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Enhanced Assessment of the Wound-Healing Process
by Accurate Multiview Tissue Classification

Hazem Wannous, Yves Lucas*, Member, IEEE, and Sylvie Treuillet

Abstract—With the widespread use of digital cameras, freehand
wound imaging has become common practice in clinical settings.
There is however still a demand for a practical tool for accurate
wound healing assessment, combining dimensional measurements
and tissue classification in a single user-friendly system. We
achieved the first part of this objective by computing a 3-D model
for wound measurements using uncalibrated vision techniques.
We focus here on tissue classification from color and texture
region descriptors computed after unsupervised segmentation.
Due to perspective distortions, uncontrolled lighting conditions
and view points, wound assessments vary significantly between
patient examinations. The main contribution of this paper is
to overcome this drawback with a multiview strategy for tissue
classification, relying on a 3-D model onto which tissue labels
are mapped and classification results merged. The experimental
classification tests demonstrate that enhanced repeatability and
robustness are obtained and that metric assessment is achieved
through real area and volume measurements and wound outline
extraction. This innovative tool is intended for use not only in ther-
apeutic follow-up in hospitals but also for telemedicine purposes
and clinical research, where repeatability and accuracy of wound
assessment are critical.

Index Terms—Multiview classification, three-dimensional (3-D)
modeling, wound assessment.

I. WOUND ASSESSMENT PRACTISE

A. Clinical Practise

M ONITORING the wound healing process is a tedious
task for clinicians and nurses as it is necessary to peri-

odically assess the wound. All types of wounds are concerned:
not only chronic wounds but also ulcers, burns, traumatic or
surgical wounds, and dermatological lesions. Moreover, wound
care is expensive: according to a report published by the NIGMS
in 2008 in the USA, chronic wounds cost the nation $20 bil-

Manuscript received January 13, 2010; revised May 01, 2010; accepted Au-
gust 05, 2010. Date of publication September 23, 2010; date of current version
February 02, 2011. This work was supported by the European Social Fund and
by the French Delegation for Research and Technology. Asterisk indicates cor-
responding author.

H. Wannous is with the ENSEIRB Engineering School, IMS Laboratory,
333405 Talence cedex, France (e-mail: hazem.wannous@ims-bordeaux.fr).

*Y. Lucas is with the IUT of Bourges, Physical Measurement Department,
PRISME Institute, Image and Signal for the System Group, University of Or-
leans, 18020 Bourges cedex, France (e-mail: yves.lucas@bourges.univ-orleans.
fr).

S. Treuillet is with the Department of Signal and Image Processing, Ecole
Polytechnique , PRISME Institute, Image and signal for the System Group, Uni-
versity of Orleans, 45067 Orleans cedex, France (e-mail: sylvie.treuillet@univ-
orleans.fr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2010.2077739

1http://www.nigms.nih.gov

lion to $25 billion and acute or traumatic wounds add another
$7–$10 billion to the bill annually, as the healing process can
last several months;with the ageing of the population this cost
will necessarily increase by 25% over the next 10 years.

As health care costs need to be drastically reduced, there
is a growing demand for patients to be cared for at home;
wound monitoring could be carried out from a distance, outside
a hospital environment, in private homes properly equipped
for telemedicine practise. Pioneer experiments in this area
consisted simply in uploading images to a web site where a
physician could view the data at his convenience [30]. In more
recent studies, image processing has been added but it provides
only ulcer stage grading [26]. The quantitative assessment of
chronic wounds still relies on visual inspection and manual
techniques to describe the shape of the wound (perimeter,
surface, depth, etc.) and the biological nature of the skin
tissues (percentage of each class, wound severity stage, burn
degree, etc.) [42], [46]. Wound dimensions and shape are cur-
rently measured with an ordinary ruler, or sometimes through
sketches on cross-ruled sheets, serum injection or alginate
moldings. Assessing the type and proportion of tissues likewise
remains highly empirical as evaluation is performed visually
and then recorded on a red-yellow-black scale corresponding
respectively to the dominant color of the different tissues found
on a wound: granulation, slough and necrosis. Healing is a
complex cascade of cellular events operating to reconstruct
damaged tissues, and also an individual process that exhibits
considerable inter-patient variability. As the different tissues
may overlap and be difficult to distinguish, wound assessment
is not straightforward. The lack of quantitative data affects the
coordination of care staff and hinders clinical studies focused
on healing. Digital cameras, though now widespread in clinical
centers, are used only for basic patient data recording and not
image processing, as wound therapeutic follow-up is mainly
carried out by nurses.

