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Estimating an endpoint with high order momentsin the Weibull domain of attractionStéphane Girard(1), Armelle Guillou(2) & Gilles Stup�er(2)
(1) Team Mistis, INRIA Rhône-Alpes & LJK, Inovallée, 655, av. de l'Europe,Montbonnot, 38334 Saint-Ismier cedex, France

(2) Université de Strasbourg & CNRS, IRMA, UMR 7501, 7 rue René Descartes,67084 Strasbourg cedex, FranceAbstract. We present a method for estimating the endpoint of a unidimensional sample whenthe distribution function belongs to the Weibull-max domain of attraction. The approach relies ontransforming the variable of interest and then using high order moments of the positive variable ob-tained this way. It is assumed that the order of the moments goes to in�nity. We give conditions onthe rate of divergence to get the weak and strong consistency as well as the asymptotic normality ofthe estimator. The good performance of the estimator is illustrated on some �nite sample situations.AMS Subject Classi�cations: 62G32, 62G05.Keywords: Endpoint estimation, high order moments, consistency, asymptotic normality.1 IntroductionLet (X1, . . . , Xn) be independent copies of a random variable X , where the distribution of X hasa �nite right endpoint θ, with θ being unknown. We are interested in estimating θ. Recent workon endpoint estimation includes a Bayesian likelihood approach (Hall and Wang, 2005), censoredlikelihood estimators (Li et al., 2011a) and the empirical likelihood method (Li et al., 2011b). InGirard et al. (2011), a new estimator of θ, based upon the use of high order moments of the Xk, isintroduced. From a practical point of view, taking high order moments gives (exponentially) moreweight to the Xk close to θ. A thorough study of the estimator is carried out when X is a positiverandom variable and its distribution function belongs to the Weibull max-domain of attraction. Inthis paper, we address the problem of estimating the endpoint θ with high order moments whenthe positivity assumption on X is dropped. We cannot use moments of the variable of interest X ,since |X | could have an in�nite mean. To overcome this problem, it can be noted that the random1



variable eX has a bounded support [
0, eθ

]. Moreover, letting µpn
:= E

(
epnX

), pn → ∞ be the
pnth order moment of eX , yields, for all u ≥ 1, µpn

/µpn+u → e−uθ as n → ∞ (see Lemma 1 in theAppendix). For all a > 0, it follows that
Θn :=

1

a

{
ln

[
µpn

µpn+1

]
− ln

[
µ(a+1)pn

µ(a+1)pn+a+1

]}
= θ(1 + o(1)). (1)We therefore introduce an estimator using high order moments of the variable eX . Replacing thetrue moment µpn

with its empirical counterpart µ̂pn
in the expression of Θn yields

θ̂n :=
1

a

{
ln

[
µ̂pn

µ̂pn+1

]
− ln

[
µ̂(a+1)pn

µ̂(a+1)pn+a+1

]}where (pn) is a positive, nonrandom sequence such that pn → ∞, a > 0 and
µ̂pn

:=
1

n

n∑

i=1

epnXiis the classical moment estimator of µpn
. It is shown in Section 2 that θ̂n is consistent withoutany parametric assumption on the distribution of X . Moreover, we state and prove that θ̂n isasymptotically Gaussian when the distribution function of X belongs to the Weibull max-domain ofattraction. Some simulations are proposed in Section 3 to illustrate the e�ciency of our estimator,and to compare it with estimators of the endpoint estimation literature. Auxiliary results arepostponed to the Appendix.2 Main resultsLet us �rst state the consistency of the estimator. The only assumption is

(A0) X has a �nite right endpoint θ.Theorem 1. If (A0) holds and nµ(a+1)pn
/e(a+1)pnθ → ∞ as n → ∞, then θ̂n

P−→ θ as n → ∞.Proof. We �rst show that, provided nµpn
/epnθ → ∞, the high order moment µpn

can be replacedby its empirical counterpart µ̂pn
in (1). For all ε > 0, Chebyshev's inequality leads to

P

(∣∣∣∣
µ̂pn

µpn

− 1

∣∣∣∣ > ε

)
≤ 1

ε2
Var (µ̂pn

)

