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SCHAFFAR A. and DIMOU M. By using empirical evidence based on data from India and China between 1981 and 2004, this paper studies the dynamic patterns of urban hierarchies within the two most populated countries in the world. The paper focuses on three specific issues: the distributional form of the rank-size relation, the urban growth patterns which do not reject the Gibrat' law for cities and, finally, the shifts in urban hierarchies for both countries over these two decades.

City-size distribution Urban growth Gibrat's law Zipf's law India China. SCHAFFAR A. et DIMOU M. Les dynamiques rang-taille des villes en Chine et en Inde : 1981-2004. En s'appuyant sur la comparaison des évolutions des systèmes urbains chinois et indien entre 1981 et 2004, cet article propose une analyse de la formation des hiérarchies urbaines dans les pays en développement. De façon plus spécifique, trois axes de recherche sont abordés : la forme de la distribution rang-taille des villes, les caractéristiques de la croissance urbaine qui valide la loi de Gibrat et enfin les changements intra-distributionnels des villes, et par conséquence des hiérarchies urbaines, dans les deux pays.

INTRODUCTION

Over the last twenty years, an extensive literature has developed on city size dynamics. This literature focuses on two main issues: the first concerns whether or not city size distribution follows Zipf's law, i.e. is the logarithm of city size a linear function of the logarithm of the city rank [START_REF] Moriconi-Ebrard F | L'urbanisation du monde depuis 1950[END_REF], GUERIN-PACE, 1995[START_REF] Glaeser | Economic growth in a cross-section of cities[END_REF][START_REF] Krugman | Confronting the mystery of Urban Hierarchy[END_REF][START_REF] Eaton | Cities and Growth: Theory and Evidence from France and Japan[END_REF][START_REF] Fujita | The Spatial Economy[END_REF][START_REF] Dobkins | Dynamic evolution of U.S. cities[END_REF][START_REF] Cuberes | The rise and decline of cities[END_REF][START_REF] Gabaix | The evolution of city sizes' distribution in[END_REF][START_REF] Anderson | The size distribution of Chinese cities[END_REF][START_REF] Soo | Zipf's Law for cities: a cross-country investigation[END_REF][START_REF] Dimou | Evolution des hiérarchies urbaines et loi de Zipf[END_REF], while the second concerns testing whether Gibrat's law holds for city growth, i.e. does city growth depend on city size [START_REF] Black | Urban evolution in the USA[END_REF][START_REF] Gabaix | The evolution of city sizes' distribution in[END_REF][START_REF] Bosker | A century of shocks: the evolution of the German city-size distribution[END_REF].

In this literature, most studies have focused on evolution in the urban hierarchies of developed countries. This paper aims to deliver some empirical contribution on urban growth dynamics for economically emerging countries, by comparing city size evolution in China andin India, between 1981 and2004. During this period, both countries turned away from State-owned and State-ruled economies towards a market economy and opened to international competition and foreign direct investment. In India, these changes took place in a rather progressive manner, without any major institutional shock affecting the country's demographics. In contrast, in China, a series of economical reforms have considerably eased Hukou In order to determine whether or not these changes affected urban hierarchies and dynamics of these two countries, two issues are examined here: firstly, does city size distribution in China and India follow Zipf's law and, if this is the case, how has this distribution evolved over the last twenty years? Secondly, in these two countries, is city growth a random or a deterministic process, sensitive to city size effects? In the latter case, we focus more on city size growth characteristics and on the intradistributional mobility of cities.

The paper is organised as follows. Section 2 investigates theoretical aspects by presenting, firstly, recent discussions about the distributional form of the rank-size relation for cities and, secondly, the main approaches regarding city growth. Section 3 deals with methodology issues and data specification for the two countries' urban systems. Section 4 tests the distributional forms of the Chinese and Indian rank-size relations for cities. Section 5 provides information on the shifts in urban hierarchies in China and in India during the last two decades. Section 6 investigates city size growth characteristics using panel unit root tests and Markov chains. The last section concludes. 

THEORETICAL ISSUES

Most researchers on urban hierarchies consider that city size distribution follows a Pareto principle. This is a very convenient assumption as it allows the study of urban hierarchies using a single parameter -the Pareto exponent. However, in recent years, some studies have questioned such an assumption, especially when one takes into account the entire distribution of city sizes and not just the upper truncated part. [START_REF] Rosen | The size distribution of cities: an examination of the Pareto law primacy[END_REF] were among the first authors to clearly focus on a possible deviation from strict linearity between the logarithms of the rank and the size of cities. By working on a sample of 44 countries, they found evidence that, in most cases, the relation between city-rank and city size best fits a parabolic-type curve that can be studied by adding a quadratic term to Zipf's equation. [START_REF] Soo | Zipf's Law for cities: a cross-country investigation[END_REF] tested ROSEN and RESNICK's equation on the city size distribution of 73 countries: 2/3 of the countries had a quadratic term significantly higher (convexity) or lower (concavity) than 0, while only 1/3 of the sample's countries had a quadratic term significantly close to 0 (for which the Pareto law holds) 2 .

While ROSEN and RESNICK studied a possible deviation from Zipf's law, some authors consider that if the entire population of cities is taken into account, then city size distribution is not a Pareto but a log-normal distribution. Following [START_REF] Simon | On a class of skew distribution functions[END_REF]) earlier work, PARR (1985) assumed that only the upper truncated distribution of city sizes follows a Pareto principle, while the entire distribution better fits a lognormal distribution. However, he pointed out significant data and definition problems that may occur in the latter case. Similar work on US and French city size distributions by MALECKI (1980) and GUERIN-PACE (1985) revealed contradictory evidence on the form of city size distributions with regard to the city size threshold.

