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Effect of disorder close to the superfluid transition in a two-dimensional Bose gas
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We experimentally study the effect of disorder on trapped quasi two-dimensional (2D) 3"Rb
clouds in the vicinity of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. The disorder
correlation length is of the order of the Bose gas characteristic length scales (thermal de Broglie
wavelength, healing length) and disorder thus modifies the physics at a microscopic level. We analyze
the coherence properties of the cloud through measurements of the momentum distributions, for
two disorder strengths, as a function of its degeneracy. For moderate disorder, the emergence of
coherence remains steep but is shifted to a lower entropy. In contrast, for strong disorder, the growth
of coherence is hindered. Our study is an experimental realization of the dirty boson problem in a
well controlled atomic system suitable for quantitative analysis.

PACS numbers: 74.62.En, 05.60.Gg, 67.85.Jk, 05.10.Ln

Together with band structure and interactions, disor-
der is a key ingredient for the understanding of transport
in condensed matter physics [1]. At low temperature, it
affects the conductivity of a metal and it even induces
phase transitions to insulating states [2]. A striking ex-
ample is Anderson localization [3], which has recently
been observed in 3D ultracold gases [4].

Disorder is especially relevant in 2D systems, such as
Si-MOSFET [5], or thin metal films [6], in which quan-
tum phase transitions to insulating phases have been
observed. Moreover, in high-Tc superconductors, dop-
ing intrinsically introduces inhomogeneities in the CuO-
planes [7]. Understanding the complex interplay between
disorder and interactions in these systems remains a ma-
jor challenge.

Whereas the above mentioned electronic systems are
fermionic, superconductivity originates from the bosonic
nature of Cooper pairs. As long as disorder does not
break the Cooper pairs, the problem is reduced to a
study of dirty bosons [8, 9]. It has mainly been stud-
ied numerically in the framework of the disordered 2D
Bose-Hubbard model. Disorder can both favor or disfa-
vor superfluidity [10], and the occurrence of a Bose glass,
an insulating, gapless, compressible phase has been pre-
dicted [8].

In the context of ultra-cold atoms, the properties of
disordered trapped Bose gases have been studied both
in 1D [11-13] and 3D [14]. In 2D Bose gases in the
absence of disorder, the Berezinskii-Kosterlitz-Thouless
(BKT) superfluid phase transition [15] has been experi-
mentally studied through the modification of the gas co-
herence properties associated with the pairing of thermal
vortices [16, 17]. In a continuous system, the effect of
disorder on the BKT superfluid transition is expected to
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depend on the correlation length of the disorder o, which
has to be compared to the characteristic length scales of
the cloud such as the thermal de Broglie wavelength A\qp
and the healing length &, i.e. the vortex core size [18]. For
slowly varying disorder (o > &, Agg), the physics can be
locally described by the homogeneous BKT transition,
and disorder causes a percolation transition of superfluid
islands. In contrast, for a microscopically correlated dis-
order (o < &, A\g), tunneling is possible and the very
nature of the phase transition is affected.

A recent Monte-Carlo study of the homogeneous 3D
Bose gas in the presence of speckle disorder [18] has
shown that, depending on its correlation length o, the
disorder can either reduce the critical temperature (due
to quantum localization) or increase it because of the
reduction of the available volume (see Fig.14 in [18]).
However there have been so far no theoretical prediction
for the effect of disorder on the BKT superfluid tran-
sition in a continuous 2D system. As in 3D, Anderson
localization [3] and percolation phenomena are likely to
affect the superfluid transition, but reducing dimension-
ality should enhance their effects [18, 19]. In addition,
new phenomena affecting specifically the BKT transition
such as enhanced phase fluctuations or vortex pinning
[20] may play an important role.