µ2
pn

≤ 1

nε2
µ2pn

µ2
pn

,where
µ2pn

µpn

= epnθ
µ2pn

/e2pnθ

µpn
/epnθ

≤ epnθ (2)and therefore
P

(∣∣∣∣
µ̂pn

µpn

− 1

∣∣∣∣ > ε

)
≤ 1

ε2
epnθ

nµpn

→ 0as n → ∞. As a consequence, µ̂pn
/µpn

P−→ 1 as n → ∞.Since µ(a+1)pn
/e(a+1)pnθ ≤ µpn

/epnθ, it follows that nµpn
/epnθ → ∞. Lemma 1 thus yields

nµpn+1/e
(pn+1)θ → ∞ and nµ(a+1)pn+a+1/e

((a+1)pn+a+1)θ → ∞ as n → ∞. Consequently,from (1), θ̂n = Θn + oP(1). Lemma 1 then entails θ̂n P−→ θ.2



Under a somewhat stronger condition of the rate of divergence of (pn), a strong consistency resultcan be established for θ̂n:Theorem 2. If (A0) holds and 1

lnn

nµ(a+1)pn

e(a+1)pnθ
→ ∞ as n → ∞, then θ̂n

a.s.−→ θ as n → ∞.Proof. The result being obvious when P(X = θ) = 1, let us assume that P(X = θ) < 1. We startby showing that
1

lnn

nµpn

epnθ
→ ∞ ⇒ µ̂pn

µpn

a.s.−→ 1 as n → ∞. (3)To this end, let Yi = eXi−θ. Then |Y pn

i − E(Y pn

i )| ≤ 1 a.s. and
µ̂pn

− µpn

epnθ
=

1

n

n∑

i=1

{
Y pn

i − E(Y pn

i )
}is a mean of bounded, centered, independent and identically distributed random variables. De�ning

τn := ε
n µpn

epnθ
and λn := ε

µpn

epnθ

1

Var(Zpn

1 )
= ε

µpn

epnθ

e2pnθ

µ2pn
− µ2

pn

,Bernstein's inequality (see Hoe�ding, 1963) gives, for all ε > 0,
P

(∣∣∣∣
µ̂pn

µpn

− 1

∣∣∣∣ > ε

)
= P

(∣∣∣∣
µ̂pn

− µpn

epnθ

∣∣∣∣ > ε
µpn

epnθ

)
≤ exp

(
− τnλn

2(1 + λn/3)

)
.Note that since eX−θ ∈ [0, 1] a.s., we have µpn

/epnθ → P(X = θ) as n → ∞. Then, from (2),
1

λn
≤ 1

ε

[
1− µpn

epnθ

]
→ 1− P(X = θ)

ε
> 0as n → ∞, and therefore, for su�ciently large n, there exists a constant Cε > 0 such that

P

(∣∣∣∣
µ̂pn

µpn

− 1

∣∣∣∣ > ε

)
≤ exp

(
−Cε

nµpn

epnθ

)
.Borel-Cantelli's lemma thus yields µ̂pn

/µpn

a.s.−→ 1 as n → ∞. Using once again the inequality
µ(a+1)pn

/e(a+1)pnθ ≤ µpn
/epnθ, Lemma 1 and (3), the result is now straightforward.Let us now establish the asymptotic distribution of our estimator. To this end, additional assump-tions are introduced on the survival function F = 1− F of X :

(A1) ∀x < θ, F (x) = (θ − x)α L((θ − x)−1) where θ ∈ R, α > 0 and L is a slowly varyingfunction at in�nity, i.e. such that L(ty)/L(y) → 1 as y → ∞ for all t > 0.
(A2) ∀x ≥ 0, L(x) = c exp

(∫ x

1
η(t) t−1 dt

), where c > 0 and η is a bounded function tendingto 0 at in�nity, continuously di�erentiable on (0, ∞), ultimately monotonic and non identically 0,such that |η′| is regularly varying and there exists ν ≤ 0 with x η′(x)/η(x) → ν as x → ∞.It is well-known that (A1) holds if and only if F belongs to the Weibull max-domain of attraction,see Fisher and Tippett (1928) and Gnedenko (1943). (A2) is the Karamata representation for thenormalized slowly varying function L, see Bingham et al. (1987), p. 15. Under (A2), the function
|η| is ultimately non-increasing and regularly varying at in�nity with index ν, see Bingham et al.3



