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COMBINED MACHINE LEARNING WITH MULTI-VIEW
MODELING FOR ROBUSTE WOUND TISSUE ASSESSMENT

Keywords: Tissue classification, 3D modeling, machine learning, wound assessment.

Abstract: From colour images acquired with a hand held digital camera, an innovative tool for assessing chronic wounds
has been developed. It combines both types of assessment, colour analysis and dimensional measurement
of injured tissues in a user-friendly system. Colour and texture descriptors have been extracted and selected
from a sample database of wound tissues, before the learning stage of a support vector machine classifier
with perceptron kernel on four categories of tissues. Relying on a triangulated 3D model captured using
uncalibrated vision techniques applied on a stereoscopic image pair, a fusion algorithm elaborates new tissue
labels on each model triangle from each view. The results of 2D classification are merged and directly mapped
on the mesh surface of the 3D wound model. The result is a significative improvement in the robustness of the
classification. Real tissue areas can be computed by retro projection of identified regions on the 3D model.

1 INTRODUCTION

Wound assessment process is based on visual exam-
ination, in order to identify different tissues such as
granulation, slough, and necrotic ones. The wound is
usually described by its spatial measurements and the
colours of its tissues, providing an important indica-
tion of its types and thus the particular stage of heal-
ing. The monitoring of the wound healing process
represents a difficult task for clinicians and nurses,
where it is necessary to assess the different tissue
types on consecutive visits.

The clinical assessment of chronic wounds still
essentially rely on manual tedious and expensive
practices, which do not produce objective measure-
ments and quantitative assessment of healing. Re-
cently, research has focused on the analysis of the
wound images in order to develop quantitative non
invasive measurement with image processing tech-
niques for monitoring. However, they addressed sep-
arately the problems of wound shape capture and tis-
sue classification. Attempts to extract automatically
the wound area using colour measurements did not
completely succeeded and semi-automatic methods
were preferred (Oduncu et al., 2004). Furthermore,

the results obtained on several colour spaces by direct
classification on the pixels were still not acceptable,
even when combining several colour and texture pa-
rameters to describe the tissues (Kolesnik and Fexa,
2004). The region-based classification approach has
been discussed by (Zheng et al., 2004), but the tis-
sue samples have been manually extracted as squared
homogeneous regions of interest and finally, the as-
sessment has been partially achieved (classification
between only two types of tissues).

Concerning the spatial measurements, some
prototypes based on structured light techniques
(Krouskop et al., 2002) or photogrammetry (Malian
et al., 2002; Plassmann and Jones, 1998) were tested,
but these cumbersome and complex systems were
not adapted to the clinical practice which requires a
low cost, handy and simple tool operated by a nurse.
The second version of the MAVIS system (Jones
et al., 2006) which uses only a reflex digital camera
equipped with special dual lens optics can record two
half images from slightly different viewpoints on a
single shot. But it suffers from several drawbacks: a
costly digital reflex camera is required to adapt the
special dual lens with extra cost, the very close view-
points do not enable accurate 3D measurements and



finally, the tissue classification problem has not been
addressed. In the Derma project (Callieri et al., 2003),
wound measurements and tissue classification have
been both tackled, as it enables shape and natural tex-
ture grabbing, but the classification process remains
user assisted as seeds need to be manually pointed in-
side the wound and a similarity measure adjusted to
control the merging process. Moreover, it is based
on a costly Minolta 3D scanner, forbidding totally its
spreading in clinical staff.

In contrast to the aforementioned methods dealing
separately with wound shape and tissue classification
tasks, we propose in this paper an original approach
using a sharp 3D model of the wound to ensure ro-
bust classification of its tissues. Furthermore, a smart
training of the classifier over tissue samples extracted
automatically will be discussed. We mainly focus on
the integration of geometrical structure of the wound
in classification process, which improves wound as-
sessment and gives access to real measurements. The
paper is organized as follows: Section 2 presents the
constitution of the sample data as a pre-processing
step of the classification method described in section
3. Section 4 discusses the multi view approach. The
improvement of classification is presented in section
5 before to conclude in the last section.

2 WOUND SAMPLE DATABASE
FOR MACHINE LEARNING

A database of chronic wound images has been
constituted with the help of the clinical staff in sev-
eral hospital centers, in order to get a exhaustive set of
images for different types of tissues. Furthermore, a
variety of types of chronic wounds has been collected
from different care services, such as a leg ulcers, di-
abetic lesions, bed sores, etc. Several hundreds of
colour images (3 Mpixels, 24 bits) have been taken,
by different digital cameras under uncontrolled illu-
mination conditions, with respect to a specific proto-
col integrating several points of views for each single
wound.

