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The most challenging issue facing the navigation assistive systems for the visually im-

paired is the instantaneous and accurate spatial localization of the user. Most of the
previously proposed systems are based on GPS sensors. However, the accuracy of low

cost versions is insufficient for pedestrian use. Furthermore, GPS-based systems are con-

fined to outdoor navigation and experience severe signal lost in urban areas. This paper
presents a new approach for localizing a person by using a single body-mounted camera

and computer vision techniques. Instantaneous accurate localization and heading esti-

mates of the person are computed from images as the user progresses along a memorised
path. A portable prototype has been tested for outdoor as well as indoor pedestrian

use. Experimental results demonstrate the effectiveness of the vision based localization:

the accuracy is sufficient for making it possible to guide and maintain the blind person
within a navigation corridor less than one meter wide along the intended path. In com-

bination with a suitable guiding interface, such a localization system will be convenient

to assist the visually impaired in their everyday movements outdoors as well as indoors.

Keywords: computer vision; indoor/outdoor localization; navigation assistance; visually

impaired.

1. Introduction

A major political and technical challenge for a modern society is to find innovative
solutions for effective assistance to increase the security and mobility of visually
impaired persons travelling through city streets and buildings. For people who are
blind, way-finding is dependent on the ability to remain localized and oriented.
Recent work on assistive technologies for human localization has mainly focused
on GPS (Global Positioning System). 1,2,3,4,5 The shortcomings of GPS, however,
are well-known. A GPS sensor is ineffective indoors and in low cost versions it fails
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to provide accurate spatial position (ten meters - for the best versions - is clearly
inadequate to keep a walker along the intended path). Furthermore, the signal
cannot be tracked when the blind person moves into masking areas such as along
high walls or tall buildings. While some studies have tested differential GPS which
provides an accuracy of around one meter, it is costly and cumbersome equipment
which needs fixed ground stations and is only efficient outdoors. 6,7

Alternative devices have been designed to assist blind people in their mobility
and orientation tasks indoors, such as ultrasound, 8 or radio frequency identifi-
cation transponders, 9 using a robotic ”dog-guide”, 10 or an instrumented white
cane. 11 Several real-time location systems (RLTS) based on distributed wireless
sensor networks have also been tested for indoor human position sensing. Wireless
LAN (WLAN), ultra-wide-band (UWB), and radio frequency identification (RFID)
have been combined with building information model (BIM) to propose an emer-
gency navigation system in complex buildings. 12 The proposed system enables
the positions of rescuers to be determined to within a few meters once a minute.
However, guiding blind people along their route requires higher accuracy and speed
rate. A recent study conducted at Brunel University campus in Uxbridge points up
considerable difficulties in establishing a navigation system for visually impaired
people with WiFi. 13. A navigation aid based on a commercial UWB asset tracking
system has been evaluated with blindfolded subjects. 14 Results show that navi-
gation system dramatically outperforms the non-guided condition without to equal
a normal vision control condition. Promising results have also been obtained in a
restricted area with a grid of passive RFID tags integrated in the floor. 15 The
RFID reader may be attached to a cane, a shoe or a handheld device such as a
smart phone. To obtain a suitable positioning accuracy, however, it is necessary to
install enough RFID tags, with an ideal density of about half a meter spacing, and
the walking speed of sighted people is generally too high for reading the tags. To
make them suitable for indoor navigational aid, the detection range of commercially
available RFID tags must be extended. 16

Although they are low cost technologies, installing dedicated WLAN transmit-
ters or radio frequency tags in large building complexes or a whole city would be
expensive, inflexible and inconvenient. To sum up, localization systems with suf-
ficient accuracy for blind pedestrian applications are currently based on ground
installations (DGPS, RLTS), and Drishti 8 is the only system which proposes a
combined outdoor/indoor system.