B. Wound Imaging Studies

While several studies have tackled the problem of wound as-
sessment, these attempts have failed to provide a robust tool
for automatic tissue classification. Results remain too depen-
dent on image capture conditions, sample database building,
region descriptor selection, tissue class learning protocol, etc.,
preventing reproducible results from being obtained within the
complete image processing chain. Several features contribute to
making automatic classification difficult. First, wound image ac-
quisition requires technical skill, especially in the patient room
where lighting is not controlled. At close range, the depth of
field remains always limited in macro-mode, ambient light is
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insufficient and may easily result in fuzzy images. Moreover,
the patient is rarely able to maintain a convenient posture for a
snapshot. After image capture and image compression, an im-
portant requirement for data management [44], the wound area
must be extracted from the image. Early attempts to accom-
plish this by using color measurements did not completely suc-
ceed, as reported by [23] and have been replaced by semi-au-
tomatic methods [35] by spline fitting from a set of clicked
boundary points or snakes on a manually specified closed con-
tour [39]. As all the photos are taken with the same camera and
lighting during experimentation, color correction is often ne-
glected, making it impossible to process images from other care
centers correctly. Sometimes, a white patch is included in the
field of view to estimate the white balance [40]. More rarely a
color pattern is used for enhanced color correction, giving also
access to the scale factor for dimensional measurements [19],
[35]. The color analysis required for tissue classification over
the wound is a difficult task. As direct classification on the pixels
with simple thresholds on separate color components proved to
be inefficient due to the variability and non homogeneity of tis-
sues, spatial continuity has been searched for through a segmen-
tation process. The classification process is thus driven by the
segmentation one [10]. During the following step, a tissue data-
base has to be built, covering all wound grades, locations and
healing status. This recording task is performed mainly by the
care staff, under the supervision of clinicians, as the wounds are
only visible after cleaning during dressings. In many studies,
the tissue samples were manually extracted by asking the clin-
ician to pick square homogeneous regions of interest inside the
images [18]. Complete classification would require that during
the tests these samples be automatically located in the image
without a priori knowledge. Moreover, using photos instead of
examining the patient has an impact on expert performance [14].
When several experts are consulted, it appears that inter-ob-
server variability is important, exceeding intra-observer vari-
ability [5]. For classification purposes, several region descrip-
tors have been widely tested on wound tissue samples. Color
histograms are typical of such statistical data gathering as tissue
descriptors [7], [40], but it has been proved that tissues could
still not be classified robustly in a large collection of images. The
best results were obtained when the classification was limited to
two types of tissue [37] or by multiplying the tissue classes using
hybrid classes [51]. To improve the results, texture parameters
have finally been added [13], [18]. Several classification tools
have also been addressed and supervised ones have been shown
to surpass the others [6], [34]. In many studies, assessment of
the tissue type is not achieved (only the grade or the surface of
the wound is provided) [20], [26], [43] or only partially.

Beside the methods of tissue classification, some proto-
types based on structured light techniques [27], [31], [36] or
photogrammetry [8], [32], [40] have been presented in order
to obtain spatial measurements. The prototypes called MED-
PHOS (Medical Digital PHotogrammetric System) [32], [33]
and MAVIS (Measurement of Area and Volume Instrument
System) [40] are typical of this approach. However, these cum-
bersome and complex systems are unsuited to clinical practice
which requires a low-cost, handy, and simple tool operated by
a nurse. Portable industrial 3-D scanners have also become

available and have been experimented on wound measurement.
Examples are the Minolta V series [9], [42] and 910 series [16]
and the Fastscan Polhemus system [29], all based on a laser
stripe scanning, the latter being moreover a handheld system
due to magnetic sensing of the system pose. More recently, a
commercial system has been proposed by Aranz Medical : the
SilhouetteMobile system is based on a personal digital assistant
(PDA) equipped with a small digital camera with embedded
laser lighting. This tool is very expensive compared to a simple
digital camera and tissue classification is not supported. Wound
extraction must be done by drawing around the wound outline
using a stylus on the PDA screen.

The systems that are most closely related to our work are
MAVIS-II [24] and the Derma project [9], [42]. MAVIS-II uses
a reflex digital camera equipped with special dual lens optics to
record two half images from slightly different viewpoints. This
system competes with some 3-D laser scanners, but it suffers
from several drawbacks. Firstly, a costly digital reflex camera is
required to adapt the special dual lens. Secondly, the stereo lens
adapter constrains both the field-of-view and the focusing dis-
tance and consequently the size of imaged wounds, as it must
be located around the intersection of a dual light point pro-
jector also required. Finally, the tissue classification problem is
not addressed. In the Derma project, wound measurements and
tissue classification have both been tackled, as it enables shape
and natural texture grabbing, but the classification process re-
mains user-assisted as seeds need to be manually pointed in-
side the wound and a similarity measure adjusted to control the
merging process. Moreover, it is based on a very costly Minolta
3-D scanner, putting it beyond the reach of routine clinical prac-
tice. In sum, wound assessment using imaging techniques is still
mainly based on 2-D data processing and no existing system
combines color tissue classification and wound 3-D shape re-
construction into a single low-cost tool for enhanced and com-
plete wound assessment.

C. Proposed Framework

The main objective of this work is to present a complete and
user-friendly tool that can be easily implemented by care staff,
in order to automatically monitor the healing process. Such a
tool can provide efficient measurements necessary both in clin-
ical practice to monitor the progress of healing, and in research
to evaluate new treatment. In contrast to the aforementioned
methods dealing separately with wound shape and tissue classi-
fication tasks, we suggest going further toward a very low-cost
and easy-to-use device using a simple standard digital camera.
This is the only way to ensure that quantitative wound assess-
ment will be widely practised by clinical staff, who have to
handle high rates of pressure sore prevalence in most hospital
departments. A complete wound assessment tool has therefore
been developed, combining a sharp 3-D model of the wound and
a robust classification tool for color tissues (Fig. 1). The part
concerning computation of a 3-D model has been presented in
[2], [3], and [45], while the classification tool has also already
been described in detail in [47], [48], and [50]. Our strategy,
introduced in [49], involves combining several viewpoints both

2http://www.aranzmedical.com
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Fig. 1. Complete wound assessment tool combining 3-D measurement and tissue classification capabilities.

to improve the classification process itself, as tissue aspect is
view-dependent, and also to compute real surfaces by mapping
the regions onto the 3-D model. In this paper, we demonstrate
that the integration of these two modules gives access to en-
hanced tissue classification and measurements, as several views
are combined to classify the tissues and the results mapped di-
rectly onto the mesh surface to obtain real tissue areas. Only a
brief presentation of the classification method and classifier de-
sign will be given here, to focus particularly on the merging of
single view classification results, called here multiview classifi-
cation.

