N
N

N

HAL

open science

Estimating an endpoint with high order moments in the
Weibull domain of attraction
Stéphane Girard, Armelle Guillou, Gilles Stupfler

» To cite this version:

Stéphane Girard, Armelle Guillou, Gilles Stupfler. Estimating an endpoint with high order moments
in the Weibull domain of attraction. Statistics and Probability Letters, 2012, 82, pp.2136-2144. hal-

00648435v1

HAL Id: hal-00648435
https://hal.science/hal-00648435v1
Submitted on 5 Dec 2011 (v1), last revised 30 Nov 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00648435v1
https://hal.archives-ouvertes.fr

Estimating an endpoint with high order moments

in the Weibull domain of attraction

Stéphane Girard®, Armelle Guillou® & Gilles Stupfler®

() Team Mistis, INRIA Rhone-Alpes & LJK, Inovallée, 655, av. de 'Europe,
Montbonnot, 38334 Saint-Ismier cedex, France
() Université de Strasbourg & CNRS, IRMA, UMR 7501, 7 rue René Descartes,

67084 Strasbourg cedex, France

Abstract. We present a method for estimating the endpoint of a unidimensional sample when
the distribution function belongs to the Weibull-max domain of attraction. The approach relies on
transforming the variable of interest and then using high order moments of the positive variable ob-
tained this way. It is assumed that the order of the moments goes to infinity. We give conditions on
the rate of divergence to get the weak and strong consistency as well as the asymptotic normality of

the estimator. The good performance of the estimator is illustrated on some finite sample situations.
AMS Subject Classifications: 62G32, 62G05.

Keywords: Endpoint estimation, high order moments, consistency, asymptotic normality.

1 Introduction

Let (X1, ..., X,) be independent copies of a random variable X, where the distribution of X has
a finite right endpoint 6, with 6 being unknown. We are interested in estimating 6. Recent work
on endpoint estimation includes a Bayesian likelihood approach (Hall and Wang, 2005), censored
likelihood estimators (Li et al., 2011a) and the empirical likelihood method (Li et al., 2011b). In
Girard et al. (2011), a new estimator of 6, based upon the use of high order moments of the Xy, is
introduced. From a practical point of view, taking high order moments gives (exponentially) more
weight to the X} close to 6. A thorough study of the estimator is carried out when X is a positive
random variable and its distribution function belongs to the Weibull max-domain of attraction. In
this paper, we address the problem of estimating the endpoint 6 with high order moments when
the positivity assumption on X is dropped. We cannot use moments of the variable of interest X,

since | X | could have an infinite mean. To overcome this problem, it can be noted that the random



variable e has a bounded support [0, e?]. Moreover, letting p,, := E (eP»*), p, — oo be the

uf

pnth order moment of X, yields, for all u > 1, u,, /tp, +u — €% as n — oo (see Lemma 1 in the

Appendix). For all a > 0, it follows that
1 a
S —— {m [ﬂ] —In {””71””” =0(1 +o(1)). (1)
a Hopp 41 H(a+1)pnta+1
We therefore introduce an estimator using high order moments of the variable eX. Replacing the

true moment (i, with its empirical counterpart fi,, in the expression of ©,, yields

b, = E {ln [—Aup" } —In {7A HlatDpn } }
a Hpp+1 H(a+1)pr4a+tl

where (p,,) is a positive, nonrandom sequence such that p,, — 0o, a > 0 and

n
1
S pn X
flp, === > €
P n 4
=1

is the classical moment estimator of u,,. It is shown in Section 2 that 0, is consistent without
any parametric assumption on the distribution of X. Moreover, we state and prove that 0, is
asymptotically Gaussian when the distribution function of X belongs to the Weibull max-domain of
attraction. Some simulations are proposed in Section 3 to illustrate the efficiency of our estimator,
and to compare it with estimators of the endpoint estimation literature. Auxiliary results are

postponed to the Appendix.

2 Main results

Let us first state the consistency of the estimator. The only assumption is
(Ap) X has a finite right endpoint 6.
Theorem 1. If (Ay) holds and nu(a_kl)pn/e(“*l)p"e — 00 as n — 00, then O, — 0 as n — co.

Proof. We first show that, provided n y,, /eP"? — oo, the high order moment f,, can be replaced

by its empirical counterpart fip, in (1). For all € > 0, Chebyshev’s inequality leads to

il

//Zﬂ_l S e <ivar(ﬁpn)<iﬂ2pn
) 2 = -2 2 0

Hpyn Ky, nes Wy,

where

/1’2;071 _ epne /1’2;071 /ezpne

Hp, Hp, /epPn®

7

~ P
as n — o0o. As a consequence, fip, /tp, — 1 as n — oo.

