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1. Introduction

Near Infrared Diffuse Reflectance Spectroscopy (NIR-DRS) is a promising technology for high
resolution digital soil mapping and precision agriculture (Stenberg et al., 2010). NIR reflectance
is particularly sensitive to organic and mineral soil composition, thus it permits the prediction of
many soil properties from a single measurement. The technology has been used for several
decades in many industries including crop production, food processing, pharmaceutical and
petrochemicals. The NIR-DRS instruments are diverse, including portable units that can be

easily transported, allowing both in situ and laboratory soil analysis.

Field measurement using Near Infrared Diffuse Reflectance Spectroscopy (NIR-DRS)
spectroscopy has become popular for in situ prediction of various soil properties (Mouazen et al.,
2007; Viscarra Rossel et al., 2009; Waiser et al., 2007). In particular, the use of NIR
spectroscopy for prediction of soil organic carbon (SOC) content in the field is highly desirable
for soil quality assessment and carbon accounting purposes (Bricklemyer and Brown, 2010;
Christy, 2008). SOC represents a key parameter in evaluating the quality of soils, and is one of
the most commonly and successfully predicted parameters using NIR-DRS. Once the spectra
have been calibrated for SOC, the method can provide rapid and inexpensive estimation of SOC

in the field.

However NIR reflectance is quite sensitive to external environmental conditions, such as
temperature, soil moisture, and soil structural conditions. The influence of soil moisture on the
NIR reflectance spectra has been reported by many authors (Bowers and Hanks, 1965;
Bricklemyer and Brown, 2010; Lee and Boregki, 2006; Lobell and Asner, 2001; Minasny et al.,
2009; Sudduth and Hummel, 1993). Figure 1 shows an example of the absorbance spectra of a
soil with 1% SOC content with varying moisture content. The absorbance spectra clearly

increase with increasing moisture content.
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Figure 1. The effect of moisture on the absorbance spectra for a loamy soil with 17% clay and
1.1% SOC content. The spectra from the lower to higher absorbance are for the soil at
gravimetric moisture content of 4, 5, 6, 12, 14, 16, and 20%.

While in the laboratory, soil can be scanned under standard air-dried conditions; in the field it is
very difficult to control the water content. Most studies have demonstrated that NIR spectra
calibrated using field soil samples can be used for field prediction of soil properties (Bricklemyer
and Brown, 2010; Christy, 2008; Kusumo et al., 2008). Morgan et al. (2009) showed that when
using NIR on field samples, the variability of soil moisture in the field reduced the prediction
accuracies of SOC content. Sudduth and Hummel (1993) in a laboratory study showed NIR
measurements on a wide range of soil moisture tensions. Although they found best SOC
prediction with dry samples, reasonable estimates were obtained across the full range of tensions.
These authors suggested that including a wide range of water contents in the calibration set could

take care of the issue of moisture variation.

Although, many studies have successfully used spectra collected in field conditions to calibrate
against measured SOC, the variation of soil moisture content can really have a huge impact on
the prediction of SOC. Wu et al. (2009) identified a range of wavelengths in the NIR region
where the first derivative of the reflectance spectra seems independent of the moisture content of
the soil samples. They suggested to only use these selected wavelength intervals, to obtain

moisture-independent estimates of SOC under field conditions.

This paper investigates the influence of soil moisture on the NIR-DRS signal and its effects on
prediction of SOC. The ultimate objective is to remove the effect of moisture on the spectra for
prediction of SOC content. Specifically, we shall investigate and evaluate the external parameter
orthogonalisation (EPO) method to remove the moisture effect from the spectral calibration.
EPO algorithm projects all the soil spectra orthogonal to the space of unwanted variation (i.e.

moisture), and thus the variations of soil moisture can be effectively removed.
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2. Materials and methods

2.1 Soil samples and the experiment

We used a soil library (391 samples) collected from agricultural areas in southern New South
Wales, Australia (Minasny et al., 2009). The samples covered a range of soil types and were
taken from different soil horizons up to 1 m depth. The soil samples have been ground and
passed through a 2 mm sieve. SOC was determined using the dry combustion method, and
ranges between 0.06 to 12.7 g 100g™". The data were split into three independent datasets:

- Dataset A is the EPO development data, which is used to study the influence of soil moisture
on the spectra. We systematically selected 100 samples from the whole data to represent the full
range of SOC contents. The data were ranked from the lowest to highest values in SOC, and
were stratified into 100 strata. A sample was then systematically taken from each stratum. These
100 samples were used for deriving a pre-processing method to remove the effect of moisture
using the external parameter orthogonalisation (EPO) algorithm.