In this letter, we present an experimental study of
the effect of microscopically correlated disorder on the
coherence properties of a 2D ultracold atomic gas near
the BKT superfluid transition. As in [21], the coherence
properties are probed by the study of the momentum dis-
tribution, which is the Fourier transform of the first order
correlation function g1 [22]. We observe that an adiabatic
ramping up of the disorder results in a suppression of the
low momentum peak, i.e. a decrease of coherence. In par-
ticular, for a moderate disorder strength of 0.4 times the
temperature, we measure a small shift of the emergence
of coherence towards low entropy. For stronger disorder



strength of the order of the temperature, the growth of
coherence is significantly hindered both as a function of
entropy and temperature.

Our experiment starts with a quantum degenerate 2D
Bose gas in a trap obtained from a combination of a blue
detuned TEMj; beam, which confines the gas in a hori-
zontal plane, and a red detuned Gaussian beam for the
in-plane confinement [21]. The trap oscillation frequen-
cies are w, /27 = 8 Hz, w, /27 = 15Hz, w, /27 = 1.5 kHz.
The atom number N is varied between 2 x 10* and
6 x 10* in order to change the degeneracy of the gas
across the BKT transition. The temperature, measured
from a fit to the wings of the momentum distribution us-
ing a Hartree-Fock mean-field model [21], remains con-
stant at 64.5+2.0 nK. At this temperature, ~ 70% of the
atoms are in the ground state of the vertical harmonic
oscillator. The dimensionless 2D interaction strength is
g = V8mas/a, = 0.096, where a; = 5.3nm is the 3D
scattering length, a, = \/h/mw. ~ 0.28 um the verti-
cal harmonic oscillator characteristic length, m the atom
mass, and & the reduced Planck constant.

The disorder potential is a speckle pattern produced
by a 532 nm laser beam, which passes through a diffusive
plate and is focused on the atoms. The repulsive disor-
der potential is characterized by its mean value V (equal
to its standard deviation) and its correlation lengths,
inversely proportional to the numerical aperture of the
optical system [23]. Given the intensity of the beam
and its transverse waist radius of 1 mm, the maximum
value of V felt by the atoms is Viax = kp X 60(10) nK.
As the beam is tilted by 30°, the in-plane disorder is
effectively anisotropic [24]. The correlation lengths of
the disorder are such that 0,/2 = o, = 0.5 um (half-
width at 1/4/e). These correlation lengths are of the or-
der of both the thermal de Broglie wavelength A\gp =
V2mh?/mkgT ~ 0.73 um and the healing length (at
the BKT transition) £ = A\p/vD.g =~ 0.82 um, where
D, ~10g(380.3/g) ~ 8.3 is the BKT critical phase space
density [25]. However, o, and o, are small compared to
sition [, = Ziﬁg)ﬁ;:%um, ly = (weg/wy)ly = 13 um, a
necessary condition for self-averaging measurements. In
our experiment, we use a single realization of the speckle
pattern.

In the experimental sequence, the disorder potential
is slowly ramped up in 250 ms after the preparation of
the 2D gas. After a holding time of 250 ms, all trapping
potentials including the disorder are switched off and the
atom cloud expands in 3D during a free fall of 83.5ms.
The column density of the gas along z is then measured
by fluorescence imaging from the top. As explained in
[21], it reflects the in-trap momentum distribution in the
z,y plane. Since, the momentum distributions appear
to be cylindrically symmetric, we perform an azimuthal
averaging [26] to obtain the momentum profiles n(k) as
a function of the wavenumber k.

We study the effect of disorder on the momentum dis-
tribution for different initial conditions, both above and
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FIG. 1. (Color online) Azimuthally averaged momentum dis-
tribution profiles for N = 5.6 x 10* (a), N = 3.8 x 10* (b)
and N = 2.9 x 10* (c). In each case, we show the influence of
the disorder: no disorder V = 0 (black triangles), 0.4 V max

(green open squares), Vmax (red circles).