The paper is organized as follows: Section II details the
wound image processing chain involved in our application,
in particular, color correction and image segmentation and
labeling by experts. Section III presents the selection of tissue
descriptors and the tissue classifier design and testing. Sec-
tion IV details our multiview strategy for enhanced classifica-
tion, in particular the mapping and merging of the classification
results on the 3-D model. Experimental results are presented in
Section V to address the repeatability and the robustness of the
multiview classification, as well as access to metric assessment
with the 3-D model. The last section presents our conclusions
and the main perspectives of this work.

II. WOUND IMAGE PROCESSING

A. Wound Database Building and Color Correcting

A database of several hundreds of color images (3 Mpixels,
24 bits) of chronic wounds was constituted with the help of
clinical staff in several hospitals, in order to obtain a repre-
sentative set of images for different tissue types as input for
the wound image processing chain (Fig. 1). A preliminary re-
quirement was to acquire good quality wound images covering
all types of pathologies. A variety of chronic wounds (sacrum
and heel bed sores, leg ulcers, diabetic feet, etc.) was collected
from different care services including gerontology, rehabilita-
tion, diabetology, and dermatology. Other types of wound im-
ages such as traumatic, postoperative images can be collected
from surgery services, but neither these particular types nor burn

scars where included in this study. The images were taken with
different digital cameras under uncontrolled lighting conditions,
following a specific protocol that included several viewing an-
gles for each single wound. Special attention was paid to color
constancy to enable reliable tissue classification. Practically, a
standard 24 patch Macbeth color checker pattern was introduced
in the field of view, providing also the scale factor in the different
images. It addressed two distinct tasks: firstly, obtaining a con-
stant response from the digital camera by identifying lighting
conditions and secondly, calibrating the digital camera color re-
sponse. After correction, colorimetric stability reaches the limit
of discernibility for a human observer, as was re-
duced to . This step is essential in a telecare environ-
ment involving several care centers where the practical condi-
tions differ widely.

B. Multiexpert Image Labeling

A selection of 50 typical wound images was extracted from
the database and submitted to a group of clinicians in order to
label them according to the classical color code using our graph-
ical interface. This interface enables the user to draw closed
boundaries using a pen tablet or a mouse and to fill in the area
with color labels. In this medical imaging application, it pro-
vides the input data for building the absolute medical reference
by merging expert data, as the clinician tracings are freeform.
Precautions were taken concerning the lighting conditions and
the color calibration of the graphical screens to ensure faithful
rendering during the labeling sessions. Patients corresponding
to the wounds had not been previously seen by the clinicians,
in order to eliminate any external influence. In any case, the
considerable distances between care centers prevent the clini-
cians from visiting all the patients, precluding any merging of
the deduced labels. Tissue labeling was carried out twice, one
month apart, by four clinicians, in order to measure the accuracy
during labeling. We used the normalized overlap score (OS),
classically used to compare a segmentation to a ground truth

by . It was averaged over all the tissue sam-
ples weighted by their corresponding areas. As it
can be expressed as a percentage. The OS obtained by the same
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TABLE I
INTRA-EXPERT OVERLAP SCORES

TABLE II
OVERLAP SCORES BETWEEN EXPERTS AND MEDICAL REFERENCE

clinician labeling, one month apart, are given in Table I. The
labels of the different clinicians were merged to obtain a single
reliable medical reference for evaluation of the algorithm. A ma-
jority vote criterion was applied to label each pixel and only the
pixels with a confidence level greater than or equal to 75% were
retained. The OS were then computed between the clinicians’
tracings and this medical reference (Table II).

The results obtained call for several comments. To begin with,
the differences in Table I may be explained by variable levels
with respect to both computer use and wound classification.
Another reason resides in variations of screen color rendering:
the screens had been calibrated but the ambient lighting con-
ditions and the tuning of screen brightness and contrast may
have changed between the two labeling sessions. The OS be-
tween clinicians and the reference remain moderate (55%–76%)
as the labels rely on the subjective diagnosis of the clinician,
who may not be familiar with wound assessment on a com-
puter, without direct patient examination. When the patients
have been seen by the clinicians, the inter-expert OS are im-
proved, as the clinicians can inspect the wounds from many
points of view and rely on their knowledge of the patients. Con-
sequently, image-based wound assessment should assist but not
replace the clinician in the decision process. To finish, the scores
obtained for the slough tissue class are the lowest, as this type
of tissue is often mixed with necrosis and because granulation
grows under slough areas; moreover, none of the clinicians pro-
duce exactly similar labels one month later (57%–78%). A very
practical issue of these inter- and intra-expert OS is to provide a
performance target to be reached by the automatic classification
process.