- Dataset B is the validation data. We selected 20 samples randomly from the rest of the library
(291 samples) and used these as a validation dataset.

- Dataset C is the model calibration data. The rest of the data (271 samples) were used for model
calibration, relating the spectra to SOC content using partial least squares (PLS) regression.

The statistics of the data are given in Table 1.

We used the AgriSpec™ instrument with a contact probe (Analytical Spectral Devices, Boulder,
Colorado, USA) for collection of the Vis-NIR soil reflectance spectra (350 — 2500 nm). The
samples were illuminated by a halogen lamp and the reflected light was transmitted to the
spectrometer through a fibre optic bundle. A Spectralon (Labsphere Inc., North Sutton, N.H.,
USA) was used as a reflectance standard and employed to convert raw spectral data to

reflectance. Each soil spectrum was obtained as the mean of 40 scans.

To investigate the effect of the moisture on the accuracy of the prediction formula, samples from

dataset A (n = 100) were wetted evenly to approximately the sticky limit. This is the moisture
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content at which a sieved soil will not stick to a metal spatula, which was required so that the soil
did not stick to the contact probe. The samples, which were approximately 5 mm thick, were
covered and left to equilibrate for 2 days. After equilibration, each of the soil samples were
scanned and weighed. The samples were then left to dry under laboratory conditions (25° C).
Although there was a slight variation in moisture in the samples due to differential drying (dryer
at the surface), this variation did not cause much difference in the NIR spectra. Subsequently
each day (for 5 to 6 days) the samples were weighed and then scanned. Thus, for each sample at
each day, we have the moisture content and a spectrum. We also conducted the same experiment

for the 20 validation samples.

We only used the reflectance data that have a high signal to noise ratio (in the spectral range 500-
2450 nm) for analysis. The spectra were transformed to absorbance (log 1/Reflectance) and
sampled to a resolution of 2 nm, and smoothed using the Savitzky-Golay algorithm with a
window size of 11 and polynomial of order 2 (Savitzky and Golay, 1964). To remove the
baseline effect, we normalised each spectra by taking its mean and divided by its standard

deviation, the so-called standard normal variate (snv) transformation (Barnes et al., 1989).

We used the Partial Least Squares (PLS) regression (Wold et al., 2001) to calibrate the spectra
against measured SOC content. Since the distribution of SOC content is positively skewed, we
used a logarithmic transformation of SOC for calibration. The value is back transformed for
accuracy assessment. The accuracy of prediction was assessed using R* (coefficient of
determination), ME (mean error), and RMSE (root mean squared error). Mean error (ME) is the
mean difference between predicted and observed SOC content for the samples, positive value
indicates overestimation, while negative value indicates underestimation. Root mean squared

error indicates the accuracy of the prediction.
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Table 1. Statistics of soil organic carbon (SOC) and clay content for the three datasets used in

this study.
Dataset A
(EPO Dataset B | Dataset C
development | (Validation | (Calibration
data) data) data)
n 100 20 271
SOC content (g 100g") | Median 0.93 1.27 0.80
Min 0.09 0.27 0.06
Max 12.74 5.90 8.65
Clay content (g 100g") | Median 22.5 17.5 20.0
Min 5.0 8.0 5.0
Max 74.0 30.0 73.0

2.2 External parameter orthogonalisation (EPO)

We used a parameter orthogonalisation algorithm (Roger et al., 2003) to remove the effect of soil
moisture from the spectra. The algorithm finds the areas in the spectra which are affected by
moisture and projects the spectra orthogonal to this variation, and the unwanted variations of soil
moisture can be effectively removed. This analysis is related to principal component analysis
(PCA), but PCA only performs a transformation to take into account all of the variability in the
spectra. Meanwhile, the orthogonolisation takes into account the variability which is due to an
external factor (i.e. moisture). The algorithm was initially developed by Roger et al. (2003) to
remove the effect of temperature from the spectra for the prediction of measurement of sugar

content of fruit.

Let S be the m-dimensional space of the » measured spectra, the spectra can be written as
S=C+G+R

C is useful chemical spectral responses;

G is the part of the spectra that is caused by the external parameter and independent from C; and

R is the independent residual.
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In matrix form, the spectra X (size n x m) can be written as:

X=XP+XQ+R

P is the projection matrix (size m x m) of the useful part of the spectra: X* = XP;

Q is the projection matrix (size m x m) of the not useful part (influenced by moisture) of the
spectra: X* = XQ; and

R is the residual matrix (size n x m).

