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Estimating an endpoint with high order momentsin the Weibull domain of attrationStéphane Girard(1), Armelle Guillou(2) & Gilles Stup�er(2)
(1) Team Mistis, INRIA Rh�ne-Alpes & LJK, Inovallée, 655, av. de l'Europe,Montbonnot, 38334 Saint-Ismier edex, Frane

(2) Université de Strasbourg & CNRS, IRMA, UMR 7501, 7 rue René Desartes,67084 Strasbourg edex, FraneAbstrat. We present a method for estimating the endpoint of a unidimensional sample whenthe distribution funtion belongs to the Weibull-max domain of attration. The approah relies ontransforming the variable of interest and then using high order moments of the positive variable ob-tained this way. It is assumed that the order of the moments goes to in�nity. We give onditions onthe rate of divergene to get the weak and strong onsisteny as well as the asymptoti normality ofthe estimator. The good performane of the estimator is illustrated on some �nite sample situations.AMS Subjet Classi�ations: 62G32, 62G05.Keywords: Endpoint estimation, high order moments, onsisteny, asymptoti normality.1 IntrodutionLet (X1, . . . , Xn) be independent opies of a random variable X , where the distribution of X hasa �nite right endpoint θ, with θ being unknown. We are interested in estimating θ. Reent workon endpoint estimation inludes a Bayesian likelihood approah (Hall and Wang, 2005), ensoredlikelihood estimators (Li et al., 2011a) and the empirial likelihood method (Li et al., 2011b). InGirard et al. (2011), a new estimator of θ, based upon the use of high order moments of the Xk,is introdued. From a pratial point of view, taking high order moments gives (exponentially)more weight to the Xk lose to θ; the original idea is due to Girard and Jaob (2008). A thoroughstudy of the estimator is arried out when X is a positive random variable and its distributionfuntion belongs to the Weibull max-domain of attration. In this paper, we address the problemof estimating the endpoint θ with high order moments when the positivity assumption on X isdropped. We annot use moments of the variable of interest X , sine |X | ould have an in�nite1



mean. To overome this problem, it an be noted that the random variable eX has a boundedsupport [
0, eθ

]. Moreover, letting µpn
:= E

(
epnX

), pn → ∞ be the pnth order moment of eX ,yields, for all u ≥ 1, µpn
/µpn+u → e−uθ as n → ∞ (see Lemma 1 in the Appendix). For all a > 0,it follows that

Θn :=
1

a

{
log

[
µpn

µpn+1

]
− log

[
µ(a+1)pn

µ(a+1)pn+a+1

]}
= θ(1 + o(1)). (1)We therefore introdue an estimator using high order moments of the variable eX . Replaing thetrue moment µpn

with its empirial ounterpart µ̂pn
in the expression of Θn yields

θ̂n :=
1

a

{
log

[
µ̂pn

µ̂pn+1

]
− log

[
µ̂(a+1)pn

µ̂(a+1)pn+a+1

]}where (pn) is a positive, nonrandom sequene suh that pn → ∞, a > 0 and
µ̂pn

:=
1

n

n∑

i=1

epnXiis the lassial moment estimator of µpn
. It is shown in Setion 2 that θ̂n is onsistent withoutany parametri assumption on the distribution of X . Moreover, we state and prove that θ̂n isasymptotially Gaussian when the distribution funtion of X belongs to the Weibull max-domain ofattration. Some simulations are proposed in Setion 3 to illustrate the e�ieny of our estimator,and to ompare it with estimators of the endpoint estimation literature. Auxiliary results arepostponed to the Appendix.2 Main resultsLet us �rst state the onsisteny of the estimator. The only assumption is

(A0) X has a �nite right endpoint θ.Theorem 1. If (A0) holds and nµ(a+1)pn
/e(a+1)pnθ → ∞ as n → ∞, then θ̂n

P−→ θ as n → ∞.Proof. We �rst show that, provided nµpn
/epnθ → ∞, the high order moment µpn

an be replaedby its empirial ounterpart µ̂pn
in (1). For all ε > 0, Chebyshev's inequality leads to

P

(∣∣∣∣
µ̂pn

µpn

− 1

∣∣∣∣ > ε

)
≤ 1

ε2
Var (µ̂pn

)