However, both authors rejected the assumption that higher city size thresholds tend to confirm a Pareto distribution, while lower ones reject it. [START_REF] Hsing | A Note on Functional Forms and the Urban Size Distribution[END_REF] claimed that in most economic literature, researchers take it for granted that city size distribution follows a Pareto principle. He suggested using the Box-Cox transformation in order to test log-linearity between city size and city rank.

By working on different data samples, [START_REF] Hsing | A Note on Functional Forms and the Urban Size Distribution[END_REF] often rejected the fit between the US city size distribution and the Pareto law. Following HSING, [START_REF] Cameron | One-Stage Structural Models to Explain City Size[END_REF] and ALPEROVITCH and DEUTSCH (1995) came to the same conclusions, when studying the city size distributions of twenty five different countries.

In a more recent work, [START_REF] Eeckhout | Gibrat's Law for (all) Cities[END_REF] [START_REF] Krugman | Confronting the mystery of Urban Hierarchy[END_REF], [START_REF] Gabaix | Zipf's Law for Cities: an Explanation[END_REF] or [START_REF] Black | Urban evolution in the USA[END_REF], all used small samples of about 135 cities, which corresponds to 0.5% of US settlements and 30.2% of US population. This truncated distribution fits the tail of the log-normal distribution for the entire population of cities.

Following [START_REF] Eeckhout | Gibrat's Law for (all) Cities[END_REF], some studies [START_REF] Anderson | The size distribution of Chinese cities[END_REF][START_REF] Zeyneloglu | Methods and Data consideration related to the rank size distributions of settlements[END_REF], NOTA and SONG, 2007) have confirmed the fit between the log-normal and the entire city size distribution and reject an arbitrary choice for any city size threshold. However, their definition of a city is problematic, since there seems to be no boundary between an urban area and a rural one, right down to a single isolated household. In [START_REF] Eeckhout | Gibrat's Law for (all) Cities[END_REF] sample, the median city size is of 1337 inhabitants, which means that half of the settlements can be considered as merely small villages. This contrasts with the fact that 80% of the US urban population lives within the 256 largest urban agglomerations of the country. One could therefore easily argue that a truncated distribution reveals urban hierarchy patterns much better than the entire one. Moreover, the log-normal distribution depends upon three parameters, that is, the mean city size, its standard deviation and the number of cities, which leads to a less convenient interpretational framework than the Pareto one, which depends upon a single parameter, the hierarchy exponent. City growth theories can roughly be divided into random growth [START_REF] Gabaix | Zipf's Law for Cities: an Explanation[END_REF][START_REF] Gabaix | The evolution of city sizes' distribution in[END_REF][START_REF] Cordoba | On the Distribution of City Sizes[END_REF] and deterministic growth theories [START_REF] Eaton | Cities and Growth: Theory and Evidence from France and Japan[END_REF][START_REF] Black | Urban evolution in the USA[END_REF][START_REF] Henderson | Aspects of the rural-urban transformation of countries[END_REF] although, in recent years, some attempts have been made to provide a less dichotomous theoretical vision [START_REF] Rossi-Hansberg | Urban Structure and Growth[END_REF][START_REF] Duranton | Some foundations for Zipf's law: product proliferation and local spillovers[END_REF]and 2007).

Random growth theories consider that city growth is a stochastic process which, in the steady state, produces, for large cities, a rank-size distribution that obeys Zipf's law. These theories follow GABAIX's (1999) basic model, developed under the very restrictive hypotheses of a growing population, free labour mobility for young households and constant returns to scale technologies. The growth of cities appears to be a random walk process, linked to randomly distributed exogenous shocks, which generate urban amenities in a multiplicative way and subsequently modify a city's household utility function. These amenity shocks are either policy shocks (related to the level of taxes, to pollution control, to the quality of public and At the opposite end of the spectrum, deterministic growth theories assume that cities' differing sizes depend on firms' location choices, made when comparing the advantages and drawbacks of each city. Firms concentrate geographically in order to take advantage of conglomeration effects, linked either to specialisation (MAR externalities) or to diversification (Jacob externalities), but suffer, on the other hand, from diseconomies due to congestion and the costs of commuting. Following this theoretical framework, [START_REF] Eaton | Cities and Growth: Theory and Evidence from France and Japan[END_REF] and BLACK andHENDERSON (1999, 2003) developed endogenous growth models in which the size of a city depends on parameters such as scale externalities, human capital concentration and localised information spillovers. Deterministic growth theories do not necessarily produce Zipf's law. [START_REF] Black | A Theory of Urban Growth[END_REF] tested the nature of urban growth, while taking into account the heterogeneity of cities through differentiated stocks of human capital. In their initial work on the evolution of the US city size distribution between 1900 and 1990, they found that cities exhibited parallel growth patterns. However, by relaxing some hypotheses, in particular the strong relationship between urban [START_REF] Black | Urban evolution in the USA[END_REF] found, in a more recent work, that the average US city size increased under the impetus of technological changes and human capital accumulation, but also that the smaller cities grew faster than the large ones, hence leading to a convergence towards an optimal city size.