The aim of EPO is to obtain the useful spectra X* = X(I — Q), while matrix Q can be written as

Q=GG".

To estimate G, the uninformative part of the spectra that is orthogonal to the useful part of the
spectra, Roger et al. (2003) suggested using the principal component of the difference spectra D.
In this work, we define D as the difference between the moist and dry spectra. Figure 2 shows
the difference spectra for the 100 soil samples of the EPO dataset. The spectra have been
normalised using snv, and the plot shows the between the spectra of air-dried samples and
samples at the wettest moisture condition (day 1). We can see the water peak at 1450 nm and
1940 nm, which are exaggerated with increasing moisture content. We then performed a

Principal Component Analysis (PCA) on D to extract the variation subspace.

In summary, the EPO algorithm works as follows:

e (alculate difference spectra D (size n x m): D = Xinoist — Xary-

e Perform a principal component analysis (PCA) on D'D. The PCA can be obtained using a
singular value decomposition (SVD) of D'D to obtain USV", where U is an n X n matrix, S is
an n x m diagonal matrix, and V is an m X m matrix. See Press et al. (1992) for details on
singular value decomposition, and Wall et al. (2003) for the relationship between PCA and
SVD.

e Define ¢ number of factors, and obtain V; a subset of m by c of V.

e Estimate Q from V.V, .

e C(Calculate the projection matrix as P =1— Q (P is an m by m symmetric matrix)

e The transformed spectra is calculated as X* = X P.



Author-produced version of the article published in Gederma, 2011, 167-168,118-124.
The original publication is available at http://www.sciencedirect.com
doi:10.1016/j.geoderma.2011.09.008

The only parameter that needs to be chosen in EPO is ¢, the number of dimension of the

principal component of DD, which represents the un-useful space that needs to be removed.

The data analysis taken in this paper is summarised as follows:

1. Perform EPO on dataset A, to obtain projection matrix P.
2. Using P, transform spectra of dataset C to transformed spectra.

3. Calibrate a partial least squares (PLS) regression using transformed spectra of dataset C

to predict SOC.

4. For validation, transform spectra of dataset B using P. Using the transformed spectra,

predict SOC using established PLS (from step 3).

3. Results and discussion

3.1 The effect of moisture content

Since the SOC content has a skewed distribution, we normalised it using a logarithmic
transformation. For accuracy assessment, the value is transformed back. We first calibrated a
PLS regression (Wold et al., 2001) using the soil samples from dataset A (calibration data) to
predict SOC (using 6 factors, determined by cross validation). The resulting PLS has an R* value
of 0.72. The PLS regression formula was then used to predict SOC content from the spectra of
the EPO development data (100 samples) which have different moisture contents. The
gravimetric moisture content (w) of the samples varied from an average of 12% to 7%. Figure 3
shows the prediction of the SOC using spectra at three moisture conditions. We can see that the
prediction deteriorates significantly and also has a bias, a tendency to over-predict the SOC
content with increasing moisture content (Table 2). The R? value declines to 0.28 for the highest
moisture content with large bias and RMSE values. As the moisture content decreases towards
air-dried conditions, the prediction accuracy improves. The difference in SOC content visually
can be shown at wavelengths around 1400, 1900, and 2200 nm. Thus moisture can mask these

peaks due to other OH bands present; it can also cause spectral differences due to interactions
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between water and other components (Reeves, 2010). Meanwhile the moisture bands also show
up at wavelengths 1400 and 1900 nm. The variation in soil moisture has been reported to cause
poorer calibrations for other soil properties (e.g. SOC, clay content, CEC) (Bogrekci and Lee,
2005; Lobell and Asner, 2002; Minasny et al., 2009).

Figure 3. Correlation between predicted SOC and measured SOC for samples at three moisture

conditions using PLS calibrated on air-dried samples. w is gravimetric moisture content (g 100g

1)‘
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Table 2. Prediction of SOC content using NIR spectroscopy. PLS is prediction using partial least
squares regression calibrated on spectra from dataset A. EPO-PLS refers to the spectra after EPO
pro-processing, and the PLS is calibrated using transformed spectra of dataset A. w is

gravimetric moisture content (g 100g™"). ME is mean error, and RMSE is root mean square error.

Note that the prediction is based on logarithmic transformation of C content.