µ2
pn

≤ 1

nε2
µ2pn

µ2
pn

,where
µ2pn

µpn

= epnθ
µ2pn

/e2pnθ

µpn
/epnθ

≤ epnθ (2)and therefore
P

(∣∣∣∣
µ̂pn

µpn

− 1

∣∣∣∣ > ε

)
≤ 1

ε2
epnθ

nµpn

→ 0as n → ∞. As a onsequene, µ̂pn
/µpn

P−→ 1 as n → ∞.Sine µ(a+1)pn
/e(a+1)pnθ ≤ µpn

/epnθ, it follows that nµpn
/epnθ → ∞. Lemma 1 thus yields

nµpn+1/e
(pn+1)θ → ∞ and nµ(a+1)pn+a+1/e

((a+1)pn+a+1)θ → ∞ as n → ∞. Consequently,from (1), θ̂n = Θn + oP(1). Lemma 1 then entails θ̂n P−→ θ.2



Under a somewhat stronger ondition of the rate of divergene of (pn), a strong onsisteny resultan be established for θ̂n:Theorem 2. If (A0) holds and 1

logn

nµ(a+1)pn

e(a+1)pnθ
→ ∞ as n → ∞, then θ̂n

a.s.−→ θ as n → ∞.Proof. The result being obvious when P(X = θ) = 1, let us assume that P(X = θ) < 1. We startby showing that
1

logn

nµpn

epnθ
→ ∞ ⇒ µ̂pn

µpn

a.s.−→ 1 as n → ∞. (3)To this end, let Yi = eXi−θ. Then |Y pn

i − E(Y pn

i )| ≤ 1 a.s. and
µ̂pn

− µpn

epnθ
=

1

n

n∑

i=1

{
Y pn

i − E(Y pn

i )
}is a mean of bounded, entered, independent and identially distributed random variables. De�ning

τn := ε
n µpn

epnθ
and λn := ε

µpn

epnθ

1

Var(Zpn

1 )
= ε

µpn

epnθ

e2pnθ

µ2pn
− µ2

pn

,Bernstein's inequality (see Hoe�ding, 1963) gives, for all ε > 0,
P

(∣∣∣∣
µ̂pn

µpn

− 1

∣∣∣∣ > ε

)
= P

(∣∣∣∣
µ̂pn

− µpn

epnθ

∣∣∣∣ > ε
µpn

epnθ

)
≤ exp

(
− τnλn

2(1 + λn/3)

)
.Note that sine eX−θ ∈ [0, 1] a.s., we have µpn

/epnθ → P(X = θ) as n → ∞. Then, from (2),
1

λn
≤ 1

ε

[
1− µpn

epnθ

]
→ 1− P(X = θ)

ε
> 0as n → ∞, and therefore, for su�iently large n, there exists a onstant Cε > 0 suh that

P

(∣∣∣∣
µ̂pn

µpn

− 1

∣∣∣∣ > ε

)
≤ exp

(
−Cε

nµpn

epnθ

)
.Borel-Cantelli's lemma thus yields µ̂pn

/µpn

a.s.−→ 1 as n → ∞. Using one again the inequality
µ(a+1)pn

/e(a+1)pnθ ≤ µpn
/epnθ, Lemma 1 and (3), the result is now straightforward.Let us now establish the asymptoti distribution of our estimator. To this end, additional assump-tions are introdued on the survival funtion F = 1− F of X :

(A1) ∀x < θ, F (x) = (θ − x)α L((θ − x)−1) where θ ∈ R, α > 0 and L is a slowly varyingfuntion at in�nity, i.e. suh that L(ty)/L(y) → 1 as y → ∞ for all t > 0.
(A2) ∀x ≥ 0, L(x) = c exp

(∫ x

1
η(t) t−1 dt

), where c > 0 and η is a bounded funtion tendingto 0 at in�nity, ontinuously di�erentiable on (0, ∞), ultimately monotoni and non identially 0,suh that |η′| is regularly varying and there exists ν ≤ 0 with x η′(x)/η(x) → ν as x → ∞.It is well-known that (A1) holds if and only if F belongs to the Weibull max-domain of attration,see Fisher and Tippett (1928) and Gnedenko (1943). (A2) is the Karamata representation for thenormalized slowly varying funtion L, see Bingham et al. (1987), p. 15. Under (A2), the funtion
|η| is ultimately non-inreasing and regularly varying at in�nity with index ν, see Bingham et al.3