C. Automatic Wound Segmentation

As direct pixel classification proved to be inefficient, we
tested several advanced unsupervised segmentation algo-
rithms efficient on textured images, to provide an automatic
delineation of tissue samples and to simplify the following
classification step by extracting more robust and discriminating
local attributes on tissue areas: the color structure code (CSC)
[41], efficient graph-based image segmentation (EGBIS) [17],
mean shift [12], and J-SEG [15]. The best results were obtained
with J-SEG (average OS of 73.1%), by assigning to each
unlabeled region the class of tissue mainly represented in the

Fig. 2. Graphical interface for the expert manual labeling.

corresponding area of the medical reference and computing the
OS between the assigned labeling and the medical reference.
The high OS confirms that segmentation is a valuable prepro-
cessing step before classification for an automatic delineation
of tissue areas. The power of the J-SEG algorithm resides in the
separation of the segmentation process into two independent
processing stages: color quantization and spatial segmentation.
These two steps are controlled by free parameters which must
be precisely tuned to adjust the number of output regions:
subsegmentation leads to misclassification of regions which
include several classes of tissues, while over-segmentation
increases the subsequent processing time and results in clas-
sification errors on tiny regions where reliable and robust
descriptors cannot be obtained without statistical evidence.

As the OS between clinicians’ manual tracing and preseg-
mented regions are quite relevant, a second interface was de-
signed to allow clinicians to directly label presegmented regions
automatically (Fig. 2). This interface is far less demanding for
the experts as only simple mouse clicks on the regions are re-
quired. On the same basis as in Section II-B, a practical med-
ical reference was developed by merging the labeling results of
several experts. A total of 850 significant tissue regions was se-
lected among the 1200 samples extracted from the 50 typical
wound images previously submitted to the experts. The sam-
ples selected exhibit the usual types of tissues (48% granula-
tion, 38% slough, 14% necrosis, relative to the number of sam-
ples), with at least 75% agreement between the experts. We ob-
served that the OS performance in tissue labeling is improved
when using automatic wound presegmentation. This increase is
artificial, because the expert no longer controls the delineation
process (he has to label each region with a single label). One
important point is that the training of the classifier presented
below is improved when using a ground truth built on labeled re-
gions instead of tracings. The reason for this improvement may
be that in the first case, the classifier is trained on similar re-
gions (obtained with the same segmentation algorithm) during
the training and test steps.

III. TISSUE CLASSIFICATION FROM A SINGLE VIEW

A. Feature Vector Generation

We focused on the color and texture descriptors already ap-
plied in dermatological imaging systems, especially for wound
and ulcer tissues. Color is probably the most dominant image
cue as demonstrated by the red/yellow/black healing visual
assessment during clinical visits. The color descriptors we have
extracted are: the mean color descriptor (MCD), the locally
adapted dominant color descriptors (DCD) based on the mean
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TABLE III
COLOR AND TEXTURE DESCRIPTORS

Fig. 3. ROC curves obtained by four different kernels.

shift iterative color clustering algorithm [12], and 2-D and 3-D
color histograms [7], [25] [18] tested in different color spaces
and sizes. Texture is also a relevant cue for tissue description if
it is computed in a neighborhood properly scaled to the local
structure. While clinical investigations indicate that it is less
relevant than color, it nevertheless provides complementary
data. Several well-known texture descriptors from color com-
ponents (RGB) or gray level image (GL) were extracted from
the wound tissue regions. These descriptors are: Gabor based
features (GAB) calculated on five scales, local binary pattern
(LBP) histograms [25], Haralick gray level co-occurrence
matrix features (GLCM) [21], and the normalized texture
contrast and anisotropy (CA) (Table III). The computation
time stands for a 512 384 image processed by a PC Pentium
4 CPU 3.4 GHz. It may vary slightly, depending on the number
of regions and the actual size of the wound inside the image.
To provide more consistent evaluation and efficiency of the
image processing chain, the performance of these descriptors
was also evaluated directly at the output of the classifier (see
Section III-C).

B. SVM Classifier Design

Initially designed for binary classification after supervised
learning, support vector machines (SVMs) are also used for
multiclass problems through one against all and one against
one strategies [22]. Nonlinear class separation in low dimension
space may result in smart separation in higher dimension space,
using a suitable kernel function. The key point of the SVM clas-
sifier design remains the choice of the kernel function, as this de-
pends on the image database and input descriptors [11] since no

TABLE IV
PREDICTIVE POWER OF SEVERAL COLOR AND TEXTURE DESCRIPTORS

TABLE V
COMPARISON OF SEVERAL CLASSIFIER PERFORMANCES

universal kernel will fit all applications. The SVM classifier se-
lected here is a soft-margin algorithm (so-called C-SVM) avail-
able online. It has been tested by computing ROC curves for
several classical kernels: linear, polynomial, radial basic func-
tion (RBF) and perceptron (Fig. 3). After the selection of a par-
ticular kernel, its parameters must be tuned. In the case of the
perceptron kernel finally selected, there is only one free param-
eter; it controls the penalty of the classification error and has
been adjusted by a line search technique.

