and 382 

unlinked model. This can be explained by the fact that the completely linked model 383 

inappropriately ignores any difference among patients on the one hand, and a completely linked 384 

model suffers from an unnecessarily high effective number of parameters (Spiegelhalter et al. 385 

2002) arising from the independent prior specifications on the other hand. The HPM sits in 386 

between these two extremes and reduces the effective number of parameters without sacrificing 387 

fit to the data. Furthermore, we demonstrate that the HPM is more powerful in rejecting simpler 388 

evolutionary models, like the constant rate assumption, which is frequently violated for HIV. 389 

The hierarchical estimates for the Progressors, LTNP, CCR5 wt/wt and CCR5 wt/Δ32 groups 390 

indicated a pronounced strict and relaxed clock rate difference between the Progressors and 391 
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LTNP, whereas differences between CCR5 wt/wt and CCR5 wt/Δ32 rates were less pronounced. 392 

The same patterns were observed for relaxed codon substitution rates, but no real differences 393 

were noted in terms of dN/dS. These comparisons are based on non-independent data because 394 

patients will be part of two different groups. For more appropriate hypothesis testing, we 395 

incorporated fixed effects and employed Bayesian stochastic search variable selection to estimate 396 

the posterior probability that different patient group characteristics influence within-host 397 

evolutionary parameters. The advantage of a Bayesian model averaging approach that 398 

simultaneously explores the space of models and regression coefficients is the opportunity to 399 

distinguish between the relative size of an effect and its importance, which can be formalized in 400 

terms of standard Bayes factor support. The latter effectively becomes independent of the scale of 401 

the predictors, which otherwise may confound drawing conclusions on the effect sizes only. 402 

Because both predictors we considered only achieve 0 or 1, controlling for scale is not an issue in 403 

the current study, but it does contribute to a more general framework for evolutionary hypothesis 404 

testing. While the statistical support is not decisive, the fixed-effects HPM approach produces 405 

substantially more efficient parameter estimates and conditional effect sizes confirm rate 406 

differences among LTNP and Progressors. Despite the elevated power, more elaborate sampling 407 

in terms of numbers of patients, within-host time points or maybe even larger genome regions 408 

would be desirable. 409 

The HPM estimates suggest an association between evolutionary rate and disease progression, 410 

but the CCR5 genotype does not account for the rate differences. Given the absence of clear 411 

dN/dS differences – if anything, they are slightly higher in LTNP – we cannot attribute the rate 412 

nuances to differences in selection on amino acid fixation. Therefore, we conclude that these 413 

differences are due to variations in the product of mutation rate and generation time. In particular, 414 

lower replication rates may be associated with delayed onset of AIDS symptoms. In agreement 415 
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with this, a codon-model extension of the Bayesian relaxed-clock analysis of more extensively 416 

sampled patients has shown that absolute synonymous substitutions are correlated with disease 417 

progression (Lemey et al. 2007). These authors argued that synonymous substitutions were a 418 

marker of replication rate and most probably reflect the action of immune activation, which in 419 

itself is a marker of disease progression. In the current study, we employed standard codon model 420 

implementation in the Bayesian framework, rather than evaluating genealogies under nucleotide 421 

models as a proxy. This approach comes at a computational expense, and further extensions - 422 

such as codon models to estimate absolute rates of synonymous and nonsynonymous 423 

substitutions (Seo, Kishino, and Thorne 2004) - may prove even more computationally intensive. 424 

Fortunately, recent advances in GPU computation provide significant increases in computation 425 

speed for high state space models (Suchard and Rambaut 2009). These advances promise to 426 

stimulate further development of various codon models in the Bayesian framework, the 427 

parameters of which could be efficiently estimated in hierarchical models. 428 

CCR5 genotype has a measurable impact on disease progression (de Roda Husman et al. 1997; 429 