(1987), paragraph 1.4.2, and the funtion x 7→ x |η′(x)| is regularly varying with index ν. In theextreme-value framework, ν is referred to as the seond order parameter and (A2) is a seond orderondition.We an now state the asymptoti normality of θ̂n:Theorem 3. Assume (A1) and (A2) hold. If n p−α
n L(pn) → ∞ and n p−α

n L(pn) η
2(pn) → 0, then

vn

(
θ̂n − θ

)
d−→ N (0, V (α, a)) as n → ∞,with vn =

√
nL(pn) p

−α/2+1
n and

V (α, a) =
α+ 1

a2 Γ(α)

[
2−α−2 − 2

(a+ 1)α+1

(a+ 2)α+2
+ 2−α−2(a+ 1)α

]
.Proof. Let us remark that vn

(
θ̂n − θ

)
= vn

(
θ̂n −Θn

)
+ vn (Θn − θ) and fous on the randomterm. Our goal is to establish that vn (θ̂n −Θn

)
d−→ N (0, V (α, a)) as n → ∞. To this end, usingthe delta-method, it is enough to prove that the sequene of random variables

ξn :=
e−aθ

a
√
V (α, a)

vn

(
eaθ̂n − eaΘn

)onverges in distribution to a standard Gaussian random variable. Notie that the hange of variable
z = (θ − x)−1 yields

µp = p

∫ θ

−∞

epx F (x) dx = p−α epθ L(p) [Γ(α+ 1) + I1 ε1(p) + I2 ε2(p)] (4)where I1 =

∫ ∞

1

zα e−z dz, I2 =

∫ 1

0

zα e−z dz and
ε1(p) =

1

I1

∫ 1

0

e−1/z z−α−3 L1(pz)

L1(p)
dz − 1, L1(z) = z L(z),

ε2(p) =
1

I2

∫ ∞

1

e−1/z z−α−1 L2(pz)

L2(p)
dz − 1, L2(z) =

L(z)

z
.Using (4) together with Lemma 2i) entails

ξn = e−(a+1)θ µpn+1 un, a

(
∆(1)

n +∆(2)
n

)
(1 + o(1)) (5)with

un, a =
1

aΓ(α+ 1)

√
1

V (α, a)

pαn vn
epnθ L(pn)

,

∆(1)
n =

[
µ̂pn

µ̂pn+1
− µpn

µpn+1

]
µ̂(a+1)pn+a+1

µ̂(a+1)pn

,

∆(2)
n =

[
µ̂(a+1)pn+a+1

µ̂(a+1)pn

− µ(a+1)pn+a+1

µ(a+1)pn

]
µpn

µpn+1
.Rewriting ∆

(1)
n and ∆

(2)
n yields

ξn = un, a

[
ζ(1)n +

(
e−(a+1)θ µ̂(a+1)pn+a+1

µ̂(a+1)pn

· µpn+1

µ̂pn+1
− 1

)
ζ(2)n +

(
µ(a+1)pn

µ̂(a+1)pn

− 1

)
ζ(3)n

]
(1 + o(1)),4



where, setting νp = µ̂p − µp,
ζ(1)n = ζ(2)n + ζ(3)n ,with ζ(2)n = νpn

− µpn

µpn+1
νpn+1,and ζ(3)n = e−(a+1)θ µpn
µ(a+1)pn+a+1

µ2
(a+1)pn

[
−ν(a+1)pn

+
µ(a+1)pn

µ(a+1)pn+a+1
ν(a+1)pn+a+1

]
.In view of the above onsisteny results, it follows that

ξn = un, a

[
ζ(1)n + oP

(
ζ(2)n

)
+ oP

(
ζ(3)n

)]
(1 + o(1)),and it is therefore su�ient to show that

un, a ζ
(1)
n

d−→ N (0, 1), (6a)
un, a ζ

(2)
n

d−→ N (0, C2), (6b)
un, a ζ

(3)
n

d−→ N (0, C3), (6)where C2 and C3 are suitable onstants. Let us then write ζ
(1)
n =