Many studies have tried to test the nature of urban growth in order to explain the steady distributional form of city rank versus city size. When studying growth in France and Japan in the 20 th Century, and working with small samples, [START_REF] Eaton | Cities and Growth: Theory and Evidence from France and Japan[END_REF] found that the k largest cities in each country maintained their ranking over the entire reference period, which means that city growth is parallel, rather than convergent or divergent. On the other hand, in order to test the random growth hypothesis, [START_REF] Ioannides | Zipf's Law for Cities: An Empirical Examination[END_REF] produced a non-parametric estimation of urban growth, by using a sample of large metropolitan areas in the United States from 1900 to 1990. They found that the growth process of US cities obeys Gibrat's law and hence scale effects play no determining role in city growth dynamics. Some researchers have focused on conflict-affected distributions, in order to test the consequences of random isolated shocks to the relocation of labour and to the stability of the city size distribution over time. [START_REF] Davis | Bones, Bombs and Breakpoint: the Geography of Economic Activity[END_REF] and [START_REF] Bosker | A century of shocks: the evolution of the German city-size distribution[END_REF] 2003) rejected Gibrat's law when studying the long term effects of partition on India's urban hierarchies, with respect not only to the city sizes but also to the cities' relative growth. Empirical studies on urban growth dynamics in Portugal, the US or in the Balkans also reveal departures from Gibrat's law [START_REF] Delgado | Growth and Change in the Portuguese urban system: 1890-1901[END_REF][START_REF] Garmestani | Departures from Gibrat's Law, discontinuities and city size distributions[END_REF][START_REF] Dimou | Urban Hierarchies and city-growth in the Balkans[END_REF].

While empirical work delivers contradictory evidence when it comes to the nature of urban growth and to the distributional patterns of the rank-size relation, some recent theoretical contributions from [START_REF] Rossi-Hansberg | Urban Structure and Growth[END_REF] and [START_REF] Duranton | Urban evolutions: the fast, the slow and the still[END_REF] highlight a less deterministic approach. Following IOANNIDES and OVERMAN's work, [START_REF] Rossi-Hansberg | Urban Structure and Growth[END_REF] introduce a model able to predict random urban growth under some restrictive conditions such as the elimination of the effects of human capital. [START_REF] Rossi-Hansberg | Urban Structure and Growth[END_REF] admit that city growth depends upon randomly distributed productivity shocks, specific to a localised industrial sector or group of firms. This however does not necessarily result in Zipf's law, as predicted by random growth theories, because of the short-term effects of the exogenous productivity shocks. It also supposes that cities are specialised in a single industry, which is rarely the case. By studying the dynamics of Chinese and Indian urban hierarchies from 1981 to 2004, this paper aims to test the validity of these theories within two countries that have had high economic growth. If city growth is independent from city size, that is if Gibrat's law for cities holds, then urban change is not affected by scale effects.

Conversely, if city size growth is a deterministic process, one should examine whether this leads to convergence towards an optimal city size, with small cities growing faster than the bigger ones; divergence, with demographic concentration towards metropolitan areas; or parallel growth, where cities keep their initial hierarchical ranks during the whole period. 2009) correction which considerably reduces the bias for the OLS method when applied to small finite samples:
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, Zipf's law holds perfectly. According to [START_REF] Gabaix | RANK-1/2: A simple way to improve the OLS estimation of tail exponents[END_REF], the best estimation of β , for small samples, is provided when
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with the approximate true standard error of the estimated coefficient given by n 2 ξ ( [START_REF] Kratz | The QQ-estimator and heavy tails[END_REF], GABAIX and IBRAGIMOV, 2006[START_REF] Dimou | Urban Hierarchies and city-growth in the Balkans[END_REF].

Thirdly, we investigate urban growth patterns. We first test for stationarity in city size. We considered that a city's sizes are generally correlated over time, because of the durability of the publicly-owned structures, houses and real estate investments. If

( ) it S ln
is the logarithm of the population of a city i at time t, then the size of a city is a first order auto-correlation process such as:
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φ is the first order regression coefficient and it ε an isolated shock at time t [START_REF] Dimou | Urban Hierarchies and city-growth in the Balkans[END_REF]. We use two specifications of the model, both with fixed effects and with or without drift:
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, α is a constant, t i θ control for the upward trending and k is the number of the lagged difference term for city i . 0 :
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) is the instability hypothesis, where cities' sizes are non-stationary, versus the alternative 0 :

1 < i H γ ( 1 < i φ
), where the logarithms of cities' sizes converge to a constant value in the steady state. The null hypothesis does not reject Gibrat's law for cities.

As [START_REF] Sharma | Persistence and stability in city growth[END_REF] and [START_REF] Hurlin | Une synthèse des tests de racine unitaire sur données de panel[END_REF] have pointed out, the commonly-used unit root tests, such as the Dickey-Fuller (DF) and the Augmented Dickey-Fuller (ADF) show little power in distinguishing the unit root from meaningful stationary alternatives, when applied to a single equation for short time series. Panel unit root tests appear to be more efficient. The main limitation of these tests is that they are all constructed under the assumption that the individual time series in the panel are cross-sectionally independently distributed [START_REF] Pesaran | A simple panel unit root test in the presence of cross-section dependence[END_REF].

When it comes to city size dynamics, such an assumption may be spurious: for example, urban growth may be affected by some common macroeconomic factors for Finally, we study intra-distributional dynamics for Chinese and Indian cities.

Following [START_REF] Eaton | Cities and Growth: Theory and Evidence from France and Japan[END_REF], [START_REF] Dobkins | Dynamic evolution of U.S. cities[END_REF], [START_REF] Black | Urban evolution in the USA[END_REF], we use Markov chain techniques. This requires the discretisation of the distribution, by assigning each city to one of a predetermined number of groups, based on its relative size [START_REF] Bosker | A century of shocks: the evolution of the German city-size distribution[END_REF]. In this paper, the discretisation process draws upon [START_REF] Quah | Empirical cross-section dynamics in economic growth[END_REF] and [START_REF] Eaton | Cities and Growth: Theory and Evidence from France and Japan[END_REF], with cut-off points exogenously defined at relative city sizes of 0.3m, 0.5m, m, 2m, with m the average city size, for a given year t. We assume that the distribution follows a homogenous stationary first order Markov process and t F denotes the vector of distributional shares for each group of the discretised distribution: annual growth of the urban population (3.01%), which could be explained by the fact that urban demographics in India mainly depend upon the natural increase in population [START_REF] Datta | Urbanization in India, working paper[END_REF].

t t F M F × = +1
In parallel, the mean city size slowly increased (from 361,500 to 403,000 inhabitants) and remained determinedly higher than during the third quartile, which means that India's urban system is characterised by the presence of some overpopulated metropolises and a large group of small and medium-size cities. The study of the medial city size and its evolution confirms the above trends: in 2001, 41 cities were home to 50% of the urban population, compared with 24 cities in 1981, while the difference between the median and the medial city size increases. This could be interpreted as a sign of non-convergence in city size over time.