During the classifier learning stage, the subset of 850 signifi-
cant region samples labeled by the experts was divided equally
into training and test subsets, then several iterations were ap-
plied through a -fold cross validation with to randomly
select the training set before averaging the results. Each fea-
ture vector was tested with different settings of the classifier pa-
rameters during a backward and forward process. To evaluate
the quality of a diagnostic method, clinicians usually compute
predictive measures such as sensitivity (Se), specificity (Sp),
success rate (Sr), and overall accuracy (Oa), which are reli-
able performance estimators [1]. These estimators enabled us
to compare the discriminating power of the input descriptors
(Table IV).

The numerous tests involving several data sets show that the
best results are finally obtained by combining 22 attributes in-
cluding MCD-DCD as color descriptor and GLCM as texture
descriptor as input of the C-SVM classifier implemented with
a perceptron kernel (parameter ). To evaluate the per-
formance of the SVM approach more completely, we also com-
pared it to other strategies, with the same descriptors as input.
We selected other classical supervised methods, such as K-NN
and Fuzzy K-NN and -Means as an unsupervised one. As be-
fore, the same data set was randomly divided into learning and
test sets to program the classifier (Table V).

It can be seen that unsupervised learning is inefficient in clas-
sifying the tissue samples into three different classes, whereas
the supervised approach appears to be quite relevant for this kind

3http://www.csie.ntu.edu/ucjlin/libsvm
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TABLE VI
KAPPA COEFFICIENT FOR TISSUE SAMPLE CLASSIFICATION

TABLE VII
AVERAGED OVERLAP SCORES OF EXPERTS AND CLASSIFIER

IN (%) COMPARED TO THE MEDICAL REFERENCE

of problem and thanks to its generalization ability, the discrim-
inating power of SVM is unequalled.

C. Classifier Testing

To validate this classification tool applied to chronic wound
assessment, global statistical scores are not sufficient. To come
closer to clinical measurements, two series of tests are required.

In the first one, we examine separately the classifier perfor-
mance in relation to each class of tissue by counting well clas-
sified and misclassified regions. Ten iterations were again ap-
plied to randomly select the training set and the final results
were averaged. To evaluate the degree of agreement between
two judgments, the Kappa statistical coefficient is widely used
in the medical field, as it avoids nonsignificant high scores when
randomly voting [28]. This statistical indicator, varying between
0 and 1, can be calculated by where

is the relative observed agreement and the hypothetical
probability of chance agreement, using the observed data to cal-
culate the probabilities of each observer randomly voting for
each category.

The results of Table VI demonstrate the efficiency of the clas-
sifier against individual experts compared to the medical refer-
ence. Furthermore, it produces high scores on necrotic regions,
which are critical in medical decisions, as immediate and in-
vasive clinical treatment may be required if such regions are
detected. An average Kappa coefficient of 0.81 was obtained,
which is considered as quite good agreement.

In the previous tests, the classification performance was ex-
amined globally for each type of tissue by counting the number
of well classified regions. However, in clinical applications, the
misclassification of a small area does not have the same impact
as that of a large one. A second series of tests was therefore car-
ried out in which the quality of assessment is measured directly
on the same set of 50 typical wounds, with area weighted scores
(Table VII).

After averaging on the college of experts, it appears that the
classifier performs better than a single expert. This can be at-
tributed to the fact that the learning step relies on a reference
established from several experts, and is thus based on stronger
evidence. Fig. 4 shows the classification results obtained on
different wound images. Several features can be pointed out.
Firstly, the power of separation of tissue classes is constant over

Fig. 4. Three examples of automatic wound assessment compared to the med-
ical reference. (First column) Original image. (Second column) Automatic clas-
sification. (Third column) Medical reference.

various locations and pathologies (e.g., sacrum pressure sore,
leg ulcer, and ankle wound). Secondly, it is not affected by the
skin tones of the different patients or the lighting conditions en-
countered. Moreover, the classifier is not confused by reflections
on moist granulation regions.

However, these 2-D classification results obtained by single
view assessment suffer from a lack of repeatability between
the visits of patients. The reason for that is simple: during the
follow-up, pictures are taken free hand by the nurses and under
uncontrolled lighting. It has been established that a deviation
of 20 of the optical axis from the normal of the wound typi-
cally leads to an underestimation of surface of around 10% [38].
This is due to lighting variations which modify the colors and
perspective effects from distant viewpoints, inducing significant
bias in the classification results and preventing real surfaces
from being computed. In the following section we present our
approach to multiview classification. It takes advantage of the
geometric correspondence of the triangular zones of the wound
in two different views provided by the 3-D model, to achieve a
more robust tissue classification, referred to as multiview.

IV. MULTIVIEW CLASSIFICATION

Like the clinician, who draws on many observation points to
provide a reliable diagnosis, a multiview technique should allow
more robust results. We therefore propose to use the dimen-
sional information captured from a multiview model because
reliable wound assessment must provide reproducible results,
regardless of the position and orientation of the camera. Based
on the 3-D reconstruction of the wound model [45], the main
idea is to combine the color information of the regions, the cal-
culation of points of view and the relief in order to achieve a
more robust classification and also access to real surfaces.