In order to be widely applicable, the design of an individual localization system
needs to be based on wearable, low cost and mobile technologies, free from collective
equipment. To achieve this aim, we propose a new vision based solution derived from
the autonomous navigation of wheeled robots to assist the visually impaired in their
everyday movements outdoors as well as indoors. This computer vision based system
requires no environment instrumentation: instantaneous accurate localization and
heading estimates of the user are computed only from images provided by a body-



May 23, 2010 21:50 WSPC/INSTRUCTION FILE IJIG-D-08-00049VF

OUTDOOR/INDOOR VISION-BASED LOCALIZATION FOR BLIND PEDESTRIAN NAVIGATION ASSISTANCE 3

mounted camera as the user progresses along a memorized path. 17 This real time
localization is available provided that a video sequence has been previously recorded
during a learning trip. For the time being, the vision system is used only to localize
and guide the walker along the intended path, it does not substitute for the long
white cane in obstacle avoidance. The following section describes our vision based
positioning system. Some experimental results with a first wearable prototype are
given in section 3. The conclusion and future works are discussed in the last section.

2. Vision-based positioning

2.1. Related work

Vision based localization has become an active research area in the last few years.
Usually, the camera pose is computed with reference to the environment, and the
system needs to build a map from features detected in the images. The system then
matches features between the current frame and the memorized ones in the map
to compute the pose of the camera. The mapping step can either be done at the
same time as the camera localization or beforehand in an offline learning step. The
first approach is called visual SLAM (Simultaneous Localization And Mapping).
Most of the developments done in the robotics community rely on odometry as
well as vision, 18 but these techniques cannot be adapted to wearable cameras.
Visual SLAM with a single hand held camera was recently achieved by Davison. 19

However, accurate mapping requires considerable computing power with closed loop
paths to refine the map of the robot environment, meaning that this approach can
only deal with a small number of features and a moderately sized environment.
We have therefore preferred to adopt a structure from motion approach to first
build the route mapping. Several researchers have developed structure from motion
algorithms based on monocular vision. 20,21,22 These algorithms use an initialization
step followed by bundle adjustment to build a map from an image sequence without
the need for other sensors. 23

2.2. Approach overview

The localization system relies on two steps (Figure 1): a preliminary learning
path and a real time localization for navigation assistance. During a learning trip,
a video sequence is recorded by the on-board vision system and processed off-line
to automatically build a large set of natural landmarks by applying a structure
from motion algorithm. This algorithm recovers both the motion of the camera and
the geometry of a rigid surrounding scene by automatically recognizing some land-
marks through the image sequence (angular points on buildings, windows, doors,
billboards, trees,. . . ). The memorized information consists in a set of selected key
frames corresponding to different camera positions along the learning path and a
3D map of the environment. During navigation assistance, ego motion of the cam-
era is computed as the trip progresses by matching the stored 3D visual landmarks
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Fig. 1. Overview of the vision based localization system.

with their projections observed in the current frame. Figure 2 shows a result of
localization during a walk through the university library. As the camera is rigidly
attached to the carrier, it provides its instantaneous localization and orientation
(6 DoF) along the route. Even if transient obstacles (pedestrian, car, advertising
hoarding), that were not in the path of the memorized route, mask some part of
the 3D environment, the camera localization can still be effective while there are
at least a few tens of well recognized landmarks.

2.3. Map building from learning path

Every step in the structure from motion as well as the real-time localization relies
on image matching. Points of interest are detected in each frame with a Harris 24

corner detector. Matching between two frames is achieved with a classical algorithm:
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Fig. 2. Left: Top view of a walk inside the university library. Empty squares represent all the
camera positions selected during the learning path. The current position and heading estimates of

the person over the intended path (colored square and vector), bounded with uncertainty ellipsoid

on camera position estimates (extended 100 times). Right: Current frame captured by the camera
(bottom) and the corresponding key frame memorized during the learning trip several days before

(top). Large colored squares are the well matched points, small ones the unmatched.

for each interest point in the first frame, we select some corresponding candidate
points in a rectangular search region in the second one. Then, a Zero Normalized
Cross Correlation score is computed between their neighborhoods, and the pairs
with the best scores are kept to provide a list of corresponding point pairs between
the two frames. Matching methods with rotational invariance could also be used
but they would require more computing power.

The goal of the reconstruction is to obtain the position of a subset of the cameras
in the reference sequence as well as a set of landmarks and their 3D location in a
global coordinate system. The structure from motion problem has been studied for
several years and many different algorithms have been proposed depending on the
assumptions made. 25 For our experiments, the camera was calibrated using a planar
calibration pattern. 26 Camera calibration is important because the wide angle
lens used has a strong radial distortion. With a calibrated camera, the structure
from motion algorithm is more robust and the accuracy of the reconstruction is
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increased. In our application, the motion is mostly along the optical axis of the
camera. Point triangulation must be done with small angles, which increases the
difficulty of obtaining an accurate 3D reconstruction.

