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Parc Valrose – 06108 Nice
dBRGM – 3 avenue Claude Guillemin - B.P. 36009 – 45060 Orléans Orléans
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Abstract

In this paper, an exact smooth solution for the equations modeling the bedload transport of sediment in Shallow

Water is presented. This solution is valid for a large family of sedimentation laws which are widely used in erosion

modeling such as the Grass model or those of Meyer-Peter & Müller. One of the main interest of this solution is

the derivation of numerical benchmarks to valid the approximation methods. To cite this article: A. Name1, A.
Name2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Résumé

Une solution analytique du système de Saint-Venant couplé à l’équation d’Exner. Ce papier présente

une solution analytique pour le système modélisant le transport de sédiments par le charriage. Cette solution est

valable pour une grande famille de lois sédimentaires comme le modèle de Grass ainsi que celui de Meyer-Peter

& Müller. Ce résultat est utile pour la validation des schémas numériques. Pour citer cet article : A. Name1, A.
Name2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

1. Introduction

Soil erosion is a consequence of the movements of sediments due to mechanical actions of flows. In the
context of bedload transport, a mass conservation law, also called Exner equation [1], is used to update
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the bed elevation. This equation is coupled with the shallow water equations describing the overland flows
(see [2] and references therein) as follows:

∂th+ ∂x(hu) = 0, (1)

∂t(hu) + ∂x(hu
2 + gh2/2) + gh∂xzb = 0, (2)

∂tzb + ∂xqb = 0, (3)

where h is the water depth, u the flow velocity, zb the thickness of sediment layer which can be modified
by the fluid and g the acceleration due to gravity. The variable hu is also called water discharge and noted
by q. Finally, qb is the volumetric bedload sediment transport rate. Its expressions are usually proposed
for granular non-cohesive sediments and quantified empirically [3,4,5].
Many numerical schemes have been developed to solve system (1-3) (see [5] and references therein). The

validation of such schemes by an analytical solution is a simple way to ensure their working. Nevertheless,
analytical solutions are not proposed in the literature. Up to our knowledge, asymptotic solutions, derived
by Hudson in [6], are in general adopted to perform some comparisons with approximated solutions. The
solutions are derived for Grass model [3], i.e qb = Agu

3, when the interaction constant Ag is smaller than
10−2. In this paper, we propose a non obvious analytical solution in the steady state condition of flow.

2. Solution of the equations

In order to obtain an analytic solution, we consider qb as a function of the dimensionless bottom shear
stress τ∗b (see [5]). By using the friction law of Darcy-Weisbach, τ∗b is given by

τ∗b =
fu2

8(s− 1)gds
,

where f is the friction coefficient, s = ρs/ρ the relative density of sediment in water and ds the diameter
of sediment. The formulæ of qb is usually expressed under the form

qb = κ(τ∗b − τ∗cr)
p
√

(s− 1)gd3s, (4)

where τ∗cr is the threshold for erosion, κ an empirical coefficient and p an exponent which is often fixed
to 3/2 in many applications. The expression (4) can be written in the simple form

qb = Au2p
e , (5)

where the effective velocity ue and the interaction coefficient A are defined by






















u2

e = u2
− u2

cr,

u2

cr = τ∗cr

[ f

8(s− 1)gd

]

−1

,

A = κ
[ f

8(s− 1)gd

]p√

(s− 1)gd3s.

(6)

Remark. The Grass model [3] is one of the simplest case by using p = 3/2, τ∗cr = 0 and an empirical
coefficient Ag instead of A. The Meyer-Peter & Müler model [4] is one of the most applied by using
p = 3/2, κ = 8, τ∗cr = 0.047. The following result is valid for all models rewriting in form (5-6).
Proposition 2.1 Assume that qb is defined by (4). For a given uniform discharge q such that τ∗b > τ∗cr,
system (1-3) has the following analytical unsteady solution
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u2

e =
[αx+ β

A

]1/p

,

u =
√

u2
e + u2

cr, h = q/u,

z0b = −
u3 + 2gq

2gu
+ C,

zb = −αt+ z0b .

(7)

where α, β, C are constants and A, ucr are defined by (6).
Proof. We are here concerned by the smooth solution. In view of the assumption hu = q = cst, equations
(1-3) reduce to

∂th = 0,

∂x(q
2/h) + gh∂xH = 0, (8)

∂tH + ∂xqb = 0, (9)

where H = h + z is the free surface elevation. Differentiating equation (8) with respect to t and then
equation (9) with respect to x, we obtain

∂xtH = 0,

∂2

xqb = 0. (10)

Note that we can write qb = qb(h, q) to have ∂tqb = ∂hqb∂th + ∂qqb∂tq = 0, so qb is not time-depending.
Thank to (10), the expression of qb is obtained under the form

qb = αx+ β, (11)

where α and β are constant. From (3), we obtain ∂tzb = −∂xqb = −α to write

zb = −αt+ z0b (x). (12)

Moreover, from (5) we deduce the effective velocity as follows:

u2

e =
[αx+ β

A

]1/p

.

Plugging (12) into the momentum equation (8) and using a direct calculation, we have

∂xz
0

b =
[ q

u2
−

u

g

]

∂xu ⇒ z0b = −
u3 + 2gq

2gu
+ C

which concludes the proof.
Remark. As h and u are stationary, the initial condition of (7) is (h, u, z0b ). Moreover, the solution (h, u)
applied to the Grass model is also an analytical solution of the Shallow Water Equations with the variable
topography z0b . Concerning the shallow-water model, other solutions can be found in [7].

3. Numerical experiments

In this section, we consider the analytical solution (7) applied to the Grass model with q = 1, Ag =
α = β = 0.005 and C = 1. A relaxation solver is applied to approximate the solution of the model. We
will not give here the details of the relaxation solver (for details see [8]), but just the relaxation model
for the equations (1-3). Thus, we solve the following relaxation system:
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Figure 1. Comparison between the exact solution and the relaxation method for : the water height and the topography (left)
and the velocity (right).















































∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu
2 + π) + gh∂xzb = 0,

∂tπ + u∂xπ +
a2

h
∂xu = 0,

∂tzb + ∂xqr = 0,

∂tqr +

(

b2

h2
− u2

)

∂xzb + 2u∂xqr = 0,

that is completed with π = gh2/2 and qr = qb at the equilibrium. Figure 1 presents the numerical result
with J = 500 space cells, a CFL fix condition of 1 and T = 7s. We only notice little difference on the
velocity, near the inflow boundary.
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