2.1 Automatic wound segmentation

Colour pre-segmentation provides an automatic delin-
eation of tissue samples and simplifies the following
classification step by extracting more robust and dis-
criminant local attributes on tissue area than with di-
rect pixel classification. JSEG algorithm (Deng and
Manjunath., 2001) has been selected as it has been
proved that it is the more efficient compared to three

other advanced methods for unsupervised tissue seg-
mentation [Author]. A graphical interface allows clin-
icians to directly label automatically pre-segmented
regions (Figure 1).

Figure 1: Graphical interface for the expert manual labeling
by mouse clicking on pre-segmented regions.

Next, a unique medical reference is elaborated by
merging the region labels of the college of experts.
This practical medical reference has been used exclu-
sively for all tasks in the following, in particular in the
classifier learning step.

2.2 Multi-expert labelling

The pre-segmented image database has been provided
to a group of clinicians in order to label it according
to the classical colour code: red for granulation, yel-
low for slough and black for necrosis. Labelisation
realized by the different clinicians have been merged
to get a unique and reliable medical reference by ap-
plying a majority vote criterion according to a given
tissue class. We retained for each tissue the pixels
with confidence level greater than or equal to 75 %.
Following machine learning and algorithm evaluation
will be based on this medical reference.

Labeling sessions repeated one month apart by
the clinicians confirm that the identification of tissues
is a subjective task, as the obtained overlap scores
for these tests remain moderate (58% to 85%) and
also each clinician does not produce similar labels
one month later (65% to 91%) [Author]. Therefore,
the multi expert medical reference is a solution to
build a more robust and non-subjective tissue sample
database from automatically segmented regions.

3 SVM CLASSIFIER DESIGN

To enable a sharp discrimination among the tis-
sue classes, different types of colour and texture de-
scriptors have been calculated on the sample database,
composed of four types of tissues. Consequently, rel-
evant descriptors have been searched for the learning
step of a supervised classifier thanks to manual la-
beled tissue samples from the wound database.



Based on statistical learning theory (Vapnik,
1999) and initially designed for binary classifica-
tion by supervised learning, SVM are equally used
for multi-class problems through one against all and
one against one approaches (Hsu and Lin., 2002).
The SVM maps the inputs into an optimal separat-
ing hyper-plane in the feature space and estimates the
optimal boundary by combining a maximal margin
strategy with a kernel method. The decision bound-
aries are directly derived from the training data set by
learning this feature space through a selected kernel
function.

3.1 Colour and texture features
extraction

To characterize each tissue class more accurately, a
total of 850 significant tissue regions has been ex-
tracted in the wound image database from the seg-
mentation phase of the wound images. These regions
correspond to the four known types of tissue identified
manually (30% Granulation, 24% Slough, 9% Necro-
sis and 37% Healthy). We have only tested the most
common descriptors for the dermatological applica-
tions, especially those concerning wound and ulcer
tissues.

The extracted colour descriptors are: Mean
Colour Descriptor (MCD), locally adapted Dominant
Colour Descriptors (DCD) (Deng et al., 1999) cal-
culated using Mean Shift colour clustering algorithm
(Comaniciu and Meer, 2002) and 2D/3D histograms
in different colour spaces. The extracted texture de-
scriptors are: Gabor based features (GAB), Local
Binary Pattern histogram calculated from the Gray
Level wound image GL (Ojala et al., 2002), Haralick
Gray Level Co-occurrence Matrix features (GLCM)
and the normalized texture contrast and the anisotropy
(CA) computed from the second moment matrix, de-
rived from the gradient of the GL image (Carson et al.,
2002).

Table 1 summarize all the vectors of features gen-
erated from the pervious tissue regions. The vector
size, the operation space and also the average compu-
tation time (CT) are given in the table. This time is
calculated for a 512× 384 image with a PC Pentium
4 CPU 3.4 GHz, depending on the number of regions
and the wound size in the image.

To evaluate the discriminating power of the de-
scriptors, we measure directly the classification rates
at the classifier output. This provides more consistent
evaluation and more efficiency in the process. More-
over, our classifier integrates the correlation between
the descriptors and avoids data reconditioning.

Descriptor Space Size CT (sec)
h-RGB 3D-RGB 64 0.6
h-LAB 3D-Lab 218 1.56
h-HSV 2D-HS 256 1.99

h-rg 2D-rg 256 1.60
MCD-DCD Lab, RGB 8 0.41

h-LBP GL 256 5.3
h-LBP GL 59 1.5
GLCM RGB 15 0.48

GAB RGB 15 1.6
CA GL 2 0.23

Table 1: Sets of colour and texture descriptors.