(1987), paragraph 1.4.2, and the function x 7→ x |η′(x)| is regularly varying with index ν. In theextreme-value framework, ν is referred to as the second order parameter and (A2) is a second ordercondition.We can now state the asymptotic normality of θ̂n:Theorem 3. Assume (A1) and (A2) hold. If n p−α
n L(pn) → ∞ and n p−α

n L(pn) η
2(pn) → 0, then

vn

(
θ̂n − θ

)
d−→ N (0, V (α, a)) as n → ∞,with vn =

√
nL(pn) p

−α/2+1
n and

V (α, a) =
α+ 1

a2 Γ(α)

[
2−α−2 − 2

(a+ 1)α+1

(a+ 2)α+2
+ 2−α−2(a+ 1)α

]
.Proof. Let us remark that vn

(
θ̂n − θ

)
= vn

(
θ̂n −Θn

)
+ vn (Θn − θ) and focus on the randomterm. Our goal is to establish that vn (θ̂n −Θn

)
d−→ N (0, V (α, a)) as n → ∞. To this end, usingthe delta-method, it is enough to prove that the sequence of random variables

ξn :=
e−aθ

a
√
V (α, a)

vn

(
eaθ̂n − eaΘn

)converges in distribution to a standard Gaussian random variable. Notice that the change of variable
z = (θ − x)−1 yields

µp = p

∫ θ

−∞

epx F (x) dx = p−α epθ L(p) [Γ(α+ 1) + I1 ε1(p) + I2 ε2(p)] (4)where I1 =

∫ ∞

1

zα e−z dz, I2 =

∫ 1

0

zα e−z dz and
ε1(p) =

1

I1

∫ 1

0

e−1/z z−α−3 L1(pz)

L1(p)
dz − 1, L1(z) = z L(z),

ε2(p) =
1

I2

∫ ∞

1

e−1/z z−α−1 L2(pz)

L2(p)
dz − 1, L2(z) =

L(z)

z
.Using (4) together with Lemma 2i) entails

ξn = e−(a+1)θ µpn+1 un, a

(
∆(1)

n +∆(2)
n

)
(1 + o(1)) (5)with

un, a =
1

aΓ(α+ 1)

√
1

V (α, a)

pαn vn
epnθ L(pn)

,

∆(1)
n =

[
µ̂pn

µ̂pn+1
− µpn

µpn+1

]
µ̂(a+1)pn+a+1

µ̂(a+1)pn

,

∆(2)
n =

[
µ̂(a+1)pn+a+1

µ̂(a+1)pn

− µ(a+1)pn+a+1

µ(a+1)pn

]
µpn

µpn+1
.Rewriting ∆

(1)
n and ∆

(2)
n yields

ξn = un, a

[
ζ(1)n +

(
e−(a+1)θ µ̂(a+1)pn+a+1

µ̂(a+1)pn

· µpn+1

µ̂pn+1
− 1

)
ζ(2)n +

(
µ(a+1)pn

µ̂(a+1)pn

− 1

)
ζ(3)n

]
(1 + o(1)),4



where, setting νp = µ̂p − µp,
ζ(1)n = ζ(2)n + ζ(3)n ,with ζ(2)n = νpn

− µpn

µpn+1
νpn+1,and ζ(3)n = e−(a+1)θ µpn
µ(a+1)pn+a+1

µ2
(a+1)pn

[
−ν(a+1)pn

+
µ(a+1)pn

µ(a+1)pn+a+1
ν(a+1)pn+a+1

]
.In view of the above consistency results, it follows that

ξn = un, a

[
ζ(1)n + oP

(
ζ(2)n

)
+ oP

(
ζ(3)n

)]
(1 + o(1)),and it is therefore su�cient to show that

un, a ζ
(1)
n

d−→ N (0, 1), (6a)
un, a ζ

(2)
n

d−→ N (0, C2), (6b)
un, a ζ

(3)
n

d−→ N (0, C3), (6c)where C2 and C3 are suitable constants. Let us then write ζ
(1)
n =

