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We experimentally study the effect of disorder on trapped quasi two-dimensional (2D) ®"Rb
clouds in the vicinity of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. The disorder
correlation length is of the order of the Bose gas characteristic length scales (thermal de Broglie
wavelength, healing length) and disorder thus modifies the physics at a microscopic level. We
analyze the coherence properties of the cloud through measurements of the momentum distributions,
for two disorder strengths, as a function of its degeneracy. For moderate disorder the emergence of
coherence remains steep but is shifted to a lower entropy. In contrast, for strong disorder, the growth
of coherence is hindered. Such studies of dirty atomic Bose gases are relevant to the understanding
of superfluid-insulator transitions occurring in several condensed matter systems.

PACS numbers: 74.62.En, 05.60.Gg, 67.85.Jk, 05.10.Ln

Together with band structure and interactions, disor-
der is a key ingredient for the understanding of transport
in condensed matter physics [1]. At low temperature, it
affects the conductivity of a metal and it even induces
phase transitions to insulating states [2]. A striking ex-
ample is Anderson localization [3], which has recently
been observed in 3D ultracold gases [4].

Disorder is especially relevant in 2D systems, such as
Si-MOSFET [5], or thin metal-alloy films [6], in which
quantum phase transitions to insulating phases have been
observed. Moreover, in high-Tc superconductors, dop-
ing intrinsically introduces inhomogeneities in the CuO-
planes [7]. Understanding the complex interplay between
disorder and interactions in these systems remains a ma-
jor challenge.

Whereas the above mentioned electronic systems are
fermionic, superconductivity originates from the bosonic
nature of Cooper pairs. As long as disorder does not
break the Cooper pairs, the problem is reduced to a study
of dirty bosons [8, 9]. It has mainly been studied nu-
merically in the framework of the disordered 2D Bose-
Hubbard model. Disorder may either favor or disfavor
superfluidity [10], and the occurrence of a Bose glass, an
isolating, gapless, compressible phase has been predicted
[8]-

In the context of ultra-cold atoms, the properties of
disordered trapped Bose gases have been studied both in
1D [11-13] and 3D [14]. In 2D Bose gases, disorder will
affect the physics of the Berezinskii-Kosterlitz-Thouless
(BKT) superfluid phase transition [15, 16], which is asso-
ciated with the pairing of thermal vortices. In a contin-
uous system, the effect of disorder is expected to depend
on the correlation length of the disorder o, which has
to be compared to the characteristic length scales of the
cloud such as the thermal de Broglie wavelength Aqp and

the healing length &, i.e. the vortex core size [17]. For
slowly varying disorder (o > &, Agg), the physics can be
locally described by the homogeneous BKT transition,
and disorder causes a percolation transition of superfluid
islands. In contrast, for a microscopically correlated dis-
order (o < &, A\gB), the very nature of the phase tran-
sition may be affected by strong enough disorder, and
the interplay between BKT physics and disorder is more
involved.

In this letter, we present an experimental study of the
effect of microscopically correlated disorder on the co-
herence properties of a 2D ultracold atomic gas near the
BKT superfluid transition. As in [18], the coherence
properties are probed by the study of the momentum
distribution, which is the Fourier transform of the first
order correlation function g; [19]. We observe that ramp-
ing up the disorder is an adiabatic process and results in
a suppression of the low momentum peak, i.e. a decrease
of coherence. In particular, for a moderate disorder, we
measure a shift of the emergence of coherence towards low
entropy. For strong disorder, the growth of coherence is
hindered both as a function of entropy and temperature.
This behavior is compatible with the existence of a Bose
glass phase with only short-range coherence.

We prepare a 2D Bose gas as in [18]. More precisely,
2D trapping is obtained by a combination of a blue de-
tuned TEMg; beam, which confines the gas in an hori-
zontal plane, and a red detuned Gaussian beam for the
in-plane confinement. The trap oscillation frequencies
are wy /2m = 8Hz, w, /27 = 15Hz, w, /2m = 1.5kHz. The
atom number N is varied between 2 x 10* and 6 x 10%
in order to change the degeneracy of the gas across the
BKT transition. The temperature, measured from a fit
to the wings of the momentum distribution [18], remains
constant at 64.5+2.0nK. At this temperature, ~ 70% of



the atoms are in the ground state of the vertical harmonic
oscillator. The dimensionless 2D interaction strength is
g = V/8mas/a, = 0.096, where a; = 5.3nm is the 3D
scattering length, a, = y/h/mw, the vertical harmonic
oscillator characteristic length, m the atom mass, and &
the reduced Planck constant.