S epne (2)

and therefore

m 1 epnf
“ﬂ—l'>g> <50
Hp,, €% Npp,

0

Since fi(at1)p, /€@TVIP0 < g, JePn? it follows that npy, /eP? — oco. Lemma 1 thus yields

N pip,+1/€P IV — 0o and npigi1)p, a1 /e(@TIPTeRDE o0 as n — oo, Consequently,

~

from (1), 6,, = ©,, + op(1). Lemma 1 then entails 6, 0. [



Under a somewhat stronger condition of the rate of divergence of (p,), a strong consistency result

can be established for 0An:

1 n a ~  a.s,
Theorem 2. If (Ag) holds and — DMatDpn o g5 — oo, then 60, — 6 as n — oo.
Inn elat+l)pnt

Proof. The result being obvious when P(X = ) = 1, let us assume that P(X = 0) < 1. We start

by showing that
1 n /’Lpn /’Lpn a.5.

— — 200 = —1 asn — oo. (3)
lnn epnf K

To this end, let V; = eXi=%. Then |Y" — E(Y/")| <1 a.s. and

/’Lpn /J’pn — Z {an _ an)}

epn

is a mean of bounded, centered, independent and identically distributed random variables. Defining

2pn 6

=&
epn@ epn@ Var(an) epne /1'21071 - /'I’Z%n,

1
o=l and A, = e l2n Ppn _ ©

Bernstein’s inequality (see Hoeffding, 1963) gives, for all € > 0,

Po. _ = Hon ) __ Tadn
P(upn 1‘”) P( > ew)—exp( 2<1+An/3)>'

Note that since eX~% € [0, 1] a.s., we have pu,, /eP"? — P(X = 6) as n — oo. Then, from (2),

Hp, — Hp,
epn9

i l{l_ﬂpn]%l_]}b(*x:@

>0
A € epnd €

as n — 0o, and therefore, for sufficiently large n, there exists a constant C. > 0 such that

P<‘Nﬂ—1‘>s) Sexp(—Csn'up").

[%
/’Lpn epn

Borel-Cantelli’s lemma thus yields fi,, /up, —— 1 as n — oo. Using once again the inequality

[(at1)p, /€ @TIPO < gy, /ePr? Lemma 1 and (3), the result is now straightforward. [ |

Let us now establish the asymptotic distribution of our estimator. To this end, additional assump-
tions are introduced on the survival function F =1 — F of X:

(A)) Vo < 0, F(z) = (0 — 2)*L((6 — 2)~') where § € R, a > 0 and L is a slowly varying
function at infinity, i.e. such that L(ty)/L(y) — 1 as y — oo for all ¢ > 0.

(A2) Vo >0, L(z) = cexp ([, " n(t)t~*dt), where ¢ > 0 and 7 is a bounded function tending
to 0 at infinity, continuously differentiable on (0, co), ultimately monotonic and non identically 0,

such that |n’| is regularly varying and there exists v < 0 with z7/(z)/n(z) — v as  — oo.

It is well-known that (Ay) holds if and only if F' belongs to the Weibull max-domain of attraction,
see Fisher and Tippett (1928) and Gnedenko (1943). (As) is the Karamata representation for the
normalized slowly varying function L, see Bingham et al. (1987), p. 15. Under (As2), the function

|n| is ultimately non-increasing and regularly varying at infinity with index v, see Bingham et al.



(1987), paragraph 1.4.2, and the function = — x |7’(x)| is regularly varying with index v. In the
extreme-value framework, v is referred to as the second order parameter and (As) is a second order

condition.

We can now state the asymptotic normality of §n:

Theorem 3. Assume (A1) and (Ag) hold. If np,“ L(p,) — oo and np,“ L(pn) n*(pn) — 0, then
Un, (5,, — 9) L N0, V(a, a))  as n — oo,

with v, = L(pn)p;a/%rl and

Vi, a) =

1 1 a+1
i) |:2—O¢—2 _ 2(@ + ) + 2—a—2(a + 1)O¢

a?T(« (a+ 2)ot+2
Proof. Let us remark that v, (én - 9) = v, (@L - @n) + vy, (©,, — 6) and focus on the random
term. Our goal is to establish that v, (@L - @n) N (0, V(a, a)) as n — co. To this end, using
the delta-method, it is enough to prove that the sequence of random variables

e—a@

& = ————uy, (6“5" — e“@">
a+/V(a, a)

converges in distribution to a standard Gaussian random variable. Notice that the change of variable

z= (0 — )7 yields

9
pp = p/ e’ F(x)dw =p~ @ eP? Lp)[T(a+1)+ I e1(p) + Iz e2(p)] (4)