A. Mapping of the Classification Results on the 3-D Wound
Model

Clinicians establish their diagnosis visually on the pho-
tographed wound, with the help of a red–yellow–black scale
placed in the camera field, corresponding to the three types
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Fig. 5. Influence of the point of view on the classification results. (First row)
Diabetic foot. (Second row) Leg ulcer. (Third row) Deep pressure sore. The 3-D
model (first column) is labeled with the classification results from the first view
(second column) or the second view (third column).

of tissue. However, this diagnosis is also based on their ob-
servations of the wound during examination of the patient.
The clinician’s assessment of tissues can thus be seen as a
combination of colorimetric information (image plane) with
shape information (through observation with the human eye).
To get closer to the process of patient examination, it was
therefore natural to take wound images from different points
of view. A selection of ten wounds imaged from at least three
different viewpoints was therefore made, in order to produce
several input data sets for the 3-D reconstruction process. A
3-D model was obtained from these images using uncalibrated
vision techniques completed by original refinements to obtain
semi-dense matching between widely separated views. Typi-
cally, 3000–4500 matches are obtained in 1024 768 image
pairs, making it possible to match homologous regions in each
view and to merge classification results [4].

We can illustrate the dependence of the classification assess-
ment on the point of view by a simple back projection on a 3-D
model computed from two views of a wound. To do this, the
classification result from each of the single views was mapped
onto the 3-D model separately in order to label the triangular
mesh. Each triangle is labeled according to its tissue highest
score and then the surface of each type of tissue can be com-
puted by summing the triangles belonging to the same class.
Fig. 5 shows the variation of the cartography mapping on a 3-D
ulcer model according to the classification results obtained with
the single view approach.

The 3-D model allows accurate comparison of single-view
classifications since the differences are expressed in cm and
not in pixels. Table VIII presents the area of tissue surfaces cal-
culated in cm in each view and the corresponding variations
expressed as a percentage of the total wound area, when map-
ping single view classification on the 3-D models presented in
Fig. 5.

The differences obtained reflect the effect of perspective pro-
jection in the image and the relief of skin ulcers. This experiment
confirms the limitations of the single-view approach for patient
follow-up and the advantage to take into account 3-D informa-
tion. Therefore, the results of tissue labeling coming from each

TABLE VIII
MAPPING OF SINGLE IMAGE CLASSIFICATIONS ON THE 3-D WOUND MODEL

image need to be merged on the wound 3-D model to achieve
accurate and robust assessment.

B. Merging Algorithm

Because of the epipolar geometry, the neighborhoods corre-
sponding to a single facet of the 3-D discrete model can be
linked in the images, making it possible to establish the link
between two single view tissue labels using the 3-D model of
the wound. In previous related work, the analysis was limited to
single-view (normal to the capping plane of the wound) since a
model of 3-D anatomical wounds was not available.

The classification results obtained for each of two images of
the wound, taken from different viewpoints, have to be merged
based on the 3-D model obtained from these two views. The
3-D model, composed of a mesh of triangular facets, is projected
onto the stereo pair to provide a 2-D Delaunay mesh of triangles
in each image. Due to the point correspondences between the
two images, each triangle in the left image has a homologous
one in the right image. As they cover the same portion of the
wound but do not belong necessarily to the same class (Fig. 6),
it is necessary to merge the results of tissue labeling coming
from each image.

The merging strategy we have experimented is summarized
by the following algorithm (Fig. 7). For each facet of the 3-D
model, the proportion of each type of tissue is calculated in each
of the homologous triangles, according to its red/yellow/black
color (standing for granulation/slough/necrosis tissue). In the
obvious case where the homologous triangles contain only one
type of tissue identically classified in both images, the facet of
the 3-D model is labeled according to this type. Otherwise, the
triangle is recursively split along the median line of its longest
side into two sub-triangles. This splitting process is stopped
when the area of the facet reaches a minimal value (cutting
threshold).

The 3-D points constituting the triangular mesh result from
a matching process between the points of interest detected in
the image and are not equally distributed on the wound surface
but are highly concentrated in textured regions and reciprocally
very sparse in homogeneous regions. Consequently, the typical
size of the triangles may differ across the model surface. At this
stage, if the splitting of the triangle does not provide homoge-
neous sub-triangles, three possibilities must be tested.



322 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 2, FEBRUARY 2011

Fig. 6. Projection of the 3-D mesh on the classification results of two views.
(a), (b) Projected model on the classification results of the two images. (c) Two
homologous selected zones, illustrating the correspondence between homolo-
gous triangles coming from the same facet of the model.

Fig. 7. Merging algorithm.

• The first is to apply the dominant class criterion and assign
this dominant class to the facet of the 3-D model, when it
is common to both homologous triangles.

• Otherwise, i.e., when the dominant classes are different in
the two images, we compute the two solid angles carried

by the facet and resulting from the optical center of the
camera in each view. If the difference between the two
angles is significant, this means that the facet is viewed
diagonally in one view and from a more frontal angle in
the other. In this case, the facet model is labeled entirely
by the class corresponding to the largest solid angle. This
argument is based on the fact that the classification process
is more efficient when the triangle is close and pointing to
the camera optical center.

• In the last case, when the difference between the solid an-
gles is not significant, a confidence level must be computed
to estimate in which image the classification is likely to
be the most reliable. It is based on the class probability
of belonging to a given class of the two regions containing
the homologous triangles within single-view classification.
The triangle is labeled with the label of the region classified
with the highest probability at the SVM classifier output.

C. Statistical Analysis of the Merging Process

When all the triangles have been scanned, the label resulting
from the fusion is mapped onto the 3-D mesh and the real tissue
surfaces are computed on it. Clearly, single-view classification
could not give access to the real surfaces, as only pixel counting
on areas projected in the image plane was possible.