CHINA'S AND INDIA'S RANK-SIZE DISTRIBUTIONAL PATTERNS

Most studies consider that the upper truncated part of the Chinese city size distribution follows a Pareto law [START_REF] Song | Urbanization and City Size Distribution in China[END_REF]. In a recent work, GAN, [START_REF] Gan | Is the Zipf law spurious in explaining city-size distributions[END_REF] contested this, while ANDERSON and GE (2005) used the Pearson test to argue that the log-normal distribution provides a better fit for Chinese cities with a size above 100,000 inhabitants. However, their definition of a city is Figure 1 We first run the KS-test for a Pareto distribution. In order to optimize its performance we use, for the Pareto exponent, values that range between 0.8 and 1.5.

Tables 3 and4 provide the results for both countries.

Table 3 Figure 2 For China, at the 5% level, all KS-stats have lower values than the critical values (p-values are high), which means that H0 cannot be rejected: the distribution of Chinese cities with sizes above 100,000 inhabitants is Pareto. 4 show that the null hypothesis is never rejected, with high p-values, which also means that the rank-size distribution of Indian cities of more than 100,000 inhabitants follows a Pareto principle.

We proceed by running the same tests for the fit with the log-normal distribution.

All KS-stats reject the null hypothesis, at the 1% level, when we use the estimated parameters from our samples (Tables 5 and6). It seems, however, more appropriate to use the hypothesis that the distribution for cities with sizes above the threshold of 100,000 inhabitants is the upper part from a truncated log-normal distribution (Figure 4) that takes into account all the cities, as EECKHOUT ( 2004) suggests.

Figure 4 The main problem when considering this issue is that the parameters of the lognormal distribution cannot be estimated, so one needs to proceed by simulation. We have run a large number of simulations to test this fit. Among them, we use, for the Chinese case, the parameters estimated by [START_REF] Anderson | The size distribution of Chinese cities[END_REF] who find that China's city-size distribution better fits a log-normal distribution and also calculate new parameters, for example, by dividing all the non-agricultural population by the number of urban and rural districts. Table 5 We now test whether the Indian city-size distribution fits the log-normal one. The null hypothesis is rejected when we consider the estimated parameters from the sample, for all years. Then we also run different simulations. We use parameters calculated by dividing the total urban population by the number of districts of above 5,000 inhabitants. The null hypothesis is rejected for 1981, 1991 and 2001 (all p-values are close to 0) at the 1% level. Table 6 provides our findings for 2001. The 1981 and 1991 results are similar.

Table 6 Obviously, after running a great number of simulations (for example, by keeping the urban population fixed and by varying the number of human settlements) we can calibrate a log-normal distribution (with a very large number of settlements and a very large standard deviation from mean size) that fits the empirical distributions of Chinese and Indian cities. Such a fit seems however a fictive construction for both countries' urban systems that cannot be verified. Figure 5 In Figure 5, the 1984 and 2004 density kernels for Chinese cities are quite similar, and unlike the 1994 one which is steeper. This reveals some convergence towards a unique city size during the first decade, but not during the second one. The Indian city-size distribution seems fairly steady over time. In Figure 6, the density kernels for 1981, 1991 and 2001 overlap. The long thin right tail of the kernel indicates the existence of some very large cities, which contrasts with massive presence of cities with less than 200,000 inhabitants.

We use the GABAIX-IBRAGIMOV method to estimate the Pareto exponents for both distributions. Table 7 provides the results. [START_REF] Anderson | The size distribution of Chinese cities[END_REF] findings also follow the same trend but are slightly higher, because of their definition of cities.

Following [START_REF]Rank size distributions and the process of urban growth[END_REF]SONG and[START_REF] Song | Urbanization and City Size Distribution in China[END_REF], we now examine shifts in both countries' urban hierarchies when the city-size threshold changes. Table 8 provides results for Chinese city distributions, with city-sizes above 0.1, 0.2, 0.5 and 1 million inhabitants.

Table 8 The Pareto exponent increases along with the city-size threshold. This implies that urban hierarchy is less pronounced when one considers only the upper part of the rank-size distribution of the Chinese cities. Zipf's law holds only for the largest When it comes to Indian cities, the trends are less clear (Table 9). Whatever citysize threshold we choose, Zipf's law is rejected, with the Pareto exponent values being strictly higher than 1. Close inspection of these results yields evidence of some specific shifts in Indian urban hierarchies. From 1981 to 1991, the Pareto exponent decreases for the whole sample, which means that urban concentration increased.

This completely changes when we take into account only cities with more than 1 million inhabitants. India's city size distribution tends to be more hierarchical, except for the group of the largest cities.

Table 9 The results above allow us to draw two comparative conclusions concerning the Chinese and Indian city-size distribution shifts over the last two decades.

Firstly, the two countries' urban hierarchies differ: India's city size distribution is characterised by the presence of a large number of small cities and some very large China, the number of small cities strongly grows until the middle of the 1990s, followed, during the last decade, by an increase in the number of medium-size cities.

The larger cities' distribution remains under the effects of anti-megacities policies.