3.2 Learning parameters tuning

The performance of the classifier depends strongly
on the selection of appropriate kernel functions and
the setting of their parameters, but also on the perti-
nence of the input descriptors. Consequently, we must
test all feature vectors with different settings of the
classifier parameters. The samples have been divided
equally into two subsets for test and training, in or-
der to evaluate the different descriptor vectors. As the
training subset needs to provide a complete and repre-
sentative description of the tissue classes, several iter-
ations are applied to randomly select the training set
and the final results are obtained by averaging on all
iterations.

Concerning the classifier, we have selected soft-
margin SVM algorithm (so-called C-SVM) tested
with different classical kernels: linear, polynomial,
Radial Basic Function (RBF) and perceptron kernel
(Lin and Li., 2005). The adopted C-SVM is a multi-
class classifier based on the Error Correcting Output
Codes framework (Huang et al., 2006) which pro-
vides, more than the labels, the probability estimates
of belonging to a class. These probability estimates
are used later by the fusion algorithm to label a re-
gion of the 3D model.

After the selection of a particular kernel, a regu-
larization parameter (C), which controls the penalty
of the classification errors, must be tuned. In the case
of linear or perceptron kernels, we have only to opti-
mize this single parameter but in the case of the RBF
and polynomial kernels, a second parameter has to be
tuned (resp. α and θ). For the tuning of these pa-
rameters, we used the line search technique for the
two first kernels and the parallel grid search tech-
nique for the two others, combined with k-fold cross
validation with k=5 (Chapelle et al., 2001). Figure
2 illustrates the setting of hyper parameters (C and
α) of C-SVM classifier with RBF kernel by parallel



grid search technique and the ROC curve obtained for
each kernel. The search intervals were [2−5,215] for
the regularization parameter C and [2−15,23] for the
kernel parameter (α).

(a) (b)

Figure 2: Classifier design: (a) ROC curve obtained by
4 different kernels (b) hyper-parameters setting of C-SVM
classifier with RBF kernel. The training set is obtained by
combining MCD-DCD with GLCM descriptors.

The selection of descriptors thanks to the eval-
uation based-classifier result is presented in Table
2. The classification accuracy is expressed by four
predictive measures, commonly used by clinicians to
evaluate the quality of a diagnostic method. These
measure are:





Sensitivity Se = True Positive
True Positive+False Negative

Specificity Sp = True Negative
True Negative+False Positive

Success rate Sr = Se+Sp
2

Overall accuracy Oa = T P+T N
T P+FN+FP+T N .

The multiple experimental tests show that bests re-
sults can be obtained by MCD-DCD as a colour de-
scriptor and GLCM as a texture descriptor, using C-
SVM classifier with perceptron kernel [Author].

These results indicate that texture is less relevant
than colour for wound tissue discrimination. How-
ever, it provides complementary information and,
therefore, is significant. In this way, texture and
colour information of tissue wound can be combined
to achieve better classification accuracy. The quality
of the tissue classification has been validated over a
series of 50 wound images by computing Kappa co-
efficients between the medical reference provided by
the experts and automatic classification (see Table 5).
These coefficients are close to those obtained between
clinicians and medical reference.

4 MULTI VIEW APPROACH

The 2D classification results still suffer from a
significant drawback, as it has been established that
a deviation of 20◦ of the optical axis from the nor-
mal of the wound typically leads to an underestima-
tion of surface around 10% (Plassmann, 1995) [Au-
thor]. This is due to lighting variations which mod-
ify the colours and perspective effects from distant
viewpoints which induce significant bias in the classi-
fication results (see 2D classification in Figure 5) and
then do not allow computing real surfaces. Like the
clinician, who disposes of many observation points to
provide a reliable diagnosis, a multi view technique
should allow more robust results. So, we propose
to use the dimensional information captured from a
multi view model because reliable wound assessment
must provide reproducible results, regardless to the
position and orientation of the camera.

4.1 View-dependent classification

Wound images have been taken from different points
of view. 3D model has been obtained using uncali-
brated vision techniques completed by original refine-
ments to obtain semi-dense matching between widely
separated views [Author].