n∑

k=1

Sn, k, where
Sn, k =

1

n

[
epnXk , e(pn+1)Xk , e(a+1)pnXk , e[(a+1)pn+a+1]Xk

]
An,

An = [an, 0, an, 1, an, 2, an, 3]
t ,

an, 0 = 1,

an, 1 = − µpn

µpn+1
,

an, 2 = −e−(a+1)θ µpn
µ(a+1)pn+a+1

µ2
(a+1)pn

,

an, 3 = e−(a+1)θ µpn

µ(a+1)pn

.Since the Sn, k, 1 ≤ k ≤ n, are independent, identically distributed and centered random variables,we shall prove that
E |Sn, 1|3√

n [Var (Sn, 1)]
3/2

→ 0as n → ∞, and use Lyapounov's theorem (see e.g. Billingsley, 1979, p. 312) to obtain the asymptoticnormality of ζ(1)n .An equivalent of Var (Sn, 1) is obtained by using (4) and applying Lemma 2 to get
Var (Sn, 1) = a2 Γ2(α + 1)V (α, a)

1

n
e2pnθ p−α−2

n L(pn) (1 + o(1)).To control E |Sn, 1|3, introducing Y = X − θ, Hölder's inequality yields
E |Sn, 1|3
n−3 e3pnθ

≤ 4 E
∣∣epnY

[
an, 0 + an, 1 e

θ eY
]∣∣3

+ 4 E

∣∣∣e(a+1)pnY
[
an, 2 e

apnθ + an, 3 e
(apn+a+1)θ e(a+1)Y

]∣∣∣
3

.5



Let us remark that Y has survival function G de�ned by G(y) = (−y)α L
(
(−y)−1

), for all y ∈
(−∞, 0). Setting

Hn, 0(z) = 1,

Hn, 1(z) = −αz,

Hn, 2(z) = −eapnθ
µpn

µ(a+1)pn

1− za+1

1− z
,

Hn, 3(z) = α eapnθ µpn

µ(a+1)pn

,some more easy computations show that there exist two sequences of Borel functions (χn, 1) and
(χn, 2) uniformly converging to 0 on [0, 1] such that for all z ∈ [0, 1],

an, 0 + an, 1 e
θ z = Hn, 0(z)(1− z) +

Hn, 1(z) + χn, 1(z)

pn
,

an, 2 e
apnθ + an, 3 e

(apn+a+1)θ za+1 = Hn, 2(z)(1− z) +
Hn, 3(z) + χn, 2(z)

pn
.Applying Lemma 4 twice entails E |Sn, 1|3 = O

(
n−3 e3pnθ p−α−3

n L(pn)
). Lyapounov's theorem thengives (6a). Proofs of (6b) and (6c) are then similar.Let us now focus on the nonrandom term vn(Θn − θ). Recalling (4) and letting

τ(p, u) :=
I1[ε1(p)− ε1(p+ u)] + I2[ε2(p)− ε2(p+ u)]

Γ(α+ 1) + I1 ε1(p+ u) + I2 ε2(p+ u)
,one has

∀u ≥ 1,
µp

µp+u
= e−uθ

[
1 +

u

p

]α
exp

[
−
∫ p+u

p

η(t)

t
dt

]
[1 + τ(p, u)].Let us note that ∫ p+u

p

η(t)

t
dt = O

( |η(p)|
p

) and apply Lemma 2 to get
∀u ≥ 1,

µp

µp+u
= e−uθ

[
1 +

u

p

]α
+O

( |η(p)|
p

)
.It is then clear that

Θn = θ +O

( |η(pn)|
pn

)
.The result follows from Slutsky's lemma.As far as the rate of convergence vn of the estimator is concerned, note that up to a slowly varyingfactor, one has vn =