On the other hand, India's city-size distribution tends to become more hierarchical.

CHINESE AND INDIAN URBAN GROWTH PATTERNS

In order to study urban growth characteristics in China and India, we run panel unit root tests for non stationarity in city size. In the presence of a unit root, the underlying trend is stochastic, which implies that a series has a long memory and shocks have permanent effects on the distribution. In this case, the series does not return to its former path, but follows a random growth path, under randomly distributed shocks, as predicted by random growth theories. On the other hand, if the series does not contain a unit root, the underlying process is deterministic as the series has a short memory. Exogenous shocks do not have permanent effects and the distribution returns to its steady state, after a certain time [START_REF] Darne | Non-stationary tests in Macroeconomic Time Series[END_REF].

The Chinese panel comprises 220 cities, and the Indian one 222 cities. For each of these cities, annual data is available from the first to the last year of the reference period. We run two first generation panel unit root tests, the LEVIN and al ( 2002) 10 provides the results.

Table 10 The [START_REF] Im | Testing for Unit Roots in Heterogeneous Panels[END_REF] (2005), comparing the results of the LL and the t Z or the t W statistics may be spurious. This leads to abandoning the restrictive assumption of cross section dependence, by admitting that city size growth processes may be correlated. We use the [START_REF] Choi | Combination Unit root tests for cross-sectionally correlated panels[END_REF] and [START_REF] Pesaran | A simple panel unit root test in the presence of cross-section dependence[END_REF] second generation panel unit root tests. Table 11 provides the results for these tests.

Table 11 Both tests reject the null hypothesis of non stationarity for Chinese and Indian city sizes. For China, they confirm the results of the IM and al ( 2003) tests. For India, they prove that it is necessary to take into account the existence of cross-section dependence in order to reach a clear conclusion. This means, firstly, that Gibrat's law for cities cannot be entirely rejected in both countries. Secondly, in India, the urban Panel unit root tests do not allow one to conclude whether any shifts occurred to the cities' positions within the rank size distribution. We use the Markov chains in order to model relative urban growth and intra-distributional mobility for cities.

Tables 12 and13 deliver the results of the discretisation process for the Chinese and the Indian city size distributions. We proceeded to model the transition probabilities which represent the number of cities moving from one cell to another every year.

Following [START_REF] Black | Urban evolution in the USA[END_REF] work, we also calculate mean first passage times.

Table 12 Table 13 The transition probabilities patterns for the Chinese cities (table 14) are driven by two features: firstly, diagonal elements, that is, the probability of remaining in the starting state is logically high, but off-diagonal elements are significantly different than 0. In low city size groups, upward mobility is higher than downward mobility, while it is the opposite for higher sizes. This is due to the anti-megacities policies and the effects of the migration restrictions until the mid-nineties. Table 14 Table 15 We proceeded to model transition probabilities (table 16) and mean first passage time (table 17) also for Indian cities. Firstly, diagonal elements are higher than those of the Chinese matrix. This indicates a higher stability in Indian urban hierarchies.

Secondly, unlike China, downward mobility is higher than upward mobility, except for the larger cities. The mean first passage time matrix clearly shows that upward mobility for cities is slower in India than in China: it would take 1707 years for an Indian city from the 1 c group to visit group 5 c instead of 587 years for a Chinese city.

Higher volatility in Chinese urban hierarchies might be due to the fact that in China, urban growth sources rely upon regional migration while Indian demographics depend mainly on the natural increase in population [START_REF] Bhagat R | Urban growth by city and town-size in India, Acts of the Population Association of America Conference[END_REF][START_REF] Datta | Urbanization in India, working paper[END_REF]. 

CONCLUSION

This paper's findings can be summarized as follows:

Firstly, by using the Kolmogorov-Smirnov test, we show that the Chinese and Indian city-size distributions for cities of over 100,000 inhabitants follow a Pareto law. This contradicts recent findings from some authors who argue that the city-size distribution is log-normal. The definition of a city here plays a crucial role.

Secondly, the evolution of these two distributions over the last twenty years differs. The Chinese rank-size distribution reveals contrasting evolution between the 1980s, when small-size cities grew faster, and the 1990s, with higher growth trends for medium-size cities. The Indian city-size distribution systematically rejects Zipf's law, with a Pareto coefficient higher than 1. It is characterised by a dual structure with a substantial presence of small cities and a small group of very large metropolises. Thirdly, when it comes to urban growth patterns, city size is not stationary in both countries. Gibrat's principle cannot be rejected. Intra-distributional mobility is higher in China than in India despite previous cross-region migration restrictions and anti-megacity policies. Indian urban hierarchies feature a much higher stability which could reveal parallel growth patterns.

One of the limitations of such a study is the short 20 year period for measuring major shifts in city-size distribution. This time limitation was imposed because of data availability. However, the results deliver some interesting comparative conclusions on city-size dynamics in the two most populated countries in the world, which went through significant economic and political shifts during this period.

NOTES

1. As is widely documented in the literature, the Hukou system (residence permit) has been a critical barrier to rural-urban and inter-city migration in China, leading to a spatially segmented labour market. In 1993, a series of political reforms promoted both rural to urban and cross-region migrations, except for the most important metropolitan areas, which still remain under the control of anti-megacity policies.

2. According to [START_REF] Gabaix | The evolution of city sizes' distribution in[END_REF], most comparative studies tend to reject rather too often the assumption of a quadratic term equal to 0. 

  abolished the prevailing cross-region labour mobility restrictions, except for the biggest metropolitan areas. This resulted in boosting interregional migration flows.

  delivered a rigorous study of the relation between city rank and city size for 23,539 US settlements in 2000 (representing 75% of the US population). Using a Kolmogorov-Smirnov test,EECKHOUT proved that the distribution of city sizes better fits a log-normal distribution, with a mean (in log) equal to 7.28 and a standard deviation (in log) equal to 1.75. According to EECKHOUT, most studies building on the US city size validity of Zipf's law because they work on truncated distributions.