n∑

k=1

Sn, k, where
Sn, k =

1

n

[
epnXk , e(pn+1)Xk , e(a+1)pnXk , e[(a+1)pn+a+1]Xk

]
An,

An = [an, 0, an, 1, an, 2, an, 3]
t ,

an, 0 = 1,

an, 1 = − µpn

µpn+1
,

an, 2 = −e−(a+1)θ µpn
µ(a+1)pn+a+1

µ2
(a+1)pn

,

an, 3 = e−(a+1)θ µpn

µ(a+1)pn

.Sine the Sn, k, 1 ≤ k ≤ n, are independent, identially distributed and entered random variables,we shall prove that
E |Sn, 1|3√

n [Var (Sn, 1)]
3/2

→ 0as n → ∞, and use Lyapounov's theorem (see e.g. Billingsley, 1979, p. 312) to obtain the asymptotinormality of ζ(1)n .An equivalent of Var (Sn, 1) is obtained by using (4) and applying Lemma 2 to get
Var (Sn, 1) = a2 Γ2(α + 1)V (α, a)

1

n
e2pnθ p−α−2

n L(pn) (1 + o(1)).To ontrol E |Sn, 1|3, introduing Y = X − θ, Hölder's inequality yields
E |Sn, 1|3
n−3 e3pnθ

≤ 4 E
∣∣epnY

[
an, 0 + an, 1 e

θ eY
]∣∣3

+ 4 E

∣∣∣e(a+1)pnY
[
an, 2 e

apnθ + an, 3 e
(apn+a+1)θ e(a+1)Y

]∣∣∣
3

.5



Let us remark that Y has survival funtion G de�ned by G(y) = (−y)α L
(
(−y)−1

), for all y ∈
(−∞, 0). Setting

Hn, 0(z) = 1,

Hn, 1(z) = −αz,

Hn, 2(z) = −eapnθ
µpn

µ(a+1)pn

1− za+1

1− z
,

Hn, 3(z) = α eapnθ µpn

µ(a+1)pn

,some more easy omputations show that there exist two sequenes of Borel funtions (χn, 1) and
(χn, 2) uniformly onverging to 0 on [0, 1] suh that for all z ∈ [0, 1],

an, 0 + an, 1 e
θ z = Hn, 0(z)(1− z) +

Hn, 1(z) + χn, 1(z)

pn
,

an, 2 e
apnθ + an, 3 e

(apn+a+1)θ za+1 = Hn, 2(z)(1− z) +
Hn, 3(z) + χn, 2(z)

pn
.Applying Lemma 4 twie entails E |Sn, 1|3 = O

(
n−3 e3pnθ p−α−3

n L(pn)
). Lyapounov's theorem thengives (6a). Proofs of (6b) and (6) are then similar.Let us now fous on the nonrandom term vn(Θn − θ). Realling (4) and letting

τ(p, u) :=
I1[ε1(p)− ε1(p+ u)] + I2[ε2(p)− ε2(p+ u)]

Γ(α+ 1) + I1 ε1(p+ u) + I2 ε2(p+ u)
,one has

∀u ≥ 1,
µp

µp+u
= e−uθ

[
1 +

u

p

]α
exp

[
−
∫ p+u

p

η(t)

t
dt

]
[1 + τ(p, u)].Let us note that ∫ p+u

p

η(t)

t
dt = O

( |η(p)|
p

) and apply Lemma 2 to get
∀u ≥ 1,

µp

µp+u
= e−uθ

[
1 +

u

p

]α
+O

( |η(p)|
p

)
.It is then lear that

Θn = θ +O

( |η(pn)|
pn

)
.The result follows from Slutsky's lemma.Let us note that the hoie of an �optimal� value for a by minimization of V (α, a) is a di�ult tasksine it depends on the unknown value of α. One an observe on Figure 1 that, for α ≤ 2, V (α, ·)is a dereasing funtion and thus large values of a should be preferred.As far as the rate of onvergene vn of the estimator is onerned, note that up to a slowly varyingfator, one has vn =

√
np

−α/2+1
n , where (pn) satis�es n p−α

n → ∞ and n p−α
n η2(pn) → 0. We shallonsider the ases α ≥ 2 and α < 2 separately: 6