In the first step of the reconstruction, we extract a set of key frames from the
reference sequence. Then we compute camera motion between key frames. Addi-
tionally, the interest points are reconstructed in 3D and a small surrounding texture
patch is memorized. These features will be the landmarks used for the localization
process.

2.3.1. Key frame selection

Computation of the epipolar geometry is an ill conditioned problem if the camera
motion is too small between two successive frames. The key frames are therefore
selected to be as widely time-spaced as possible so long as the matching process is
preserved in the images. The first frame of the sequence is always selected as the
first key frame I1. The second key frame I2 is chosen as far as possible from I1

but with at least M common interest points between I1 and I2. When key frames
I1 . . . In are chosen, we select In+1 (as far as possible from In) so that there are at
least M interest points in common between In+1 and In and at least N common
points between In+1 and In−1. In our experiments we detected 1500 interest points
per frame and we chose M = 400 and N = 300.

2.3.2. Camera motion computation

For the first three key frames, the camera motion is recovered by computing the
essential matrix between the first and last frames of the triplet using a sample of
5 point correspondences. 27 There are at most 10 solutions for E. Each matrix E

gives 4 solutions for camera motion. The solutions for which at least one of the 5
points is not reconstructed in front of both cameras are discarded. Then the pose
of the remaining camera is computed with 3 out of the 5 points in the sample. This
process is carried out with a RANSAC approach : each 5 point sample produces a
number of hypotheses for the 3 cameras. 28 The best one is chosen by computing the
reprojection error over the 3 views for all the matched interest points and keeping
the one with the highest number of inlier matches. An algorithm is also required
to compute the pose of the second camera. With a calibrated camera, three 3D
points whose projections in the image are known suffice to compute the pose of the
camera. Among the various methods compared by Haralick, 29 we chose Grunert’s
method with a RANSAC approach.

For the following image triplets, a different method is used for computing camera
motion. Assuming the locations of cameras C1 to CN are known, we can compute
camera CN+1 by using the location of cameras CN−1 and CN and point correspon-
dences over the image triplet (N −1, N, N +1). We match a set of points Xi whose
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projections are known in each image of the triplet. From the projections in images
N − 1 and N , we can compute the 3D coordinates of point Xi. Then from the set
of Xi and their projections in image N + 1, Grunert’s calibrated pose estimation
algorithm is used to compute the location of camera CN+1. In addition the 3D
locations of the reconstructed interest points are stored because they will be the
landmarks used for the localization process. The advantage of this iterative pose
estimation process is that it can deal with virtually planar scenes. After the pose
computation, a second matching step is carried out with the epipolar constraint
based on the pose that was just computed. This second matching step increases the
number of correctly reconstructed 3D points by about 20 %.

2.3.3. Hierarchical bundle adjustment

The computation of camera CN depends on the results of the previous cameras, and
errors can build up over the sequence. In order to correct this problem, we use a bun-
dle adjustment which provides a better solution. Bundle adjustment is a Levenberg-
Marquardt minimization of the cost function f(C1

E , · · · , CN
E , X1, · · · , XM ) where

Ci
E are the external parameters of camera i, and Xj are the world coordinates of

point j. For this minimization, the radial distorsion of the 2D point coordinates is
corrected beforehand. The cost function is the sum of the reprojection errors of all
the inlier reprojections in all the images :

f(C1
E , · · · , CN

E , X1, · · · , XM ) =
N∑

i=1

M∑
j=1,j∈Ji

d2(xj
i , PiX

j)

where d2(xj
i , Pix

j) is the squared euclidian distance between PiX
j the projection

of point Xj by camera i, and xj
i is the corresponding detected point. Pi is the 3×4

projection matrix built from the parameter values in Ci
E and the known internal

parameters of the camera. Ji is the set of points whose reprojection error in image
i is less than 2 pixels at the beginning of the minimization. After a few iteration
steps, Ji is computed again and more minimization iterations are performed. This
inlier selection process is repeated as long as the number of inliers increases.