The disorder potential is a speckle pattern produced
by a 532 nm laser beam, which passes through a diffusive
plate and is focused on the atoms. The repulsive disor-
der potential is characterized by its mean value V (equal
to its standard deviation) and its correlation lengths,
inversely proportional to the numerical aperture of the
optical system [20]. Given the intensity of the beam
and its transverse waist radius of 1 mm, the maximum
value of V felt by the atoms is V. = kp x 60(10) nK.
As the beam is tilted by 30°, the in-plane disorder is
effectively anisotropic [21]. The correlation lengths of
the disorder are such that 0,/2 = o, = 0.5 um (half-
width at 1/4/e). These correlation lengths are of the or-
der of both the thermal de Broglie wavelength \gp =
V2mh?/mkgT ~ 0.73 um and the healing length (at
the BKT transition) £ = A\p/vD.g =~ 0.82 um, where
D, ~10g(380.3/g) ~ 8.3 is the BKT critical phase space
density [22]. However, o, and o, are small compared to
the Thomas-Fermi radii of the cloud at the BKT tran-
sition [, = %ﬁz%um, ly = (wg/wy)ly = 13 um, a
necessary condition for self-averaging measurements. In
our experiment, we use a single realization of the speckle
pattern.

In the experimental sequence, the disorder potential is
slowly ramped in 250 ms after the preparation of the 2D
gas. Finally, after a holding time of 250 ms, all trapping
potentials are switched off and the atom cloud expands
in 3D during a free fall of 83.5 ms. The column density of
the gas along z is then measured by fluorescence imag-
ing from the top. As explained in [18], the measured
spatial distribution in the z,y plane reflects the in-trap
momentum distribution. Since, the momentum distribu-
tions appear to be cylindrically symmetric, we perform
an azimuthal averaging [23] to obtain the momentum pro-
files n(k) as a function of the wavenumber k.

We study the effect of disorder on the momentum dis-
tribution for different initial conditions, both above and
below the BKT transition. As in [18], we quantify the de-
generacy of the non-disordered gas with the ratio N/N,,
where N, is the critical atom number of an ideal Bose
gas in our trap. The BKT phase transition happens at
N/N. ~ 1.26 for our parameters. In Fig.1, we compare
the momentum distribution without disorder to the re-
sults obtained after ramping up the disorder potential to
V = Viax/2 and V = V. For N/N,. = 1.06 (Fig. 1c),
the non-disordered gas is in the normal phase. In this
case, the addition of the disorder has little effect, reduc-
ing slightly the low momentum population (k < 2 um~1).
For N/N, = 1.32 (Fig. 1b), the gas has just entered the
superfluid phase in the absence of disorder and a low mo-
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FIG. 1. Azimuthally averaged momentum distribution pro-
files for N = 5.6x10* (a), N = 3.8x10* (b) and N = 2.9x 10*
(c). In each case, we show the influence of the disorder:

No disorder V' = 0 (Black triangles), Vmax/2 (green open

squares), Vmax (red circles).

mentum peak is clearly present. In this case, the disorder
has a strong effect. The population at very low momen-
tum (k < 0.5um™1) is strongly suppressed and the low
momentum peak almost disappears. The profiles with
disorder are then qualitatively similar to the one in the
normal phase (Fig.1c). For N/N. = 1.75 (Fig. 1a), the
non-disordered gas is deep in the superfluid phase with
a large low momentum peak. In this case, the addition
of the disorder, leads to a reduction of the height of the
peak but not to its disappearance. In all our data, adding
disorder always results in a reduction of the coherence of
the Bose gas.

It should be noted that switching on the disorder
preserves the entropy. When the disorder potential is
ramped up to a mean value Vmax in 250ms and then
down in 250ms, we find no heating compared to the
non-disordered situation within our experimental preci-
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FIG. 2. Fraction of atoms No/N in the central pixel of the
momentum distribution as a function of the average entropy
per particle S: Non-disordered case V' = 0 (black triangles),
V = Vmax/2 (green open squares), V = Vimax (red circles).
Each point results from the averaging of 5 experimental pro-
files and the error bars are statistical. Lines are guides to
the eyes. Inset: Entropy per particle measured by quantum
Monte-Carlo simulations at 64.5nK (blue cross) and fitted by
a 3" order polynomial (black line). The dashed lines indicate
the BKT transition.

sion (£1nK). We observe that the process is reversible.
In the following, we thus assume that consecutive pic-
tures with and without disorder correspond to the same
entropy (Fig. 1).