√
np

−α/2+1
n , where (pn) satis�es n p−α

n → ∞ and n p−α
n η2(pn) → 0. We shallconsider the cases α ≥ 2 and α < 2 separately:1. If α ≥ 2, then the smaller pn is, the higher vn is. The constraint on (pn) is therefore thecondition n p−α

n η2(pn) → 0. Since |η| is regularly varying with index ν, this condition isessentially n p2ν−α
n → 0: the smallest possible sequence (pn) satisfying this requirement hasorder n1/(α−2ν). Consequently, (vn) has order n(1−ν)/(α−2ν).6



2. If now α < 2, then the rate (vn) increases as (pn) increases: the constraint on (pn) is thecondition n p−α
n → ∞. The largest possible sequence (pn) satisfying this condition has order

n1/α, which yields a rate (vn) with order n1/α.Hence, the estimator of Aarssen and de Haan (1994) and our estimator essentially have the samerate of convergence. Moreover, in the case α < 2, the rate is the same as the one of the maximumestimator (see de Haan and Ferreira, 2006). The three above mentioned estimators are comparedon �nite sample situations in the next section.3 Numerical illustrationHere, we examine the performances of our estimator by considering two di�erent models. The �rstone has survival function
∀x < 0, F (x) =

[
1 + (−x)−τ1

]−τ2 (7)with τ1, τ2 > 0, that is, X = −1/Z where Z has a Burr(1, τ1, τ2) type XII distribution as inBeirlant et al. (2004). Here (A1) and (A2) hold, with θ = 0, α = τ1 τ2 and ν = −τ1.The second one has survival function
∀x < 0, F (x) =

∫ ∞

ln(1−1/x)

λ2 t e−λt dt (8)with λ > 0, which is tantamount to X = −1/(eZ − 1) where Z is Gamma(2, λ) distributed. Somecumbersome computations show that (A1) and (A2) hold with θ = 0, α = λ and ν = 0.Each of these models is considered with di�erent sets of parameters, see the �rst column of Table 1.We choose pn = n1/α/ ln lnn, and a set A = {0.1, 0.2, 0.3, . . . , 25} of di�erent values of a is tested.In each situation, N = 1000 replications of a sample with size n = 500 are generated and theaverage L1−error
E(a) =

1

N

N∑

j=1

|ε(j, a)| , where ε(j, a) = θ̂(j, a) − θis computed, with θ̂(j, a) being the estimator computed on the jth replication with a ∈ A and anendpoint θ = 0. Then, the �optimal� value of a is retained: a? = argmin{E(a), a ∈ A}. The sameprocedure is applied to the extreme-value moment estimator of Aarssen and de Haan (1994), whichdepends on a parameter k ∈ {2, 3, . . . , n− 1}. The (naive) maximum estimator is also considered.Numerical results are summarized in Table 1, where E(a?) is displayed. Let us notice that, in allthe considered situations, our estimator yields slightly better (optimal) results than the maximumestimator and the extreme-value moment estimator.To further compare the behavior of the estimators in the �optimal� case, boxplots of the associatederrors ε(j, a∗) are displayed on Figure 1�2. Clearly, the maximum as well as our estimator under-estimate the endpoint. However, the error associated to our estimator is smaller than the error of7