Clinicians establish their diagnosis visually on the
photographed wound, with the help of a red-yellow-
black scale placed in the camera field, corresponding
to the three types of tissu. However, this diagnosis
is also based on their observations of the wound dur-
ing the patient visit. Then, the clinician assessment of
tissues can be seen as a combination of the colorimet-
ric information (image plane) with shape information
(through observation of the human eye). So, we can
illustrate the dependance of the classification assess-
ment on the point of view by a simple projection on
a 3D model computed from two views of a wound.
To do this, the classification result from each one of
the single view have been mapped on the 3D model
separately in order to label the triangular mesh. Each
triangle is labeled according to its higher score and
then the surface of each tissue type can be computed
by summing the triangles belonging to the same tis-
sue class. Figure 3 shows the variation of the cartog-
raphy mapping on the an ulcer 3D model according
to the classification results coming from single view
approach.

The 3D model allows accurate comparison of
single-view classifications since the differences are
expressed in cm2 and not in pixel. Table 3 presents
the area of the surfaces calculated in cm2 for each tis-
sue type, when mapping the image plane on the 3D



Descriptor Symbol Se (%) Sp (%) Sr (%) Oa (%)
h-RGB 58 87 72 80
h-LAB 66 87 76 82

Colour h-HSV 62 87 75 81
h-rgb 57 86 72 80

MCD-DCD 67 89 78 84
h-LBP 30 78 54 66
m-LBP 29 77 53 66

Texture GLCM 54 82 68 72
GAB 47 81 64 71
CA 32 79 55 68

Colour+Texture MCD-DCD+GLCM 77 92 84 88
Table 2: Predictive power of colour and texture descriptors.

Figure 3: Dependance of the classification result on the
point of view.

model presented in Figure 3.

Tissue class 3D surface (cm2)
Accord. to view1 Accord. to view2

Granulation 12.9 18.2
Slough 36.9 27.4

Necrosis 4.2 8.4

Table 3: Measured real surfaces for each type of tissue when
mapping separately the classification results obtained from
two views of the same wound on the 3D model.

The obtained differences reflect the effect of per-
spective projection in the image and the relief of skin
ulcers. This experiment confirms the limitations of
the single-view approach and the need to take into ac-
count the 3D aspect. So it is possible to fusion the
results of tissue labeling coming from each image.

4.2 Fusion of the classification results

Based on the 3D reconstruction of the scene, the main
idea is to combine the colour information of the re-
gions, the calculation of points of view and the relief

in order to get a classification more robust and also ac-
cess to real surfaces. To do this, pictures of the wound
have been taken from different point of views and a
3D model of 3000 to 4500 matches have been ob-
tained in 1024×768 image pairs, allowing the match-
ing between widely separated views. It is so possible
to match homologous regions in each view and to fu-
sion classification results.

The 3D mesh is projected on the stereo pair to pro-
vide a 2D Delaunay mesh of triangles in each image
(Figure 4). Due to the point correspondences between
the two images, each triangle in the left image has a
homologous one in the right image. So it is possible
to fusion the results of tissue labeling coming from
each image.

(on view 1) (on view 2)

Figure 4: Triangular model projected on the classification
results.

The strategy we have experimented is based on se-
quential multi-criterion tests with recursive splitting
of the triangles 1. It takes into consideration the tri-
angle area, its dominant class, the class probabilities
at the classifier output and the solid angle of the cone
generated from the optical center and for which the
triangle is a cross section (cf. Algorithm 1).

1the triangle is recursively split along the median line of
its longest side



Data: classification results on two views +
3D model

Result: multi view classification
project the 3D triangular model on each0.1

view;
forall triangles of the 3D model do0.2

find tissue percentage on each view;0.3

if the two views have the same tissue0.4

class then
label triangle with common tissue0.5

class;
else0.6

compute 3D triangle surface;0.7

if surface > threshold then0.8

split the triangle & go back to0.9

0.2;
else0.10

identify dominant tissue in each0.11

view;
if same majority class then0.12

label triangle with this0.13

majority class;
else0.14

compute the solid angle in0.15

each view (S1, S2);
if S1ÀS2 then0.16

label triangle0.17

corresponding to 1st

view;
else if S2ÀS1 then0.18

label triangle0.19

corresponding to 2nd

view;
else0.20

compute the class0.21

probabilities in each
view;
label triangle by max0.22

probability class;
end0.23

end0.24

end0.25

end0.26

end0.27

Algorithm 1: Fusion algorithm

5 EXPERIMENTAL RESULTS

To analyse the management of the triangle
labeling process through the fusion algorithm, we
illustrate in Table 4 the numbers of triangles labeled
at each step of the fusion algorithme applied on the
3D model of the Figure 4. It appears clearly that for

more than half of model surface, the classification
results dependent strongly on the viewpoint where
only 40% of the total surface were labeled with the
same class in both views. Only a few triangles are
concerned with the splitting step; this is because of
the semi-dense 3D model in our matching process.
However, about 20% of the wound model area is
labeled according to solid angle criteria. Finally, for
about 35% of the model surface, the two criteria of
dominant class and probability estimates need to be
computed. Such analysis attests of the fact that the
classification is view dependent, which implies to
combine several viewpoints.