Obviously, the fusion of single view classification results may
be applied to the wounds labeled by the experts. To do this, we
established for each pair of images a 3-D medical reference by
merging the two 2-D medical references coming from the left
and right images and mapping them onto the 3-D model. The
process of creating the latter relies on the same fusion strategy
presented in Fig. 7, but without taking into account the criterion
of class probability estimates since no classifier is used here. It
could be replaced by the level of confidence obtained from sev-
eral manual expert labelings. This 3-D medical reference is used
to evaluate the improvement due to the fusion of 2-D classifica-
tions.

To analyze the management of the triangle labeling process
through the fusion algorithm, we perform it on fifteen pairs of
wound images labeled by both manual labeling (expert) and au-
tomatic classification (classifier). The histogram in Fig. 8 shows
the total surfaces of the triangles and their number, labeled at
each step of the fusion algorithm applied on the 3-D models.

We can derive from this histogram that for more than half of
the model surface, the classification results are strongly depen-
dent on the viewpoint, as only 40% of the total surface was la-
beled with the same class in both views. Only a few triangles are
concerned by the splitting step; this is because of the semi-dense
3-D model in our matching process. However, about 20% of the
wound model area is labeled according to solid angle criteria.
Finally, for about 35% of the model surface, the two criteria of
dominant class and probability estimates need to be computed.
In this way, we highlighted qualitatively the dependence of the
single-view classification and the need to combine several views
to ensure successful classification. Note that for the manual la-
beling, the percentage of tissue surface labeled by the proba-
bility criterion is zero because neither the degree of confidence
of the expert labels nor the degree of expertise for each expert
were taken here into consideration.
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Fig. 8. Distribution of the labeling in the fusion algorithm.

Fig. 9. Stability of the process over five reconstructions of the same pair of
images. The multiview labeling (3-D) is mapped onto five 3-D models computed
successively from the same pair of images.

One important observation is the strong similarity between
the histograms corresponding to manual labeling and automatic
classification. It shows clearly that both the expert and the
algorithm produce view dependent results. In particular, the
common class category receives similar scores, with a slightly
higher one for the experts. This difference may be explained
by the fact that the expert knows that the different viewpoints
are concerned with the same wound and he tries naturally to
preserve as much as possible the spatial coherence between his
labelings.

V. EXPERIMENTAL RESULTS

A. Repeatability of the Classification

The manual selection of picture viewpoints and the random
nature of the 3-D reconstruction algorithm may impair the
repeatability of the classification results. Since the matching
strategy in the reconstruction stage is developed on the
semi-dense matching algorithm incorporating a RANSAC step,
we never obtain two strictly identical models in successive
executions of the algorithm [45]. For this reason, several ex-
periments were done to evaluate the repeatability and stability
of multiview classification results, in relation to viewpoint
changes and 3-D reconstruction differences. Practically, the
stability of the process was evaluated firstly on different 3-D
models calculated from the same pair but for several recon-
structions (Fig. 9).

Secondly, the repeatability of the classification was evaluated
on different pairs of images of the same wound. For each wound

Fig. 10. Repeatability of the classification over five reconstructions for two
pairs of images of a wound (leg ulcer).

Fig. 11. Repeatability of the classification over five reconstructions for two
pairs of images of a wound (ankle ulcer).

tested (Figs. 10–12), three images of the wound were taken
from different viewpoints (one frontal view and two side views),
constituting two stereo pairs. A 3-D wound model was recon-
structed using each stereo pair and the multiview classification
approach was applied on it. 3-D model reconstruction was then
executed five times on each stereo pair to provide ten models of
each wound onto which the tissue labels were mapped.

It appears that the classification results are quite stable even
with the slight changes in 3-D model geometry at each new
model reconstruction (Table IX). The influence of the 3-D re-
construction on the repeatability is greater than that of the view
selection but the latter is easily reduced by the simple averaging
of several executions of the reconstruction algorithm. In partic-
ular situations, this repeatability can be degraded: this is the case
when the images are captured along an orbital path because the
self-calibration algorithm becomes inefficient;this is again the
case in poor lighting conditions resulting in a sparse 3-D model
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Fig. 12. Repeatability of the classification over five reconstructions for two
pairs of images of a wound (heel pressure sore).

TABLE IX
REPEATABILITY OF THE CLASSIFICATION OVER FIVE RECONSTRUCTIONS

FOR TWO PAIRS OF IMAGES OF WOUND IMAGES

with shape distortions. Such situations are avoided by a strict
procedure during snap-shots, to be followed by the clinicians.

B. Robustness of the Classification

Considering the merging algorithm, it is common sense to
consider that combining classifications from several views
should improve the results, as it enriches the knowledge avail-
able in single-view. However, this needs to be tested on our
wound image database to assess quantitatively the real advances
in this medical application. To evaluate the improvement due
to the fusion of 2-D classifications, we have to compute the
overlap scores obtained for single-view (2-D) and multiview
(3-D) classifications. Finally, we compared the scores between
the 2-D medical reference and 2-D automatic classification on
the one hand, and the overlap scores between the 3-D medical
reference and 3-D classification results on the other hand
(Table X). Therefore, we also calculated the Kappa coefficient
in the 2-D approach (between classifier and 2-D medical ref-
erence) and the 3-D approach (between 3-D classification and
3-D medical reference) (Table X).