Ioannidis et al. 2001) but there appears to be no absolute relationship (not all CCR5 wt/Δ32 430 

infected individuals are LTNP). This implies a more complex scenario, in which the combination 431 

of CCR5 availability with other host genetic factors, in particular cellular and humoral immune 432 

pressures, and immune activation, will determine the viral replication rate and progression of the 433 

disease in a patient. While lower CCR5 availability does not appear to exert selection pressure on 434 

the viral envelope during the chronic phase of infection, it cannot be excluded that in HIV-1 435 

infected individuals with CCR5 WT/Δ32 genotype, in whom CCR5+ target cells and CCR5 436 

expression are already limiting in the acute phase, selection for viruses with optimal CCR5 use 437 

occurs in a very early stage. Moreover, we performed analyses on sequences in which 438 

ambiguously aligned hypervariable regions were deleted, which may play an important role in 439 
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both humoral immune responses (Cao et al. 1997; Chackerian, Rudensey, and Overbaugh 1997; 440 

Stamatatos and Cheng-Mayer 1998; Pinter et al. 2004; Sagar et al. 2006; Gray et al. 2007) and 441 

selection for optimal CCR5 use (Hubert and Arabie 1985; Stamatatos, Wiskerchen, and Cheng-442 

Mayer 1998; Wang et al. 1999; Sagar et al. 2006; Repits et al. 2008). 443 

Studying evolutionary dynamics within hosts has become an integral part of HIV research, but 444 

one that still faces the challenge of fully unraveling the relationship between evolutionary 445 

parameters and clinical outcome. There may be several reasons for the difficulty in establishing 446 

the role of evolutionary processes in disease progression. Within-host dynamics appear to be 447 

highly complex, with many host-specific and environmental (co-infections) factors interacting 448 

with various evolutionary processes such as hypermutation, diversifying and directional selection, 449 

recombination and compartmentalization. Untangling this complex interplay requires accurate 450 

measurement of all host factors involved and evolutionary models that explicitly accommodate 451 

the relevant evolutionary forces. Without the latter, many simplifying assumptions are at risk of 452 

being violated when considering HIV evolution. Parameter-rich models may be limited by 453 

current sampling as they require highly informative data. To our knowledge, the most elaborate 454 

sampling dates back to over a decade ago (Shankarappa et al. 1999), which, differently from this 455 

study, included patients with HIV populations harboring CXCR4-using variants. Next generation 456 

sequencing may offer new opportunities for within host HIV genetic analyses, but produces data 457 

with particular challenges for comparative analyses (Vrancken et al. 2010). Here, we have 458 

adopted a modeling approach that efficiently pools the information from multiple individuals and 459 

we demonstrate how this can be employed for rigorous testing across patient populations. We 460 

hope that this stimulates further model-based inference of evolutionary processes, which 461 

ultimately may lead to more profound insights into persistent viral infections. 462 

463 
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TABLES 482 

Table 1. Estimates of the long-term non-progressor (LTNP) and Δ32 effects on nucleotide 483 

substitution rates, codon substitution rates and dN/dS. 484 

 485 
Evolutionary parameter Effect support/size LTNP effect Δ32 effect 

Posterior probability δeffect = 1 0.72 0.27 

Bayes factoreffect 2.6 0.4 
Nucleotide substitution rate 

 βeffect|δeffect = 1* -0.275 (-0.524,-0.016) -0.007 (-0.940,0.920) 

Posterior probability δeffect = 1 0.726 0.324 

Bayes factoreffect 2.6 0.5 
Codon substitution rate:  

 βeffect| δeffect = 1* -0.265 (-0.523,0.019) -0.012 (-0.700,0.692) 

Posterior probability δeffect = 1 0.502 0.393 

Bayes factoreffect 1.0 0.6 
dN/dS 

 βeffect| δeffect = 1* 0.083 (-0.101,0.25) -0.005 (-0.228,0.242) 

 486 

*these are effective sizes conditional on the effect being included (the binary effect indicator 487 

δeffect being 1). For the rates these effective sizes are in log space. 488 
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FIGURES 489 

Figure 1. CD4+ T cell numbers, viral loads, and antiretroviral treatments of 18 participants 490 

from the Amsterdam Cohort Studies who were selected for this study. Time points of clinical 491 

AIDS diagnosis are indicated with open downward triangles. Arrows indicate time points of 492 

clonal virus isolation. The length and type of antiretroviral therapy are indicated in the top part of 493 

the panels.  494 

 495 

Figure 2. Evolutionary rate estimates using a hierarchical phylogenetic model applied 496 

separately to four patient groups (Progressors, LTNP, CCR5 wt/wt and CCR5 wt/Δ32). 497 