below the BKT transition. A narrow momentum distri-
bution is the signature of a large coherence length in
the sample. We quantify the degeneracy of the non-
disordered gas with the ratio N/N., where N, is the
critical atom number of an ideal 3D Bose gas in our
anisotropic trap. From our previous study of the 2D
Bose gas in the absence of disorder [21], we know that
the BKT phase transition happens at N/N,. ~ 1.26 for
our parameters. In Fig.1, we compare the momentum
distribution without disorder to the results obtained af-
ter ramping up the disorder potential to V = 0.4V .y
and V = V pax. For N/N, = 1.06 (Fig. 1c) and in the ab-
sence of disorder, the gas is in the normal phase. In this
case, the addition of the disorder has little effect, reduc-
ing slightly the low momentum population (k < 2 um™1).
For N/N, = 1.32 (Fig. 1b), the gas has just entered the
superfluid phase in the absence of disorder and a low mo-
mentum peak is clearly present. In this case, the disorder
has a strong effect. The population at very low momen-



tum (k < 0.5 um™~1) is strongly suppressed and the low
momentum peak almost disappears. The profiles with
disorder are then qualitatively similar to the one in the
normal phase (Fig. 1c). For N/N, = 1.75 (Fig. 1la) and in
the absence of disorder, the gas is deep in the superfluid
phase with a large low momentum peak. In this case,
the addition of the disorder leads to a reduction of the
height of the peak but not to its disappearance. In all
our data, adding disorder always results in a reduction
of the coherence of the Bose gas.

It should be noted that applying slowly the disorder
preserves the entropy. When the disorder potential is
ramped up to a mean value Vmax in 250ms and then
down in 250 ms, we find no heating and no atom loss com-
pared to the non-disordered situation, within our exper-
imental precision (+1nK). This uncertainty comes from
both the shot-to-shot fluctuation of the experiment and
the accuracy of the fitting procedure. We thus observe
that adding the disorder is a reversible process. In the
following, we assume that consecutive pictures with and
without disorder correspond to the same entropy (Fig. 1).
Presenting our data as a function of entropy is then a
natural choice.

Even in the absence of disorder, we however do not
have experimental access to the entropy. To find the cor-
respondence between the ratio N/N,, extracted from our
measurements and entropy, we rely on quantum Monte-
Carlo simulations of the non-disordered in-situ distri-
bution [27], from which the entropy can be determined
because of the scale invariance of the 2D Bose gas [28].
The calibration of the average entropy per particle S as
a function of N/N. for our experimental conditions is
shown in the inset of Fig. 2.

In order to analyze our result in a simple way, we would
like to characterize the degree of coherence of the gas with
a single number and not with the full momentum distri-
bution. A natural quantity to consider is the coherence
length, i.e. the inverse of the width of the momentum
distribution. However, in our case, the width of the mo-
mentum distribution saturates because of the limited res-
olution of our imaging system for highly coherent clouds
[21]. As an alternative, we choose to focus our analysis
on the fraction of atoms Ny /N in the central pixel of the
momentum distribution (k < 0.2 um™1). It is also a well-
defined model-independent quantity and it is related to
the fraction of atoms that are coherent on a length scale
larger than ~5pum [29]. We plot Ny/N as a function of
the entropy per particle S (Fig.2) and find that, at fixed
entropy, the coherence of the gas is reduced in the pres-
ence of disorder. For V = 0.4V ., the emergence of
coherence is slightly shifted to a lower entropy per par-
ticle, by 0.2(1) kg, compared to the non-disordered case.
For V = V hax, we never reach a sufficiently low entropy
to observe a large increase of coherence.

Since the phase diagram of disordered systems is typi-
cally presented as a function of disorder and temperature
[30], we now complement our analysis of the coherence
as a function of these quantities. This means that we
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FIG. 2. (Color online) Fraction of atoms Ny/N in the central
pixel of the momentum distribution as a function of the aver-
age entropy per particle S: non-disordered case V = 0 (black
triangles), V = 0.4V max (green open squares), V = Viax
(red circles). Each point results from the averaging of 5 ex-
perimental profiles and the error bars are statistical. The line
corresponds to a Monte-Carlo simulation in the absence of dis-
order [21]. Inset: entropy per particle measured by quantum
Monte-Carlo simulations at 64.5nK (blue cross) and fitted by
a 3" order polynomial (black line). The dashed lines indicate
the BKT transition.