8

  The distributional form of the relation between the ranks and the sizes of cities seem strictly related to city growth dynamics. Many studies investigate what should be the nature of urban growth in order to lead to a steady distribution that follows either Zipf's law or an alternative theoretical distribution such as the log-normal or the double Pareto[START_REF]The Pareto, Zipf and other power laws[END_REF].

  infrastructure such as roads and schools, or to environment protection measures) or natural and historical shocks (due to natural catastrophes, wars, diseases or poor harvests in less developed economies), but GABAIX also considers the possibility of industry-specific productivity shocks in bigger cities.

  role of education to which the growth in human capital was almost exclusively linked,

  way,[START_REF] Duranton | Some foundations for Zipf's law: product proliferation and local spillovers[END_REF] 2007) modelled the micro-foundations of the stochastic process which leads, through industrial churning, product proliferation and local spillovers, to urban growth. Under the assumption of monopolistic competition, free movement of labour and a fixed number of cities, DURANTON showed that innovation-driven shocks at the level of industries and cities may explain the growth and decline of cities. When introducing agglomeration economies and congestion, the model predicts some convergence, leading to a right skewed (concave) rank-size distribution of cities, which reproduces various French and US features, observed over the last twenty years.

  point of view, this paper first examines the distributional patterns of the rank-size relation for Chinese and Indian cities, then studies their changes on a decennial base, and finally focuses on urban growth processes and city growth dynamics. To begin with, we use a Kolmogorov-Smirnov test to examine the distributional patterns of the rank-size relation, with respect to two theoretical distributions, the Pareto and the log-normal. The null hypothesis H0 is that the empirical distribution F follows a theoretical law F0, while the alternative hypothesis H1 is that the two distributions do not match. The goodness-of-fit test provides evidence that the Chinese and Indian city size distributions, when truncated, are Pareto. Secondly, we estimate the Pareto coefficient for the 1984, 1994 and 2004 Chinese city size distributions and for the 1981, 1991 and 2001 Indian distributions. In both cases, we use the GABAIX and IBRAGIMOV (

  cities belonging to the same region or State; or interregional migration flows may commonly affect some cities closely located. Second generation panel unit root tests abandon the restrictive assumption of the previous tests and model cross-section dependence.

  on urban growth only delivered first generation panel unit root tests. This paper performs both the LEVIN and al (2002) and IM and al (2003) first generation tests and the CHOI (2002) and PESARAN (2007) second generation tests. While the first ones do not come to any clear conclusions, the second ones provide evidence that city sizes are not stationary during the 1981-2004 period, for both countries.

  Figure 1 seem to indicate that the Pareto law provides a better fit than the log-normal

  the results for both tests in 2004. In all cases, the p-values remain close to 0, which leads us to always reject the null hypothesis. The results are the same for 1984 and 1994.

  the conclusions in the previous section, we can now study the evolution of the Pareto exponents for the Chinese and Indian city-size distributions over time. Figures 5 and 6 draw the density kernels for each country and for different dates.

  .e. the ones that include all cities with a population above 100,000 inhabitants.

  metropolises such as Bombay, Delhi and Calcutta. Zipf's law is rejected for any city size threshold. When it comes to the Chinese distribution, Zipf's law holds only for the whole sample. The distribution gets less hierarchical than what is predicted by the Zipf's law, when city size threshold increases.

  and al (2003) tests for both specifications (with or without trend). Table

  be correlated. Thirdly, in a more general way, the results of previous empirical studies based upon a single first generation panel unit roots test may lead to an over-rejection of non stationarity for city sizes and the Gibrat's law.

  to the bias of the OLS method, when applied to small samples, which tends to underestimate the true standard error.3. For India annual city sizes are not provided by the Official Census. We have created these series using two different databases: those on natural increases in urban population, annually published by the Registar General of India, and those on annual rural-urban migration, available from the Migration tables, published by India's Department of Statistics, Planning and Public Grievance. When comparing the Census data of 1991 and 2001 with the updated tables for cities' population of the 1981 Census, the results are fairly close (although generally slightly higher in 1991, with some rural-urban migration probably failing official registration). 4. According to the National Bureau of Statistics of China, urban and rural populations are classified in accordance with their usual residence. The urban population includes all people administered at city or town level. Towns include areas of more than 3000 inhabitants, with a non agricultural population of over 85%. This leads to an ambiguous definition of the total Chinese urban population, including people from very small districts.5. The medial is the quantity such that the sum of all data values inferior to the medial equals the sum of all the superior data values.
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	bombing on German and Japanese city distributions, with contradictory results.
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  Three comments can be made: firstly, the number of cities above 100,000 inhabitants has grown strongly in China during this 20-years period (the annual growth rate of cities entering the sample is 4.82%). However, the trend was faster during the 1984-1994 decade (with an annual rate of entry of 7.69%) than the 1994-2004 period (with an annual rate of 2.03%). Secondly, when comparing mean, median and quartile values for city size, except for the first quartile, all other values decrease between 1984 and 1994 and increase afterwards, which indicates a significant change in urban growth trends: during the first decade, urban growth mainly concerns cities under 250,000 inhabitants, while, during the second decade, growth is higher for cities above 370,000 inhabitants. Thirdly, the medial city size strongly falls during the first decade, then increases, but does not get back to its 1984 level. This confirms the previous comments and also illustrates the results of repeated anti-megacity policies implemented by successive Chinese governments.Table2provides the same type of information for the Indian sample in 1981, 1991 and 2001, which are the Census years. Cities from Jammu and Kashmir and Annam are not included, because the time-series were incomplete.