Computing all the camera locations and using bundle adjustment only once on
the whole sequence could cause problems because increasing errors could produce
an initial solution that is too far from the optimal one for the bundle adjustment
to converge. It is therefore necessary to use the bundle adjustment throughout
the reconstruction of the sequence, in a hierarchical fashion. 25 A large sequence is
divided into two parts with an overlap of two frames in order to be able to merge the
sequence. Each subsequence is recursively divided in the same way until each final
subsequence contains only three frames. Each image triplet is processed as described
in section 2.3.2. After each triplet has been computed a bundle adjustment is run
over its three frames. Small subsequences are the merged into larger subsequences
and a bundle adjustment is appleid after each merging operation. In order to merge
two subsequences, we compute a best-fit rigid transformation so that the first two
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cameras of the second subsequence are transformed into the last two cameras of the
first subsequence. Merging is done until the whole sequence has been reconstructed.
The reconstruction ends with a global bundle adjustment. The number of points
used in the bundle adjustment is on the order of several thousands.

2.4. Real-time localization

The output of the learning process is a 3D reconstruction of the scene: we have the
pose of the camera for each key frame and a set of 3D points associated with their 2D
positions in the key frames. At the start of the localization process, no assumption
is made about the camera localization. It is therefore necessary to compare the
current frame to every key frame in order to find the best match. This is done
by matching interest points between the two frames and computing a camera pose
with RANSAC. The pose obtained with the highest number of inliers is a good
estimation of the camera pose for the first frame. This step requires a few seconds
but is needed only at the start. After this step, since we always have an approximate
pose for the camera, we only need to update the pose, which can be done much
faster.

The current frame is noted I. First we assume that the camera movement be-
tween two successive frames is small. So an approximate camera pose (we note the
associated camera matrix P0) for frame I is the same as the pose computed for the
preceding frame. Based on P0 we select the closest key frame Ik i.e. the shortest
euclidian distance between the camera centers. Ik gives us a set of interest points
Ak reconstructed in 3D. We detect interest points in I and match them with Ak. To
do that, for each point in Ak, a correlation score is computed with all the interest
points detected in I which are in the search region. With P0, we can compute an
expected projection in I for each 3D visible landmark stored in Ak. The search re-
gion for the matching process is centered around the expected position and its size
is small enough to enable real-time computing. The size of the search region may
be adjusted based on the covariance matrix computed for the pose P0. This choice
is well adapted to a robot because its motion model is smooth and well known. We
found however that a fixed sized region (20×12 pixels) works better for a wearable
camera because the user can abruptly change direction at any time. It is important
to have a very fast implementation of the pose computation so that the frame rate
can be kept high and thus reduce camera movement between frames. After this
matching is done, we have a set of 2D points in image I matched with 2D points in
image Ik which are themselves linked to a 3D point obtained during the reconstruc-
tion process. With these 3D/2D matches a better pose is computed using Grunert’s
method through RANSAC to reject outliers. This gives us the camera matrix P1

for I. The pose is then refined using an iterative method with some modifications
in order to deal with outliers. 30 This is a minimization of the reprojection error for
all the points using Newton’s method. At each iteration we solve the linear system
Jδ = e in order to compute a vector of corrections δ to be subtracted from the pose
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parameters. e is the error vector formed with the reprojection error of each point
in x and y. J is the Jacobian matrix of the error. In our implementation, the points
used in the minimization process are computed at each iteration. We keep only the
points whose reprojection error is less than two pixels. This threshold is relative
to the accuracy of the Harris detector (about one pixel) with an additional margin
of one pixel to select a sufficient number of inliers. We prefer to completely reject
outliers instead of using an M-estimator mainly to reduce the computation time. As
the pose converges towards the optimal pose, some inliers can become outliers and
conversely. Usually, less than five iterations are enough to provide the localization
and orientation of the camera (see Figure 2).

3. Pedestrian navigation assistance

The vision-based localization method described above has been extensively tested
with wheeled robots and evaluated by comparison with the ground truth given by
a differential GPS sensor. A localization accuracy of around 0.05m was achieved in
experiences with wheeled robots. 31 We propose to adapt this system to pedestrian
navigation by using a body-mounted camera and a wearable computer.