It can be seen that the agreement between medical reference
and automatic classification is globally improved after the

TABLE X
2-D/3-D OVERLAP SCORES AND KAPPA COEFFICIENTS AVERAGED

OVER THE WOUND DATABASE

Fig. 13. Robustness of multiview classification.

merging step. The improved performance of multiview classi-
fication is visible in Fig. 13 where some areas of the wound,
which were misclassified in one of the two views, are well
classified after the merging step.

These tests show that the merging of 2-D classifications en-
ables more accurate tissue classification.

C. Wound Metric Assessment

Several computations are possible on the labeled 3-D model
which is simply a mesh of elementary triangles.

Firstly, real tissue surfaces can be computed as the classifica-
tion results are mapped onto the mesh surface of the 3-D wound
model. This is a substantial improvement as 2-D assessment suf-
fers from severe perspective distortions, preventing the accurate
computation of tissue proportions.

Secondly, the multiview classification enables the wound
zone to be automatically isolated from the healthy skin, in
order to extract the 3-D wound model from the 3-D body model
captured (see (e) in Fig. 14). Formerly, it was impossible to
extract exactly the wound from the 3-D model because only
a geometrical model and not a labeled one was available. The
wound zone was roughly outlined using the mouse to specify
the region in which points of interest where to be detected as
input for the 3-D reconstruction process. Obviously, not many
of the points lay on the wound border, preventing an accurate
contouring. Now, we need only to consider the triangles labeled
as wound tissues and neighboring triangles labeled as healthy
skin tissues. Each common line of the triangles is included in
the wound outline. These lines constitute a closed boundary,
making it possible to compute the 3-D wound perimeter. Note
that in the case where a triangle edge crosses the wound border,
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Fig. 14. Computing of real measurements by multiview approach. (a), (b) Two
views of the same wound. (c) The 3-D model calculated from these views. (d)
Multiview classification result. (e) The detected zone of the wound isolated au-
tomatically from the healthy skin. (f) The inner volume of the wound determined
by closing the wound surface with a plane.

TABLE XI
COMPARISON OF SEVERAL WOUND INDICES WITHOUT AND

WITH WOUND BORDER DETECTION

the classification results will display healthy and injured tissues
and so the triangle will be split to fit to the wound border.

Finally, the inner volume of a wound, an interesting clinical
index for the assessment of the healing process, can also be com-
puted. It is extracted from the labeled 3-D model by closing the
wound surface with a reference plane. Of course, in the case
where the wound is placed on a curved part of the body, typically
on the heel, this plane should be replaced by a surface closer
to the anatomical shape. Formerly, the reference plane was esti-
mated from 3-D points detected in a strip of healthy skin around
the tracing [45] (see (d) in Fig. 14). This plane is now obtained
by a least square minimization on the real 3-D wound outline.
The triangulation-based volume calculation consists simply in
summing the elementary volumes under each prism formed by
facets and their orthogonal projections on the reference plane
(see (f) in Fig. 14). Another important clinical index is derived
by closing the wound volume, namely the maximum depth over
the wound.

We can see in Table XI for the example given in Fig. 14 that
the different wound measurements are significantly modified
when the exact wound border is considered. 3-D surface and
volumes are good indices for therapeutic follow-up and clearly,
tedious processes such as molding or serum injection will be ad-
vantageously avoided using 3-D wound imaging.

VI. CONCLUSION

Tissue classification is an essential part of wound assessment.
By combining color and texture descriptors as an input vector
of a SVM classifier, wound tissues have been classified from a
single view into granulation, slough, and necrotic tissues, com-
peting with experts who had not seen the patients. However,
a lack of repeatability is observed, due to the variations in the
lighting conditions and the camera pose from one visit to the
next. By combining 3-D wound surface measurements with
tissue classification in a single innovative and user-friendly tool,
enhanced wound healing assessment has been achieved and as
only a simple hand held digital camera is necessary, its wide-
spread use by clinical staff will be very easy. The power of this
strategy relies on the 3-D wound model onto which tissue labels
are mapped and classification results are merged. Experimental
tests demonstrate that enhanced repeatability and robustness
are obtained for tissue classification and that metric assessment
is achieved through real area measurements, wound outline
extraction and inner volume computation. In telemedicine
environments, such a standardized and reproducible assessment
of wounds using a digital camera is an essential requirement. A
stronger agreement with the medical reference is obtained by
multiview classification results compared to single-view results,
as observed on the overlap scores (73.8 against 69.9) and the
Kappa coefficients (0.79 against 0.77). Finally, as demonstrated
by the moderate inter-expert overlap scores, it should be noted
that images alone cannot provide a complete understanding of
wound healing and that the professional experience and patient
knowledge of the clinician will remain essential for therapeutic
decisions.

The extension of the current wound database is currently
under way for enhanced tissue characterization and clinical
staff education. In practical terms, a website is dedicated to
wound image uploading by clinical staff. We also intend to
improve these results by matching regions from more than
two views and by testing color descriptors that are invariant
to viewpoint and lighting conditions. As many wounds are
more complex and need further differentiation beyond the
red/yellow/black scale, we are now investigating multispectral
imaging capabilities.

The 3-D model could also help classification, as granulation
tissue is often bulb-shaped. Finally, the application of this com-
plete wound assessment tool is currently in progress through
clinical practise involving several care centers at the national
level.
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