	with the maximum likelihood method. If	p	t ij	≠	0	, for all i, j then the Markov chain is
	ergodic, which means that any city from any group may attain any other group of
	the distribution. The Markov chain techniques deliver evidence for some
	differentiation between Chinese and Indian urban dynamics. In India, city size intra-
	distributional dynamics feature stability, while in China more significant changes
	occur.	F o r F o r F o r				
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	O n l Chinese data is provided by the Chinese Urban Statistical Yearbooks. The city size series go from 1984 to 2004 and obey the 1984 criteria for defining a city, O n l O n l
	y adjusted to year 2000 statistical changes (ZHOU and MA, 2003, XU LAI, 2008). Hong y Table 2 y
	Each element t ij p of the transition matrix Kong and the Tibetan cities are excluded. Table 1 gives information about the The number of cities with a size over 100,000 inhabitants almost doubled between
	Chinese sample. 1981 and 2001 but, contrary to the Chinese case, growth trends seem to have been
	Table 1 particularly steady: the annual growth rate of cities entering the sample was 3.25%
							18

t M represents the probability that a city moves from the group i to the group j in t. The transition probabilities are estimated With regard to data issues, in this work, cities are defined from an administrative point of view. This allows us to obtain long-run annual city size series 3 . The city size threshold of our samples is 100,000 inhabitants, which is also the threshold used by official Chinese and Indian statistical services for city data, although in China, this definition has changed over time. Cities above this threshold represent 59.01% of the urban population in China and 69.25% in India 4 . One can therefore easily consider that both samples represent quite well the respective national urban systems. Furthermore, annual data for cities under 100,000 inhabitants is not always available.
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 7 Three comments can be made. Firstly, the Pareto exponent is close to 1 for the Chinese distribution but significantly higher than 1 for the Indian distribution. The latter appears less hierarchical than the former. Secondly, the trend of the Pareto

	exponent confirms the contrasted movement of the Chinese distribution during the
	last two decades (its value is 1.076 in 1984, 1.198 in 1994 and 1.089 in 2004) and the
	slow but progressive movement towards concentration in Indian cities (its value F o r steadily decreases from 1981 to 2001). Thirdly, Zipf's law (the H0 hypothesis) holds
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better for the Chinese distributions than for the Indian ones. The results given in Table 7 are close to SONG and ZHANG's (2002) findings, although they use the simple OLS method for estimating the Pareto exponent, which leads them to always reject Zipf' law.

  test rejects the 0 H hypothesis of non stationarity for Indian cities for the model without trend. This means that there is at least one city for which size is stationary. The non stationarity hypothesis cannot be rejected for Chinese cities. In contrast, the[START_REF] Lin | Unit root tests in panel data: asymptotic and finite-sample properties[END_REF] test rejects 0 H for both countries, which goes against the results of the previous test. According to HURLIN and MIGNON

Table 16 Table 17 When

 1617 China, urban growth patterns lead to a higher instability in the country's city size distribution, which would match with the predictions of random growth theories. In India, the Markov chains feature rather parallel growth patterns with small cities and large metropolises essentially remaining within their initial state group.

	megacity policies in
	F o r
	P
	e
	e r
	R
	e
	v i e
	w
	O n l
	y
	30

modeling the stationary (ergodic) state, it is clear that there is no convergence process towards a single city size, for both distributions. Despite anti-
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 1 Sample of Chinese cities 1984 -1994 -2004 
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Table 2 :

 2 Sample of Indian cities 1981 -1991[START_REF]The Pareto, Zipf and other power laws[END_REF] 

		Number	Mean	Standard	Median city	First	Third	Medial	Rank for
	Year								
		of cities	City size	deviation	size	quartile	quartile	City size	Medial city
		N	m	S	Q50	Q25	Q75	mL	Rm
	1981	225	361.5	742.3	170.2	120.1	305.8	606.3	24
	1991	313	381.5	821.7	172.7	125.0	324.9	690.8	32
	2001	422	402.9	904.5	177.0	126.3	315.5	847.1	41
						Numbers in thousands of inhabitants.
							Database: Census of India.

Table 3 :

 3 Results of the KS-test for Chinese cities (Pareto)

		Number	Pareto		
	Year			KS-stat	p-value
		of cities	exponent		
	1984	225	0.912	0.901	0.391
	1994	472	0.993	1.093	0.183
	2004	577	0.884	1.212	0.106
				Null hypothesis is rejected at 5% (*), at 1% (**)

Table 4 :

 4 Results of the KS-test for Indian cities (Pareto)

		Number of	Pareto		
	Year			KS-stat	p-value
		cities	exponent		
	1981	225	1.356	0.696	0.717
	1991	313	1.247	0.554	0.918
	2001	422	1.179	0.393	0.998
				Null hypothesis is rejected at 5% (*), at 1% (**)

Table 5 :

 5 Results of the KS-test for Chinese cities(Log-normal) 

	Parameters for the log-	Number	Mean	Standard		
	normal	of cities	Size	deviation	KS-stat	p-value
	Distribution	n	m	σ		
	Sample	577	5.67	0.82	2.32 (**)	0
	Anderson					
		661	4.20	0.70	14.22 (**)	0
	and Ge					
	Districts & non-					
		860	4.17	1.1	3.53 (**)	0
	agricultural pop.					
				Null hypothesis is rejected at 5% (*), at 1% (**)
				Databases: CSY (2005), Anderson and Ge (2005)

Table 6 :

 6 Results of the KS-test for Indian cities(Log-normal) 

	Parameters for	Number	Mean	Standard		
	the log-normal	of cities	Size	deviation	KS-stat	p-value
	Distribution	n	m	σ		
	Sample	422	5.46	0.82	3.62 (**)	0
	Districts,					
	Total urban	5161	3.29	1.04	3.59 (**)	0
	Population					
						Database: Census 2001