As the pertinence of the fusion algorithme is
demonstrated. Since we are more interested in the
performance of our method in practical applications,
by testing its accuracy on the classification results and
its advances for tissue wound assessment application.
To evaluate the improvement due to the fusion of 2D
classification, we compared the scores between 2D
medical reference and 2D automatic classification on
one part and the overlap scores between 3D medical
reference and 3D classification results on the other
part (Table 5). The 3D medical reference is simply
the result of the fusion of the medical references com-
ing from the left and right images, mapped on the 3D
model. In this case, the class probability is replaced
by the level of confidence obtained from manual ex-
pert labeling.

The Kappa coefficient is also commonly used to
compute the degree of agreement between two med-
ical judgements (Landis and Koch, 1977). This sta-
tistical indicator, varying between 0 and 1, can be
calculated by K = Po−Pe

1−Pe
where Po is the relative ob-

served agreement and Pe the hypothetical probabil-
ity of chance agreement, using the observed data to
calculate the probabilities of each observer randomly
voting for each category. We therefore calculated the
Kappa coefficient in 2D approach (between classifier
and 2D medical reference) and 3D approach (between
3D classification and 3D medical reference) Table 5.

Tissue class Overlap score (%) Kappa coef.
2D 3D 2D 3D

Granulation 79.8 81.4 0.82 0.84
Slough 69.3 72.0 0.75 0.77

Necrosis 60.7 67.9 0.73 0.77
Average 69.9 73.8 0.77 0.79

Table 5: 2D/3D Overlap scores and Kappa coefficients av-
eraged over the wound database.

We observe that the agreement between medical



Common After Dominant Solid Probability
class splitting class angle estimates

Nbr of triangles 1280 77 540 700 561
Percentage 40.5 % 2.4 % 17.0 % 22.2 % 17.9 %

Table 4: Number of triangles labeled at each step of the fusion algorithm.

reference and automatic classification is globally im-
proved after the fusion step. The improved perfor-
mance of multi view classification is visible in Figure
5, where some areas of the wound were misclassified
in one of two views before the fusion. We are ob-
serving a convergence of the classifications from the
single view to the multi view case, which is expressed
by a better agreement between manual labeling and
automatic classification.

These tests show that the fusion of 2D classi-
fications enables more accurate tissue classification.
Moreover, as the results can be mapped on the mesh
surface of the wound 3D model, real tissue surfaces
can be computed on it.

The inner volume of a wound is also an interest-
ing clinical index for the assessment of the healing
process. It is directly computed from the classified
3D model by closing the wound surface with a plane.
This plane is estimated from 3D points detected in
a strip of healthy skin around the wound by a least
mean square minimization. At the past, a manual trac-
ing of the wound outline is required on color images
used for 3D reconstruction and the estimation of the
closing plane is obtained by averaging on a set of 3D
points [Author] (see (d) in Figure 6). Now, the multi-
view classification permet to isolate automatically the
wound zone from the healthy skin (see (e) in Figure
6). Finally, the triangulation based volume calcula-
tion consists in summing the elementary volumes un-
der each prism formed by facets and their orthogonal
projections on a reference plane (see (f ) in Figure 6).

6 CONCLUSION

Machine learning based on SVM classifier with
region descriptors as input has been improved by
multi view management. We have combined the re-
gion classification results coming from several 2D im-
ages of a skew surface, using the matched vertices of
the reconstructed 3D model. This approach has been
applied to the design of a complete 3D and colour
wound assessment tool. Experimental results show
that the fusion of 2D classification enables more ac-
curate tissue classification. Moreover, as the results
can be mapped on the mesh surface of the wound 3D

(a) (b) (c)

(d) (e) (f )

Figure 6: Computing of real measurements by multi view
approach. (a-b) two views of the same wound (c) the 3D
model calculated from these views (d) multi-view classifi-
cation result (e) the detected zone of the wound isolated au-
tomatically from the healthy skin (f) the determined inner
volume of the wound by closing the wound surface with a
plane.

model, real tissue surfaces and volumes can be com-
puted on it. Future works include several tests on
a larger image database. We also intend to improve
these results by matching regions from more than two
views and by testing colour descriptors invariant to
viewpoint and lighting conditions.
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