have to determine the temperature from the experimen-
tal disordered profiles. In the absence of an exact the-
oretical model for 2D disordered gases, we use our non-
disordered Hartree-Fock mean-field model [21], which we
expect to be valid at large momenta. Experimentally,
we fit to the wings of the distribution between a variable
cut-off momentum k. and 12um~!. We find that, for
2.75 pm~! < k. < 3.75 um™!, our signal to noise ratio
is sufficient and the fitted temperature varies typically
less than 1nK, indicating that our model is reasonably
accurate in this range. We use k. = 3.5um~! in the
following analysis. For V = Viax the temperature is
found to increase on average by 5.5 nK compared to the
non-disordered case (T = 64.5nK).

Figure 3 presents No/N as a function of the temper-
ature normalized to T, the critical temperature for an
ideal 3D Bose gas in our anisotropic trap and the mea-
sured atom number. The results without disorder and
with a disorder of amplitude 0.4 V. are similar and no
clear shift is visible. Within our accuracy, we can con-
clude that for this amount of disorder the coherence prop-
erties are weakly affected. Note that the classical perco-
lation threshold ~ 0.52 V =~ 13 nK [31] is larger than the
mean-field chemical potential at the phase transition in
the absence of disorder u. = §7”‘L2Dc/m)\d]32 ~ kg x 8nkK.
The observation of a weak effect of disorder is a signature
that classical percolation is not relevant in the regime of
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FIG. 3. (Color online) Fraction of atoms Ny/N in the central
pixel of the momentum distribution as a function of the nor-
malized estimated temperature for disorder strengths, V =0
(black triangles), V' = 0.4Vmax (green open squares), and
V = Vmax(red circles). T. is the critical temperature of an
ideal 3D Bose gas in our anisotropic trap. Each point results
from the averaging of 5 experimental profiles and the error
bars are statistical. The line corresponds to a Monte-Carlo

simulation in the absence of disorder [21].

a microscopically correlated disorder (o ~ &, AaB).

For V' = V hax, the coherence increases much slower
when T'/T,. decreases. The coherence properties of the
gas are greatly modified. This finding contrasts with the
3D quantum Monte-Carlo calculation, which predicts a
significant effect of the disorder only at larger disorder
strength [18]. We thus show the enhanced role of dis-
order in 2D as compared to 3D. At our lowest temper-
atures, No/N does not reach the value of 0.0035 which
corresponds to the superfluid transition in the absence

of disorder [21]. Although we do not directly measure
the superfluid fraction [17], since the superfluid transi-
tion is generally associated with the apparition of long
range coherence, we can suspect that our system is not
in a superfluid phase and that the critical temperature
for superfluidity is shifted down by a significant amount.
Actually, for our amount of disorder [32], the existence of
a superfluid is not guaranteed even at zero temperature
because of the disorder-driven quantum phase transition
from a superfluid to an insulating Bose glass phase [30].

In conclusion, we have shown that a microscopically
correlated disorder (o ~ &, Aqp) always reduces the co-
herence of a 2D Bose gas, both at constant temperature
and entropy. For moderate disorder strength of 0.47,
the reduction is weak although we are able to measure
a small shift of the emergence of coherence toward low
entropy. A disorder strength of the order of gas temper-
ature leads to a qualitative change of behavior with a
suppressed coherence growth. We interpret the observed
strong suppression of the coherence growth as a large
shift of the superfluid transition. Theoretical studies in
our experimental conditions would be of great interest
and would permit to strengthen our analysis. The mech-
anism of the disorder action can also be addressed both
experimentally and theoretically. In the future, similar
studies on strongly interacting fermions would add the
possibility to elucidate the physics of disorder-induced
breaking of bosonic pair.
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N.B.: In the last stage of the redaction of our paper,
we have learned about a complementary work about dis-
ordered 2D Bose gases in the deep superfluid regime [33].
It is focused on the different behaviors between quasi-
condensate fraction and coherence.
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