— 00

[e%s} 1
where [, = / 2% *dz, I = / z%e ?dz and
1

) = —1/ e D gy L) = a1
e2(p) = IQ ! e /7o 16;22(?2))d -1, La(2) = LiZ)

Using (4) together with Lemma 2i) entails

0= eyt (AP + AP ) (1+0(1)) (5)
with
1 1 Dy U,
Un,a =

al(a+ 1)\ V(a, a) err? L(p,)’

AS) _ [Aﬁpn _ _Hp, ]//Z(Tl)pn-i-a—i-l,
Bpn+1 Hpp+1 H(a+1)p,

Af) _ [ﬁ(ajl)pwaﬂ_N(a+1)pn+a+1] Fpn
H(a+1)pn H(a+1)pn Hpn+1

Rewriting A,(zl) and Ag) yields

En = Un.a [ 7(11) + <e—(a+1)9 /L(ajl)pnmﬂ ) /ipn+1 _ 1) <7(7,2) + (M _ 1> 7(13)] (1+0(1)),
H(a4+1)pn Hpp 41 Ha+1)pn




where, setting v, = i, — ip,

G =GP+,

With <7(12) = Vpn - 'up" Vpn"l'l’
/'Lpn"l‘l
_ Hpn Hat+1)pp+atl F(a+1)p,
and <7(13) — e (atne P (2a )pnta |:_V(a+1)pn+ (a+1)p VatD)ptatl
Hlat1)py, H(a+1)pn+at1

In view of the above consistency results, it follows that

&n = tn,a |G +0p (¢2) + 0z (¢1) ] (1+0(1)),

and it is therefore sufficient to show that

.o €V =L A(0,1), (62)
Un.a CD L N0, C), (6b)
Un.a C® L N0, C), (6¢)

n
where Cy and Cs are suitable constants. Let us then write Q(ll) = Z Sh,k, where

k=1
1
n X, nt1)X DpnX 1)pn 11X
Suk = o [, et DXk (at)pnXy  l(a+1)pntati] k} A,
t
Ap = lan,0, Gn,1, An,2, Gn,3] ,
anp,0 = 17
an71 _ _ /’Lpn ,
Hpp+1
o —(a+1)6 Hprn H(a+1)pntatl
an,2 = —€ 2 )
Ha+1)pn
an3 = e (atDf L
H(a+1)pn

Since the S, i, 1 < k < n, are independent, identically distributed and centered random variables,

we shall prove that
E|Sn 1|*

Vi [Var (S,,1)] "2
as n — 0o, and use Lyapounov’s theorem (see e.g. Billingsley, 1979, p. 312) to obtain the asymptotic

normality of 47(11) .

An equivalent of Var (S, 1) is obtained by using (4) and applying Lemma 2 to get
1
Var (S,.1) = a*T?(a + 1) V(a, a) - 62p"0p;°‘72 L(pn) (1 +0(1)).

To control E |S,,, 1 |3, introducing Y = X — 6, Holder’s inequality yields

E|Sn. 1|*

—reng < B a0t ane ]

3
+ 4AE ’e(aJrl)pnY {am 2P0 | g, 5 el@Pntat1)? e(a+1)y} ’ _



Let us remark that Y has survival function G defined by G(y) = (—y)*L ((—y)™'), for all y €
(—o0, 0). Setting

n,O(Z) = 15
Hp1(2) = —az
Hyo(z) = —eopn® _ton L=
n, =
/L(a-i-l)iﬂn 1_2
Hoa(s) = aermd_tom
Ha+1)pn

some more easy computations show that there exist two sequences of Borel functions (x,,1) and

(Xn,2) uniformly converging to 0 on [0, 1] such that for all z € [0, 1],

Hn, 1 (2) + Xn,1 (Z)

an,0+an7le‘92 = Hpyo(z)(1-2)+ , ,
n
H
n,2 eapne + an3 e(apn-i-a-i-l)O o - Hn12(z)(1 _ Z) + n,B(Z) + Xn,2(z)'
DPn

Applying Lemma 4 twice entails E |S,, 1 =0 (n=3 €39 p>=3 L(p,)). Lyapounov’s theorem then
gives (6a). Proofs of (6b) and (6¢) are then similar.