1. If α ≥ 2, then the smaller pn is, the higher vn is. The onstraint on (pn) is therefore theondition n p−α
n η2(pn) → 0. Sine |η| is regularly varying with index ν, this ondition isessentially n p2ν−α
n → 0: the smallest possible sequene (pn) satisfying this requirement hasorder n1/(α−2ν). Consequently, (vn) has order n(1−ν)/(α−2ν).2. If now α < 2, then the rate (vn) inreases as (pn) inreases: the onstraint on (pn) is theondition n p−α

n → ∞. The largest possible sequene (pn) satisfying this ondition has order
n1/α, whih yields a rate (vn) with order n1/α.Hene, the estimator of Aarssen and de Haan (1994) and our estimator essentially have the samerate of onvergene. Moreover, sine the rate of onvergene of the maximum estimator is n1/α (seede Haan and Ferreira, 2006), we see that in the ase α < 2, the rate is the same as the one of themaximum, and in the ase α ≥ 2, the rate is faster than the one of the maximum. The three abovementioned estimators are ompared on �nite sample situations in the next setion.3 Numerial illustrationHere, we examine the performanes of our estimator by onsidering two di�erent models. The �rstone has survival funtion

∀x < 0, F (x) =
[
1 + (−x)−τ1

]−τ2 (7)with τ1, τ2 > 0, that is, X = −1/Z where Z has a Burr(1, τ1, τ2) type XII distribution as inBeirlant et al. (2004). Here (A1) and (A2) hold, with θ = 0, α = τ1 τ2 and ν = −τ1.The seond one has survival funtion
∀x < 0, F (x) =

∫ ∞

log(1−1/x)

λ2 t e−λt dt (8)with λ > 0, whih is tantamount to X = −1/(eZ − 1) where Z is Gamma(2, λ) distributed. Someumbersome omputations show that (A1) and (A2) hold with θ = 0, α = λ and ν = 0.Eah of these models is onsidered with di�erent sets of parameters, see the �rst olumn of Table 1.The power p := pn is hosen to vary aross the set P = {5, 10, 15, . . . , 300}, and a set A =

{0.1, 0.4, 0.7, . . . , 25} of di�erent values of a is tested. In eah situation, N = 1000 repliations ofa sample with size n = 500 are generated and the average L1−error
E(p, a) =

1

N

N∑

j=1

|ε(j, p, a)| , where ε(j, p, a) = θ̂(j, p, a) − θis omputed, with θ̂(j, p, a) being the estimator omputed on the jth repliation with (p, a) ∈
P × A and an endpoint θ = 0. Then, the �optimal� values of p and a are retained: (p⋆, a⋆) =

argmin{E(p, a), (p, a) ∈ P ×A}. The same proedure is applied to the extreme-value moment es-timator of Aarssen and de Haan (1994), whih depends on a parameter k ∈ {2, 3, . . . , n− 1}. The7



(naive) maximum estimator is also onsidered. Numerial results are summarized in Table 1, where
E(p⋆, a⋆) is displayed. Let us notie that, in all the onsidered situations, our estimator yieldsslightly better (optimal) results than the maximum and the extreme-value moment estimator.To further ompare the behavior of the estimators in the �optimal� ase, boxplots of the assoiatederrors ε(j, p⋆, a⋆) are displayed on Figure 2�3. Unlike the maximum estimator, our estimator doesnot always underestimate the endpoint. Moreover, the error assoiated to our estimator is smallerthan the error of the maximum. Besides, the variane of our estimator is similar to the one of themaximum, and it is smaller than the one of the extreme-value moment estimator.On Figure 4, we ompare the funtions E assoiated to the three estimators. On model (7), whilethe error assoiated to the extreme-value moment estimator appears to be very sensitive to thehoie of k, the error assoiated to our estimator is stable for a large panel of values of pn and a.Results are similar in the other onsidered ases.AknowledgementsThe authors are indebted to the anonymous referee for his/her helpful omments and suggestionsthat have ontributed to an improved presentation of the results of this paper.ReferenesAarssen, K., de Haan, L., 1994. On the maximal life span of humans. Math. Popul. Stud. 4(4),259�281.Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J., 2004. Statistis of Extremes, John Wiley andSons.Billingsley, P., 1979. Probability and measure, John Wiley and Sons.Bingham, N.H., Goldie, C.M., Teugels, J.L., 1987. Regular Variation, Cambridge, U.K.: CambridgeUniversity Press.Fisher, R.A., Tippett, L.H.C., 1928. On estimating of the frequeny distributions of the largest orsmallest member of a sample. Pro. Camb. Phil. So. 24, 180�190.Girard, S., Guillou, A., Stup�er, G., 2011. Estimating an endpoint with high order moments. Test,to appear. DOI: 10.1007/s11749-011-0277-8.Girard, S., Jaob, P., 2008. Frontier estimation via kernel regression on high power-transformeddata. J. Multivariate Anal. 99(3), 403�420.Gnedenko, B.V., 1943. Sur la distribution limite du maximum d'une série aléatoire. Ann. of Math.44, 423�453. 8