the maximum. Besides, the variance of our estimator is similar to the one of the maximum, and itis smaller than the one of the extreme-value moment estimator.On Figure 3, we compare the functions E associated to the three estimators. On model (7), whilethe error associated to the extreme-value moment estimator appears to be very sensitive to thechoice of k, the error associated to our estimator is stable for a large panel of a values. Results aresimilar in the other cases considered.ReferencesAarssen, K., de Haan, L., 1994. On the maximal life span of humans. Math. Popul. Stud. 4(4),259�281.Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J., 2004. Statistics of Extremes, John Wiley andSons.Billingsley, P., 1979. Probability and measure, John Wiley and Sons.Bingham, N.H., Goldie, C.M., Teugels, J.L., 1987. Regular Variation, Cambridge, U.K.: CambridgeUniversity Press.Fisher, R.A., Tippett, L.H.C., 1928. On estimating of the frequency distributions of the largest orsmallest member of a sample. Proc. Camb. Phil. Soc. 24, 180�190.Girard, S., Guillou, A., Stup�er, G., 2011. Estimating an endpoint with high order moments. Test,to appear. DOI: 10.1007/s11749-011-0277-8.Gnedenko, B.V., 1943. Sur la distribution limite du maximum d'une série aléatoire. Ann. of Math.44, 423�453.de Haan, L., Ferreira, A., 2006. Extreme Value Theory, Springer.Hall, P., 1982. On estimating the endpoint of a distribution. Ann. Statist. 10(2), 556�568.Hall, P., Wang, J.Z., 2005. Bayesian likelihood methods for estimating the end point of a distribu-tion. J. Roy. Statist. Soc. Ser. B 67(5), 717�729.Hoe�ding, W., 1963. Probability inequalities for sums of bounded random variables. J. Amer.Statist. Assoc. 58, 13�30.Li, D., Peng, L., Xu, X., 2011a. Bias reduction for endpoint estimation. Extremes 14, 393�412.Li, D., Peng, L, Qi, Y., 2011b. Empirical likelihood con�dence intervals for the endpoint of adistribution function. Test 20, 353�366.
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4 Appendix: Auxiliary resultsThe �rst two results are analogues of Lemmas 1 and 2 in Girard et al. (2011), as well as theirproofs, which are omitted.Lemma 1. If (A0) holds, then for all u ≥ 1, one has µp/µp+u → e−uθ as p → ∞.Lemma 2. Assume that (A1) holds and de�ne ε1 and ε2 as in the proof of Theorem 3. Then, forall i = 1, 2,(i) εi(p) → 0 as p → ∞.Moreover, if L satis�es (A2), then for all i = 1, 2 and u, v ≥ 1,(ii) εi(p+ u)− εi(p) = O(|η(p)|/p),(iii) p2(εi(p+ u+ v)− εi(p+ v)− [εi(p+ u)− εi(p)]) → 0 as p → ∞.The next lemma is a technical result which shall be useful in the proof of Lemma 4 below. It is asimple consequence of Lemma 2:Lemma 3. Assume that (A1) holds. Then, as p → ∞,
∀ d ≥ 0, p

∫ θ

−∞

epx (θ − x)d F (x) dx = p−α−d epθ L(p) Γ(α+ d+ 1) (1 + o(1)).Proof of Lemma 3. Rewrite the left-hand side as in (4) and apply Lemma 2i).The �nal lemma of this section provides an asymptotic bound of the third-order moments appearingin the proof of Theorem 3.Lemma 4. Let m ∈ N, (Hn, j), 0 ≤ j ≤ m be sequences of Borel uniformly bounded functions on
(0, 1) and (pn) be a real sequence tending to in�nity. Introduce

∀ z ∈ (0, 1), hn(z) =
m∑

j=0

Hn, j(z)

pjn
(1− z)m−j ,and let Y be a random variable with survival function G de�ned by

∀ y ∈ (−∞, 0), G(y) = (−y)α L
(
(−y)−1

)where α > 0 and L is a slowly varying function at in�nity. Then
E
∣∣epnY hn

(
eY

)∣∣3 = O
(
p−α−3m
n L(pn)

)
.Proof of Lemma 4. Hölder's inequality yields

E
∣∣epnY hn

(
eY

)∣∣3 ≤ (m+ 1)2




m∑

j=0

1

p3jn
sup
[0, 1]

n∈N\{0}

|Hn, j |3 E
[
epnY (1− eY )m−j

]3

 .9



It is enough to show that ∀ j ∈ {0, . . . , m}, E
[
epnY (1− eY )m−j

]3
= O

(
p
−α−(3m−3j)
n L(pn)

). Anintegration by parts gives
E
[
epnY (1 − eY )m−j

]3
=

∫ 0

−∞

d

dy

[
e3pny (1 − ey)3m−3j

]
G(y) dy.If (sn) is a real sequence tending to in�nity, ϕ is a positive bounded function on (−∞, 0) and β ≥ 0,by writing

∀ δ > 0,

∫ 0

−∞

esny (−y)β ϕ(y) dy =

∫ 0

−δ

esny (−y)β ϕ(y) dy


1 +

∫ −δ

−∞

esny (−y)β ϕ(y) dy

∫ 0

−δ

esny (−y)β ϕ(y) dy


 ,it is readily shown that

∀ δ > 0,

∫ 0

−∞

esny (−y)β ϕ(y) dy =

∫ 0

−δ

esny (−y)β ϕ(y) dy (1 + o(1)). (9)Since y/(1− ey) → −1 as y → 0, we get, for all ε > 0, choosing δ = δ0 small enough,
1− ε