Let us now focus on the nonrandom term v, (6, — §). Recalling (4) and letting

Lilei(p) —e1(p + )] + Lfea(p) — e2(p + u)]
1—‘(04 + 1) + I al(p—i—u) + I Ez(p-f—u)

7(p, u) :=

)
one has

« ptu
Vu>1, Mo {1 + E} exp {—/ wdt] 1+ 7(p, u)].
Hp+u p 2 t

pt+u t
Let us note that / Q dt =0 (M> and apply Lemma 2 to get
p
P

Vu>1, &:e—ue |:1+E:| +O(|77(p)|>
,UPJru p D

It is then clear that

9n29+o<|n(pn)l>.

Pn

The result follows from Slutsky’s lemma. ]

As far as the rate of convergence v,, of the estimator is concerned, note that up to a slowly varying

factor, one has v, = /npn />, where (p,) satisfies np;® — oo and n.p;® n?(p,) — 0. We shall

consider the cases o > 2 and « < 2 separately:

1. If a > 2, then the smaller p,, is, the higher v, is. The constraint on (p,) is therefore the

condition np,*n*(p,) — 0. Since || is regularly varying with index v, this condition is

2V —a

b — 0: the smallest possible sequence (p,,) satisfying this requirement has

essentially n p

1/(a—2v

order n ). Consequently, (v,) has order n(t—+)/(a=2v),



2. If now a < 2, then the rate (v,) increases as (p,) increases: the constraint on (p,) is the
condition np,* — oo. The largest possible sequence (p,,) satisfying this condition has order

n'/  which yields a rate (v,) with order n'/®,

Hence, the estimator of Aarssen and de Haan (1994) and our estimator essentially have the same
rate of convergence. Moreover, in the case o < 2, the rate is the same as the one of the maximum
estimator (see de Haan and Ferreira, 2006). The three above mentioned estimators are compared

on finite sample situations in the next section.

3 Numerical illustration

Here, we examine the performances of our estimator by considering two different models. The first
one has survival function

Ve <0, F(z)=[l+(-2)""] o (7)

with 7, 72 > 0, that is, X = —1/Z where Z has a Burr(1l, 7, 72) type XII distribution as in
Beirlant et al. (2004). Here (A4;) and (A3) hold, with § =0, o = 71 72 and v = —73.

The second one has survival function

V<0, F(z)= / Nte M dt (8)
In(1-1/xz)
with A > 0, which is tantamount to X = —1/(eZ — 1) where Z is Gamma(2, \) distributed. Some

cumbersome computations show that (A;) and (As) hold with § =0, « = X and v = 0.

Each of these models is considered with different sets of parameters, see the first column of Table 1.
We choose p, = n'/®/Inlnn, and a set A = {0.1, 0.2, 0.3, ..., 25} of different values of a is tested.
In each situation, N = 1000 replications of a sample with size n = 500 are generated and the

average L'—error
N

E(a) = = Z le(j, a)|, where &(j, a) =09 — @

is computed, with U@ being the estimator computed on the jth replication with a € A and an
endpoint § = 0. Then, the “optimal” value of a is retained: a* = argmin{E(a), a € A}. The same
procedure is applied to the extreme-value moment estimator of Aarssen and de Haan (1994), which
depends on a parameter k € {2, 3, ..., n—1}. The (naive) maximum estimator is also considered.
Numerical results are summarized in Table 1, where E(a*) is displayed. Let us notice that, in all
the considered situations, our estimator yields slightly better (optimal) results than the maximum

estimator and the extreme-value moment estimator.

To further compare the behavior of the estimators in the “optimal” case, boxplots of the associated
errors £(j, a*) are displayed on Figure 1-2. Clearly, the maximum as well as our estimator under-

estimate the endpoint. However, the error associated to our estimator is smaller than the error of



the maximum. Besides, the variance of our estimator is similar to the one of the maximum, and it

is smaller than the one of the extreme-value moment estimator.

On Figure 3, we compare the functions F associated to the three estimators. On model (7), while
the error associated to the extreme-value moment estimator appears to be very sensitive to the
choice of k, the error associated to our estimator is stable for a large panel of a values. Results are

similar in the other cases considered.
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4 Appendix: Auxiliary results

The first two results are analogues of Lemmas 1 and 2 in Girard et al. (2011), as well as their

proofs, which are omitted.
Lemma 1. If (Ag) holds, then for all u > 1, one has i,/ iy — €% as p — oco.

Lemma 2. Assume that (A1) holds and define 1 and €2 as in the proof of Theorem 3. Then, for
alli=1, 2,

(i) €i(p) = 0 as p — oo.
Moreover, if L satisfies (Ay), then for all i =1, 2 and u, v > 1,
(ii) €i(p + u) — i(p) = O(|n(p)|/p),
(iii) p*(ei(p + u+v) —ei(p +v) — [ei(p +u) —€i(p)]) = 0 as p — o0,

The next lemma is a technical result which shall be useful in the proof of Lemma 4 below. It is a

simple consequence of Lemma 2:

Lemma 3. Assume that (A1) holds. Then, as p — 0o,

Vd>0, p/e e’ (0 — ) F(z)de = p~ > 4eP! L(p)T(a+d+ 1) (1 +o(1)).