de Haan, L., Ferreira, A., 2006. Extreme Value Theory, Springer.Hall, P., 1982. On estimating the endpoint of a distribution. Ann. Statist. 10(2), 556�568.Hall, P., Wang, J.Z., 2005. Bayesian likelihood methods for estimating the end point of a distribu-tion. J. Roy. Statist. So. Ser. B 67(5), 717�729.Hoe�ding, W., 1963. Probability inequalities for sums of bounded random variables. J. Amer.Statist. Asso. 58, 13�30.Li, D., Peng, L., Xu, X., 2011a. Bias redution for endpoint estimation. Extremes 14, 393�412.Li, D., Peng, L, Qi, Y., 2011b. Empirial likelihood on�dene intervals for the endpoint of adistribution funtion. Test 20, 353�366.4 Appendix: Auxiliary resultsThe �rst two results are analogues of Lemmas 1 and 2 in Girard et al. (2011), as well as theirproofs, whih are omitted.Lemma 1. If (A0) holds, then for all u ≥ 1, one has µp/µp+u → e−uθ as p → ∞.Lemma 2. Assume that (A1) holds and de�ne ε1 and ε2 as in the proof of Theorem 3. Then, forall i = 1, 2,(i) εi(p) → 0 as p → ∞.Moreover, if L satis�es (A2), then for all i = 1, 2 and u, v ≥ 1,(ii) εi(p+ u)− εi(p) = O(|η(p)|/p),(iii) p2(εi(p+ u+ v)− εi(p+ v)− [εi(p+ u)− εi(p)]) → 0 as p → ∞.The next lemma is a tehnial result whih shall be useful in the proof of Lemma 4 below. It is asimple onsequene of Lemma 2:Lemma 3. Assume that (A1) holds. Then, as p → ∞,
∀ d ≥ 0, p

∫ θ

−∞

epx (θ − x)d F (x) dx = p−α−d epθ L(p) Γ(α+ d+ 1) (1 + o(1)).Proof of Lemma 3. Rewrite the left-hand side as in (4) and apply Lemma 2i).The �nal lemma of this setion provides an asymptoti bound of the third-order moments appearingin the proof of Theorem 3.Lemma 4. Let m ∈ N, (Hn, j), 0 ≤ j ≤ m be sequenes of Borel uniformly bounded funtions on
(0, 1) and (pn) be a real sequene tending to in�nity. Introdue

∀ z ∈ (0, 1), hn(z) =

m∑

j=0

Hn, j(z)

pjn
(1− z)m−j ,9



and let Y be a random variable with survival funtion G de�ned by
∀ y ∈ (−∞, 0), G(y) = (−y)α L

(
(−y)−1

)where α > 0 and L is a slowly varying funtion at in�nity. Then
E
∣∣epnY hn

(
eY

)∣∣3 = O
(
p−α−3m
n L(pn)

)
.Proof of Lemma 4. Hölder's inequality yields

E
∣∣epnY hn

(
eY

)∣∣3 ≤ (m+ 1)2




m∑

j=0

1

p3jn
sup
[0, 1]

n∈N\{0}

|Hn, j |3 E
[
epnY (1− eY )m−j

]3

 .It is enough to show that ∀ j ∈ {0, . . . , m}, E

[
epnY (1− eY )m−j

]3
= O

(
p
−α−(3m−3j)
n L(pn)

). Anintegration by parts gives
E
[
epnY (1 − eY )m−j

]3
=

∫ 0

−∞

d

dy

[
e3pny (1 − ey)3m−3j

]
G(y) dy.If (sn) is a real sequene tending to in�nity, ϕ is a positive bounded funtion on (−∞, 0) and β ≥ 0,by writing