An initial prototype was developed to test the robustness of the vision
based localization algorithm on bumpy walking routes (unlike the wheeled robots
which move smoothly). Several video sequences were acquired along routes more
than 100m long in various situations (indoor/outdoor, open/cluttered space, flat
floor/stairs,. . . ). Different inexperienced visually impaired subjects tested the lo-
calization system for several days or weeks after the video sequence acquisition of
the learning path. The navigation performance can be analyzed by observing on
the fly the path followed by the walker in comparison with the intended one (i.e.
the reference path followed by the camera during the learning trip).

3.1. Experimental device

A photo of the experimental device is given in Figure 3. The pedestrian prototype
is composed of a 2,8mm lens equipped with an AVT Guppy 044B camera (320x240
pixels resolution, diagonal field of view of 120 degrees) fixed on a body harness
and connected to a wearable computer (Pentium M 1.86GHz 1 GB RAM). The
intrinsic parameters of the camera including radial distortions are estimated by
prior calibration.

After the initialization step, the vision system provides the current localization
and also heading of the walker relative to the local segment of the reference path at
a rate of 30 frames per second. Considering this current position, the walker may
be continuously reoriented by suitable interface modalities so that to be kept in a
navigation corridor along the intended path. To keep the walker as close as possible
to the memorized path, directional prompts are given according to his adherence
to the path (see Figure 3). The walker’s adherence is evaluated by the lateral space
e between the camera position and the nearest point of the path. Then, for guiding
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Fig. 3. Left: The pedestrian prototype with a chest mounted camera and a wearable computer in a
back pack.Right: The walker is kept in a corridor along the intended path by directional prompts.

His adherence to the path is defined by the angular deviation θ for joining the route 3 meters

farther from the lateral space e between current position and the nearest point of the reference
path.

facilities, the lateral space e is converted to an angular value for joining the route 3
meters farther on by θ = arctan[e/3]. If the absolute value of the angular deviation
θ is higher than ten degrees, directional instructions are given to the walker. If not,
the system confirms the walker in his path every second. We find that ten degrees
is a reasonable value for quickly detecting a lateral deviation of about half a meter
and proposing smooth reorienteering to join the intended route with an average
walking speed of 1.5 meter par second. The walker is also informed of the system
initialization or of any breaks in localization, and as soon as he has arrived at his
destination.

In the initial version, two different guiding modalities were tested with head-
phones: a speech-based interface or a regularly time spaced sonar sound effect. The
verbal navigational prompts are of three types: ”turn left”, ”turn right” or ”straight
ahead” depending on the walker’s angular deviation. Similarly, the sonar pings are
respectively applied only in the left ear, only in the right ear or in both, with varying
frequency depending on the pedestrian’s adherence to the path.

3.2. Results

In order to illustrate the efficiency of the proposed vision system, Figure 4 shows
the tracks of three blindfolded subjects navigating outdoors. Equipped with our
vision based localization system, they were able to follow the reference path closely
in unfamiliar open space without any reference points. Tables 1 and 2 give some
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statistics on the navigation performance during this outdoor route and the indoor
walk inside the library shown in the snapshot in Figure 2. Each subject walked each
path only once after a short training phase with the system during a few minutes.
The efficiency of the vision system is evaluated in terms of adherence of the walker
to the memorized path in real-world conditions. This adherence is measured by the
lateral space e between the camera position and the nearest point of the path 3.
This metric includes the vision-based localization accuracy and the efficiency of the
guiding prompt. We choose unfamiliar open spaces in order to test the localization
and guiding efficiency without the possibility for the blind walker to use walls or
other external structures as navigation aids.

The observed average and standard deviation of the lateral space indicate that
95% of instantaneous lateral spaces are less than 1.2 meter, with an average of about
half a meter, which is a good result since no optimization was carried out. Note
that the guidance system includes no motion model and that except for the prior
camera calibration, no harness calibration was made when changing participants.
This demonstrates the relative robustness of the system to variations in acquisition
conditions.

Table 1. Outdoor localization and navigation performance.

Outdoor trip (150 m) Subject 1 Subject 2 Subject 3

Average of lateral space (m) 0.59 0.34 0.66

Standard deviation of lateral space (m) 0.35 0.20 0.43

Table 2. Indoor localization and navigation performance.