Evolutionary rate estimated under strict clock model (A). Mean evolutionary rate estimated under 498 

relaxed clock model (B). CCR5 wt/wt (WT); CCR5 wt/Δ32 (Δ32). 499 

 500 

Figure 3. Improved statistical efficiency (shrinkage effect) of the hierarchical phylogenetic 501 

model.  Strict clock (A). Relaxed clock (B). Posterior variance of estimated evolutionary rate 502 

from the independent analyses of each patient (white); evolutionary rate variance from the 503 

hierarchical analysis of LTNPs and Progressors (black); evolutionary rate variance from the 504 

hierarchical analysis of LTNPs and Progressors incorporating fixed effects (grey).  505 

 506 

Figure 4. Marginal posterior rate distributions for LTNP patients with different numbers 507 

of sampling time points. Least informative patients (lowest number of time points or sequences 508 

per time point): P10, P16 and P17. Most informative patients: P9, P11 and P13. A & B: 509 

Assuming a uniform[0,0.004] rate prior. C & D: lognormal(-7.5,1) rate prior. E & F: hierarchical 510 

phylogenetic model with unknown mean and variance and diffuse priors. 511 

512 
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SUPPLEMENTARY INFORMATION 

 

SUPPLEMENTARY TABLES 
 

Table S1. Patients, time points and number of sequences analyzed. 

Subject Patient 
number 

CCR5 
genotype 

Disease 
progression 

Sampling 
time after SC 
(months) 

gp120 env 
(nr of clones) 

P1 19858 WT/WT P 42* 8 
    69* 5 
    92* 4 
    113* 6 
P2 19576 WT/WT P 7 2 
    29 4 
    43 5 
    51 5 
P3 19947 WT/WT P 56* 3 
    98* 3 
P4 19999 WT/WT P 4 14 
    26 16 
    42 5 
    74 7 
    107 20 
P5 19768 WT/WT P 2 21 
    36 15 
    67 17 
    93 12 
P6 19659 WT/WT P 2 1 
    30 7 
    62 22 
    95 20 
    128 5 
P7 19542 WT/WT P 2 4 
    20 5 
    43 7 
    63 17 
    86 15 
P8 18969 WT/WT P 2 25 
    22 21 
    47 10 
    68 7 
    91 15 
P9 19559 WT/WT LTNP 39* 3 
    71* 5 
    106* 1 
    133* 5 
    170* 3 
P10 19932 WT/WT LTNP 54* 3 
    120* 5 
P11 19417 WT/WT LTNP 48* 3 
    77* 6 
    101* 5 
    131* 5 
P12 19828 Δ32/WT P 4 5 
    22 2 
    25 4 
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    47 11 
    63 4 
P13 19383 Δ32/WT LTNP 39* 2 
    50* 2 
    62* 4 
    71* 4 
    95* 3 
    107* 6 
    133* 7 
    148* 2 
P14 19922 Δ32/WT LTNP 39* 5 
    82* 6 
    111* 5 
    135* 5 
P15 19663 Δ32/WT LTNP 47* 5 
    91* 6 
    111* 6 
    140* 5 
P16 19984 Δ32/WT LTNP 19 6 
    109 4 
P17 19566 Δ32/WT LTNP 13 2 
    19 7 
    101 3 
    116 4 
P18 19956 Δ32/WT LTNP 28* 5 
    51* 3 
    78* 2 
    123* 1 
    146* 1 

P: Progressor; LTNP: Long-term non-progressor; SC: seroconversion; *Sampling 

time after imputed SC date. 
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Table S2. Log marginal likelihood estimates for strict and relaxed clock analyses 

of four patient groups. 

 
 Progressors LTNP WT Δ32 

Strict clock -28534.3 -26762.8 -33501.0 -21793.5 

Relaxed clock -28526.5 -26756.7 -33496.6 -21789.3 

 
WT: CCR5 wt/wt; Δ32: CCR5 wt/Δ32. 



 4 

SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Codon model estimates. Mean evolutionary rate estimated 

under relaxed clock model with codon model for four patient groups: Progressors, LTNP, 

CCR5 wt/wt and CCR5 wt/Δ32 (A). dN/dS rate ratios estimated for the same for patient 

groups (B). CCR5 wt/wt (WT); CCR5 wt/Δ32 (Δ32). 
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