Nevertheless, even in the absence of disorder, we do not
have experimental access to the entropy. For finding the
correspondence between entropy and N/N,., we rely on
quantum Monte-Carlo simulations of the non-disordered
in-situ distribution [24], from which the entropy can be
determined because of the scale invariance of the 2D Bose
gas [25]. The calibration of the average entropy per par-
ticle S as a function of N/N,. for our experimental con-
ditions is shown in the inset of Fig. 2.

We now focus our analysis on the fraction of atoms
No/N in the central pixel of the momentum distribution
(k < 0.2pum™1). This quantity is related to the fraction
of atoms that are coherent on a length scale larger than
~5 um [18]. We plot Ny/N as a function of the entropy
per particle S (Fig.2). We find that, at fixed entropy,
the coherence of the gas is reduced in the presence of
disorder. For V = V pax /2, the emergence of coherence
happens at a lower entropy per particle compared to the
non-disordered case (shift of ~0.2xkg). For V = V yax,
we never reach a sufficiently low entropy to observe a
large increase of coherence.

In order to connect to theoretical studies of the dirty
boson problem, we analyze the effect of disorder at con-
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FIG. 3. Fraction of atoms Ny/N in the central pixel of the
momentum distribution as a function of the normalized esti-

mated temperature (see text) for disorder strengths, V = 0
(black triangles), V = Vmmax/2 (green open squares), and
V = Vimax (red circles). Each point results from the averaging
of 5 experimental profiles and the error bars are statistical.
Lines are guides to the eyes.

stant temperature rather than at constant entropy. This
means that we have to determine the temperature from
the experimental disordered profiles. In the absence of
exact theoretical predictions for a 2D disordered gas, we
assume that our non-disordered Hartree-Fock mean-field
model [18] gives a reliable estimation of the temperature
at large momenta even in the disordered case. We choose
to fit the wings of the distribution for k > 3.5um~! in
order to keep a sufficiently high signal to noise ratio. Ex-
perimentally, we find that for V' = V.. the temper-
ature increases on average by 5.5nK compared to the
non-disordered case (T = 64.5nK).

Figure 3 presents Ny/N as a function of the tempera-
ture normalized to T, the critical temperature for a non-
interacting Bose gas for our trap parameters and the mea-
sured atom number. The results without disorder and
with a disorder of amplitude V ,.,/2 are qualitatively
similar and shifted by less than 1 nK. Such a small shift
may correspond to a systematic error in our temperature
determination with disorder. Within our accuracy, we
can however conclude that for this amount of disorder the
coherence properties are weakly affected. This is surpris-
ing, since V nax/2 ~ 300K is quite large compared to the
mean-field chemical potential at the phase transition in
the absence of disorder ., = gh?D./mAap> ~ kg x 8 nK.
The coherence of the gas thus appears robust to such a
disorder.

However, for V= Vmax, the coherence increases much
slower when T decreases. At our lowest temperatures,
No/N does not reach the value of 0.0035 which corre-



sponds to the superfluid transition in the absence of dis-
order [18]. In this case, although we do not measure the
superfluid fraction, we can suspect that the system is
not in a superfluid phase. Our findings are in qualitative
agreement with the system being in a Bose glass phase
with short-range coherence [8]. Actually, for such a high
amount of disorder, the existence of a superfluid is not
necessarily expected even at zero temperature because of
a disorder-driven superfluid to insulator quantum phase
transition [26].

In conclusion, we have experimentally studied the ef-
fect of a correlated disorder on the coherence properties
of a 2D trapped Bose gas. We observe that, at fixed
entropy, disorder always reduces the coherence of the
gas. For moderate disorder, we quantitatively measure a
shift of the emergence of coherence towards low entropy.
Next, we have analyzed our results at fixed temperature,
which has to be measured in the absence of an accurate
disordered gas theory. We find that moderate disorder
weakly modifies the coherence properties, whereas disor-
der above a certain threshold suppresses the coherence
growth. Whether our observed suppression of coherence
is related to a shift of the superfluid transition and/or to
the physics of the disorder-induced quantum phase tran-
sition remains to be elucidated. A complete mapping of
the phase diagram of the dirty Bose gas is accessible to
future ultracold atom experiments. The mechanism of
the disorder action may also be addressed, e.g. the pin-
ning of thermally excited vortices [27]. Further, similar
studies on strongly interacting fermions add the possibil-
ity to elucidate the physics of disorder-induced breaking
of bosonic pair.
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N.B.: In the last stage of the redaction of our paper,
we have learned about a related work focussing on the
effect of disorder on the coherence of a 2D gas in the
deep superfluid regime [28].
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