Indoor trip (70 m) Subject 1 Subject 2 Subject 3

Average of lateral space (m) 0.36 0.40 0.47
Standard deviation of lateral space (m) 0.25 0.22 0.27

A comparison of the tracks obtained with different guiding modalities is illus-
trated in Figure 5 along a totally open space indoor route with no guiding walls.
Auditive feedbacks were the easiest to implement for a preliminary evaluation of
guiding assistance from our vision-based localization system. No significant dif-
ference was observed between voice versus beeping feedbacks. Nevertheless, it is
necessary to compare the guiding modalities in greater depth with a larger number
of subjects and scenarii. These experimental results demonstrate the effectiveness
of the vision based localization system to keep the walker in a navigation corridor
less than one meter wide along the intended path.

The start step of the localization process requires only a few seconds (for a global
search without approximate pose of the camera), i.e. much faster than present GPS
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Fig. 4. Outdoors tracks of three visually impaired subjects equipped with our vision based local-

ization system in unfamiliar open space environment, and a surrounding view of the scene.

receivers. This start process is done every time the tracking is lost, and if the
relocalization from key frames connected to the last memorized position fails. The
only condition required for positioning to succeed is to compute more or less forty
good matches in the current frame. This is generally possible even if some transient
obstacles (not in the path of the memorized route) mask some part of the 3D
environment. As can be seen on Fig. 2, our approach can also handle cases of loop
path, since the observing direction of the camera is different. At present, the main
limitation of this technique is the robustness of the matching process in the event of
large changes in viewpoint. Rapid and unpredictable camera motion may cause loss
of tracking. In particular, if the walker rapidly swivels the upper part of his body,
the camera viewpoint may be too different for a sufficient number of memorized
visual landmarks to be recognized. Such a failure case is illustrated in Figure 4
(stop before the end for one of the subjects). In the future, we will prevent this
problem by employing more robust descriptors of texture templates for landmarks
or an inter frame motion estimator to aid tracking. One solution would be to exploit
the extra capabilities of smartphones (accelerometer and GPS) and future devices
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(magnetic compass, gyroscopes) which could surely benefit visual tracking.

Fig. 5. Two successive tracks of the same blind subject guided by the verbal navigational prompts

(vocal), respectively by the sonar interface (bip) with frequency according to the angular deviation.

4. Conclusions and Future Work

The guidance provided by a GPS sensor is insufficiently precise for pedestrian nav-
igation and cannot be relied on indoors, underground or even when travelling near
walls and buildings in an urban environment. This paper proposes a localization
system based on an embedded camera which is an interesting alternative for guid-
ing visually impaired people in their indoor/oudoor daily walks, supplementary to
obstacle avoidance they can discern on their own using a long cane.

A wearable vision system has been presented for localizing a person on a memo-
rized path. Vision based localization provides sufficient accuracy to keep the walker
in a navigation corridor one meter wide, without the drawbacks of cumbersome and
costly systems based on DGPS receivers. Our real-time localization system may be
used for pedestrian navigation both outdoors and indoors without any dependen-
cies to external instrumentation of infrastucture. This is clearly an advantage for
the design a widely used autonomous system to assist visually impaired people.

Future work will focus on increasing the ergonomics and robustness of the system
by working in collaboration with end-users. The key issue to improve guidance
efficiency is to find the best communication modalities, taking into account the
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psychological and ergonomic factors with a large panel of users with severe visual
impairment in various situations. In particular, it will be interesting to investigate
tactile feedback to prevent possible disorientation of blind individuals caused by
overuse of the sound space.

Navigation control may be analysed on the fly by the quantitative measurements
of path efficiency which will be a very useful tool to investigate different multimodal
adaptive interfaces. We have observed that performance improves with practice.
The machine needs to learn to work with the user and to adapt some walk models
to each user. We also plan to investigate a second prototype comprising a eye-
glasses on whitch a tiny camera and 3-axis gyroscopes are mounted to estimate head
movements, and to develop applications on PDAs or smart phones. This system
may also be combined with RFID tags judiciously placed in buildings to warn of
obstacles (doors, stairs, etc).

The ultimate aim of the project is to develop a low cost and convenient embed-
ded personal guidance system dedicated to visually impaired users. Such a system
may also be useful for locomotion learning of blind people or for elderly people with
memory loss to improve their mobility and social integration.
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