∀ δ > 0,

∫ 0

−∞

esny (−y)β ϕ(y) dy =

∫ 0

−δ

esny (−y)β ϕ(y) dy


1 +

∫ −δ

−∞

esny (−y)β ϕ(y) dy

∫ 0

−δ

esny (−y)β ϕ(y) dy


 ,it is readily shown that

∀ δ > 0,

∫ 0

−∞

esny (−y)β ϕ(y) dy =

∫ 0

−δ

esny (−y)β ϕ(y) dy (1 + o(1)). (9)Sine y/(1− ey) → −1 as y → 0, we get, for all ε > 0, hoosing δ = δ0 small enough,
1− ε

2
≤

∫ 0

−δ0

esny (1 − ey)d G(y) dy

∫ 0

−δ0

esny (−y)dG(y) dy

≤ 1 +
ε

2
.As a onsequene, (9) yields, for all su�iently large n,

1− ε ≤

∫ 0

−δ0

esny (1 − ey)d G(y) dy

∫ 0

−∞

esny (−y)dG(y) dy

≤ 1 + ε. (10)It only remains to use (9) one again and to apply Lemma 3 to obtain
∫ 0

−∞

esny (1 − ey)d G(y) dy = s−α−d−1
n L(sn) Γ(α+ d+ 1) (1 + o(1)).Replaing in (10), it follows that E

[
epnY (1− eY )m−j

]3
= O

(
p
−α−(3m−3j)
n L(pn)

), whih estab-lishes Lemma 4. 10



Distribution Maximum Estimator of High orderAarssen & de Haan moments estimator
−1/Burr(1, τ1, τ2)
(τ1, τ2) = (1, 1)

2.0 · 10−3 2.1 · 10−3 1.6 · 10−3

⇒ (α, ν) = (1, −1)

(τ1, τ2) = (5/6, 6/5)
2.0 · 10−3 2.0 · 10−3 1.6 · 10−3

⇒ (α, ν) = (1, −5/6)

(τ1, τ2) = (2/3, 3/2)
2.2 · 10−3 2.0 · 10−3 1.7 · 10−3

⇒ (α, ν) = (1, −2/3)

(τ1, τ2) = (1/2, 2)
2.3 · 10−3 2.3 · 10−3 1.9 · 10−3

⇒ (α, ν) = (1, −1/2)

−1/(exp(Gamma(2, λ)) − 1)

λ = 1
2.3 · 10−4 2.0 · 10−4 1.9 · 10−4

⇒ (α, ν) = (1, 0)

λ = 5/4
1.1 · 10−3 9.2 · 10−4 8.5 · 10−4

⇒ (α, ν) = (5/4, 0)

λ = 5/3
5.7 · 10−3 4.6 · 10−3 4.1 · 10−3

⇒ (α, ν) = (5/3, 0)

λ = 5/2
3.1 · 10−2 2.4 · 10−2 2.2 · 10−2

⇒ (α, ν) = (5/2, 0)Table 1: Mean L1−errors assoiated to the estimators in the eight situations.
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Figure 1: Graphs of the funtions a 7→ V (α, a). Solid line: α = 1, dashed line: α = 5/4, dashed-dotted line: α = 5/3, dotted line: α = 2, triangles: α = 5/2.11
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Figure 2: Boxplots of ε(j, p⋆, a⋆) on model (7). Left: maximum estimator, middle: extreme-valuemoment estimator, right: high order moments estimator. Top left: (τ1, τ2) = (1, 1); top right:
(τ1, τ2) = (5/6, 6/5); bottom left: (τ1, τ2) = (2/3, 3/2); bottom right: (τ1, τ2) = (1/2, 2).
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Figure 3: Boxplots of ε(j, p⋆, a⋆) on model (8). Left: maximum estimator, middle: extreme-valuemoment estimator, right: high order moments estimator. Top left: λ = 1; top right: λ = 5/4;bottom left: λ = 5/3; bottom right: λ = 5/2. 12
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Figure 4: Comparison of the three estimators on models (7) (top) and (8) (bottom). Left: horizon-tally: threshold k, vertially: error E, dashed line: maximum estimator, solid line: extreme-valuemoment estimator. Right: horizontally: parameter pn, vertially: parameter a, the error E is rep-resented with shades of gray, along with two level urves, respetively orresponding to the mean
L1−error of the maximum estimator and twie this error. Top: model (7), (τ1, τ2) = (2/3, 3/2).Bottom: model (8), λ = 5/3.
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