Table 7 :

 7 Pareto exponent for the Chinese and Indian city-size distribution

		Sample's	Pareto	Standard				
	Year					Student	p-value	Decision
		size	exponent	deviation				
		n	β	σ	( ) β	t	α	t	≠	1
	China								
	1984	225	1.076.	0.073	1.422	15.06%		No
	1994	472	1.198	0.059	2.745	3.01%	Yes
	2004	577	1.089	0.053	1.656	19.20%		No
	India								
	1981	225	1.256	0.118	2.159	3.23%	Yes
	1991	313	1.226	0.098	2.308	2.28%	Yes
	2001	427	1.203	0.082	2.468	1.45%	Yes

Table 8 :

 8 Sensitivity of the estimated parameters for the Chinese rank size distribution according to the city-size threshold

	City-size		Number	Pareto	Standard
			Year					Student
	threshold		of cities	exponent	deviation
	S	min		n	β	σ	( ) β	t
			1984	225	1.076.	0.073	1.422
	100,000	1994	472	1.198	0.059	2.745(*)
			2004	577	1.089	0.053	1.656
			1984	130	1.221	0.164	1.959
	200,000	1994	250	1.320	0.127	3.306(**)
			2004	352	1.242	0.101	3.379(**)
			1984	49	1.410	0.167	2.080(*)
	500,000	1994	72	1.446	0.238	2.120(*)
			2004	129	1.493	0.302	2.722(**)
			1984	19	1.684	0.546	1.462(*)
	1000,000	1994	32	1.755	0.439	1.721(**)
			2004	49	1.690	0.341	2.020(*)
					Null hypothesis ( β =1) is rejected at 5% (*), at 1% (**)

Table 9 :

 9 Sensitivity of the estimated parameters for the Indian rank size distribution according to the city-size threshold

	City-size		Number	Pareto	Standard
			Year					Student
	threshold		of cities	exponent	deviation
	S	min		n	β	σ	( ) β	t
			1981	225	1.284	0.083	3.427 (**)
	100 ,000	1991	313	1.233	0.070	3.347 (**)
			2001	427	1.177	0.060	2.973 (**)
			1981	99	1.324	0.129	2.517 (*)
	200,000	1991	129	1.161	0.109	1.467
			2001	210	1.139	0.079	1.765
			1981	29	1.282	0.198	1.421
	500,000	1991	49	1.395	0.195	2.027 (*)
			2001	68	1.295	0.195	1.901
			1981	11	1.072	0.270	0.266
	1,000,000	1991	18	1.303	0.394	0.768
			2001	27	1.348	0.327	1.063
					Null hypothesis ( β =1) is rejected at 5% (*), at 1% (**)

Table 10 :

 10 Results of the first generation panel unit root tests -China and India

					Model	Model
		Test	Statistics	with trend	without trend
	China	Levin, Lin and Chu (2002)	LL	-3,916	-4,114
					(0,00)	(0,00)
		Im, Pesaran and Shin (2003)	Z	t	-4,835	18,182
					(0,00)	(1,00)
			t W	4,472	19,975
					(1,00)	(1,00)
	India	Levin, Lin and Chu (2002)	LL	-6,696	-8,556
					(0,00)	(0,00)
		Im, Pesaran and Shin (2003)	Z	t	-9,960	-15,707
					(0,00)	(0,00)
			t W	0,260	-14,977
					(0,60)	(0,00)
					(p values within brackets)

Table 11 :

 11 Results of the second generation panel unit root tests -China and India

					Model	Model
		Test	Statistics	with trend	without trend
	China	Choi (2002)	m P		-1,007	-10,476
					(0,84)	(1,00)
			Z		7,534	14,615
					(1,00)	(1,00)
			* L		9,307	10,005
					(1,00)	(1,00)
		Pesaran (2007)	CIPS	-1,347	-1,474
					(0,99)	(0,93)
			CIPS	*	-1,362	-1,458
					(0,99)	(0,95)
	India	Choi (2002)	m P		-7,987	-11,671
					(1,00)	(1,00)
			Z		10,179	9,110
					(1,00)	(1,00)
			* L		10,591	8,598
					(1,00)	(1,00)
		Pesaran (2007)	CIPS	-2,194	-1,890
					(0,71)	(0,23)
			CIPS	*	-2,194	-1,890
					(0,71)	(0,23)
					(p-values within brackets)

Table 12 :

 12 Chinese discretised city size distribution

															City Size	Number	Share
		Groups							
															(1000 inhs)	of cities	in %
	1 c :	S	min	≤	S	≤	0	3 ,	m	100 -140,3	47	21,4
	2 c :	0	,	3	m	<	S	≤	0	5 ,	m	140,3 -233,8	60	27,3
	3 c :				0	5 ,	m	<	S	≤	m	233,8 -467,6	61	27,7
	4 c :				m	<	S	≤	2	m	467,6 -935,2	28	12,7
	5 c :					2	m ≤	S		

Table 13 :

 13 Indian discretised city size distribution

															City Size	Number	Share
		Groups							
															(1000 inhs)	of cities	in %
	1 c :	S	min	≤	S	≤	0	3 ,	m	100 -108,5	25	11,2
	2 c :	0	,	3	m	<	S	≤	0	5 ,	m	108,5 -180,8	92	41,3
	3 c :				0	5 ,	m	<	S	≤	m	180,8 -361,5	62	27,7
	4 c :				m	<	S	≤	2	m	361,5 -723	26	11,7
	5 c :					2	m ≤	S		

Table 14 :

 14 Transition matrix-China
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