— 00

Proof of Lemma 3. Rewrite the left-hand side as in (4) and apply Lemma 2i). [ |
The final lemma of this section provides an asymptotic bound of the third-order moments appearing
in the proof of Theorem 3.

Lemma 4. Let m € N, (H,, ;), 0 < j < m be sequences of Borel uniformly bounded functions on

(0, 1) and (pn) be a real sequence tending to infinity. Introduce

Vze (0,1), hn(z)= Z Ha,5(2) (1—2)m,

and let Y be a random variable with survival function G defined by
Yy € (-00,0), Gy)=(-y)*L((-y)")
where a > 0 and L is a slowly varying function at infinity. Then
E|e?Y hy (€¥)]P = O (p* ™ Lipy)) -

Proof of Lemma 4. Holder’s inequality yields

E|ePY b, (ey)}3 < (m+ 1)2 Z ﬁ Esou]lp] |Hn,j|3E [epnY (1- eY)m—]}3
I=0EEN\{0}



It is enough to show that Vj € {0, ..., m}, E [ePY (1 — ey)m_j]3 =0 (pﬁai(gm*gj) L(pn)>. An
integration by parts gives
.13 0 d PR
E [erY (1— e¥)ymi]® = / - [ebmy (1= e)m94] Giy) dy.
—oc OY
If (s,,) is a real sequence tending to infinity, ¢ is a positive bounded function on (—oo, 0) and 8 > 0,

by writing

-5
0 0 eV (—y)” p(y) dy
V6 >0, /’ f”(—wﬁw@ﬁ@:i/ eV (—y)° p(y) dy 1+"K? :

o - / e (=) ol dy
it is readily shown that
0 0
V6 >0, / e (—y)P oly) dy = / e (=) ol dy (1-+ o(1), (9)

Since y/(1 —e¥) — —1 as y — 0, we get, for all € > 0, choosing § = §p small enough,

0
[ ema-enic)ay
—d0 <1+:.

_ - 2
/ e () Cly) dy

—do

1-—

g
- <
5 <

As a consequence, (9) yields, for all sufficiently large n,

0
[ ema-enic)ay
—% <l+e. (10)

e (—y)* Gly) dy

— 00

1—-e<

It only remains to use (9) once again and to apply Lemma 3 to obtain

/ U e (1 - UGy dy = 550 L) D+ d 4 1) (14 o{1).

— 00

Replacing in (10), it follows that E [eP»Y (1 — ey)m’j}3 =0 ( o (3m=37) L(pn)), which estab-

lishes Lemma 4. [ |

10



Estimator of High order
Distribution Maximum
Aarssen & de Haan | moments estimator
—1/Burr(1, 71, 12)
T, 2) = (1,1
() = (1, 1) 2.0.10-3 2.1.10-3 1.7-10-3
= (a, v) = (1, —-1)
T1, T9) = (5/6, 6/5
(m, 72) = (5/6, 6/5) 2.0.10-3 2.0.10-3 1.7-10-3
= (Oé, V) = (L _5/6)
T1, To) = (2/3, 3/2
(i, 72) = 2/3,3/2) 2.2.10-3 2.0.10-3 1.8-10-3
= (Oé, V) = (L _2/3)
71, Tg) = (1 2, 2
( / ) 2.3.1073 2.3.1073 2.0-1073
= (o, v)=(1, -1/2)
—1/(exp(Gamma(2, \)) — 1)
A=1
2.3.107% 2.0-10~% 1.9-10~4
= (o, v) = (1, 0)
A=5/4
1.1-1073 9.2-10~% 8.5-10~4
= (a, ) = (5/4,0)
A=5/3
5.7-1073 4.6-1073 4.1-1073
= (a, ) =(5/3,0)
A=5/2
3.1-1072 2.4-1072 2.3-1072

= (a, v) = (5/2, 0)

Table 1: Mean L'—errors associated to the estimators in the eight situations.
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Figure 3: Comparison of the three estimators on models (7) (top) and (8) (bottom). Left: horizon-

tally: threshold k, vertically: error E, dashed line: m

moment estimator. Right: horizontally: parameter a,

estimator, solid line: high order moments estimator. Top: model (7), (71, 72) = (2/3, 3/2). Bottom:

model (8), A =5/3.
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