2
≤

∫ 0

−δ0

esny (1 − ey)d G(y) dy

∫ 0

−δ0

esny (−y)dG(y) dy

≤ 1 +
ε

2
.As a consequence, (9) yields, for all su�ciently large n,

1− ε ≤

∫ 0

−δ0

esny (1 − ey)d G(y) dy

∫ 0

−∞

esny (−y)dG(y) dy

≤ 1 + ε. (10)It only remains to use (9) once again and to apply Lemma 3 to obtain
∫ 0

−∞

esny (1 − ey)d G(y) dy = s−α−d−1
n L(sn) Γ(α+ d+ 1) (1 + o(1)).Replacing in (10), it follows that E

[
epnY (1− eY )m−j

]3
= O

(
p
−α−(3m−3j)
n L(pn)

), which estab-lishes Lemma 4.
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Distribution Maximum Estimator of High orderAarssen & de Haan moments estimator
−1/Burr(1, τ1, τ2)
(τ1, τ2) = (1, 1)

2.0 · 10−3 2.1 · 10−3 1.7 · 10−3

⇒ (α, ν) = (1, −1)

(τ1, τ2) = (5/6, 6/5)
2.0 · 10−3 2.0 · 10−3 1.7 · 10−3

⇒ (α, ν) = (1, −5/6)

(τ1, τ2) = (2/3, 3/2)
2.2 · 10−3 2.0 · 10−3 1.8 · 10−3

⇒ (α, ν) = (1, −2/3)

(τ1, τ2) = (1/2, 2)
2.3 · 10−3 2.3 · 10−3 2.0 · 10−3

⇒ (α, ν) = (1, −1/2)

−1/(exp(Gamma(2, λ)) − 1)

λ = 1
2.3 · 10−4 2.0 · 10−4 1.9 · 10−4

⇒ (α, ν) = (1, 0)

λ = 5/4
1.1 · 10−3 9.2 · 10−4 8.5 · 10−4

⇒ (α, ν) = (5/4, 0)

λ = 5/3
5.7 · 10−3 4.6 · 10−3 4.1 · 10−3

⇒ (α, ν) = (5/3, 0)

λ = 5/2
3.1 · 10−2 2.4 · 10−2 2.3 · 10−2

⇒ (α, ν) = (5/2, 0)Table 1: Mean L1−errors associated to the estimators in the eight situations.

11



0.5 1.0 1.5 2.0 2.5 3.0 3.5

−0.010

−0.005

0.000

0.005

0.010

0.5 1.0 1.5 2.0 2.5 3.0 3.5
−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

0.5 1.0 1.5 2.0 2.5 3.0 3.5
−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.5 1.0 1.5 2.0 2.5 3.0 3.5
−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

Figure 1: Boxplots of ε(j, a∗) on model (7). Left: maximum estimator, middle: extreme-valuemoment estimator, right: high order moments estimator. Top left: (τ1, τ2) = (1, 1); top right:
(τ1, τ2) = (5/6, 6/5); bottom left: (τ1, τ2) = (2/3, 3/2); bottom right: (τ1, τ2) = (1/2, 2).
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Figure 2: Boxplots of ε(j, a∗) on model (8). Left: maximum estimator, middle: extreme-valuemoment estimator, right: high order moments estimator. Top left: λ = 1; top right: λ = 5/4;bottom left: λ = 5/3; bottom right: λ = 5/2. 12
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Figure 3: Comparison of the three estimators on models (7) (top) and (8) (bottom). Left: horizon-tally: threshold k, vertically: error E, dashed line: maximum estimator, solid line: extreme-valuemoment estimator. Right: horizontally: parameter a, vertically: error E, dashed line: maximumestimator, solid line: high order moments estimator. Top: model (7), (τ1, τ2) = (2/3, 3/2). Bottom:model (8), λ = 5/3.
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