PLS EPO-PLS
Average ME RMSE ME RMSE

w(%)| R® | (gloogh | (gl00gh) | R (g100g™) | (g100g™
Dataset A:
EPO development data
(n=100)
Air-dry 6 0.53 -0.14 0.73 0.54 -0.05 1.06
Day 1 12 0.28 2.13 4.01 0.48 -0.13 0.96
Day 2 9 0.52 0.24 0.92 0.52 0.07 0.73
Day 3 8 0.34 0.39 1.79 0.53 -0.01 0.62
Day 4 8 0.55 0.01 0.67 0.53 -0.04 0.75
Day 5 7 0.56 0.19 1.11 0.48 0.18 1.34
Dataset B:
Validation data (n=20)
Air-dry 4 0.80 -0.01 0.85 0.78 0.18 1.07
Day 1 18 0.68 2.55 322 0.89 0.09 0.49
Day 2 16 0.72 2.11 2.95 0.83 0.08 0.59
Day 3 14 0.74 1.57 2.30 0.86 0.08 0.55
Day 4 11 0.73 1.04 1.74 0.81 0.12 0.64
Day 5 7 0.67 0.62 1.44 0.71 0.22 1.07
Day 6 5 0.70 0.70 1.91 0.72 0.44 1.45
Dataset C:
Calibration data
(n=271) 7 0.72 -0.11 0.56 0.79 -0.08 0.46

10
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3.2 EPO-PLS for prediction of SOC

We used the External Parameter Orthogonalisation (EPO) algorithm which transforms the
spectra into a space which is not affected by water content, i.e. orthogonal to the moisture effect.
The formulation is described as follows:

X*=XP
where P is the transformation matrix. The new spectra X" then can be used to build a calibration
function which is not affected by moisture. Using the dataset A (EPO development data), we first
construct a set of difference spectra D between spectra in the moist conditions (at day 1 with
average w = 12% and at day 3 with average w = 8%) and spectra at air-dried condition (average
w = 6%). In matrix terms, this is written as:

D = [Xa | Xas] = [Xaa | Xad],
where X.q is the spectra at air-dried condition, and X4 and Xg; are spectra at the first and third
day after wetting. We then perform a principal component analysis on D'D which defines the

projection matrix P, which is described in section 2.2 and summarised in Figure 4.

Figure 4. External Parameter Orthogonolisation (EPO) pre-processing algorithm of the spectra.
The original spectra X is multiplied by transformation matrix P to obtain transformed spectra X

which is free from soil moisture effect.

The parameters that need to be optimised for EPO-PLS are ¢, the number of EPO dimensions
and &, the number of PLS factors. We optimised this by using dataset A (EPO development data,
n = 100). Using c values from 1 to 10, for each ¢, we calculated the projection matrix P. Then
with a range of PLS factors & (from 1 to 10), we derived a PLS model to predict SOC content
using the transformed air-dried spectra. The PLS was then used to predict SOC of the
transformed spectra at air-dried and day 1 after wetting (from dataset A). We then calculated the
RMSE of the SOC prediction for different numbers of ¢ and %, as shown in Figure 5. The results
show that RMSE values do not decrease significantly after 6 PLS factors, and the RMSE is

lowest an EPO dimension of 4. Therefore who chose ¢ =4 and k= 6.

11
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Figure 5. Root mean square error (RMSE) of the prediction of SOC content using transformed
spectra at different number of EPO dimension and different number PLS factors (k).

After establishing the optimum EPO dimensionality, we calculated the transformation matrix P
from dataset A. Spectra for different water content can be transformed using P, resulting in
transformed spectra X". Figure 6 shows the spectra and EPO-transformed spectra of the soil
sample shown in Fig. 1 for different moisture contents. Here we can see that the spectra of a soil
with different moisture contents now look similar. The moisture variation at the peaks around

1400 and 1900 nm is now not visible.

Figure 6. (a) Original spectra of a soil with various moisture content and (b) the spectra after

EPO transformation.

Using the projection matrix P, we transformed the spectra from dataset C (calibration data, n =
271) to become X".a. We then calibrated the transformed spectra for SOC content prediction
using PLS regression (6 factors). The PLS prediction on dataset C has an R* = 0.79, and RMSE =
0.46 g 100g™". The PLS model was used to predict soil samples that have various moisture
contents (dataset A and B). The resulting prediction of SOC for the 100 soil samples of dataset A
at three different moisture conditions is shown in Figure 7. We can see that the prediction is now
less affected by moisture content. Table 2 lists the accuracy of the prediction using the EPO
preprocessing and then PLS prediction (EPO-PLS). For dataset A, the R? values are around 0.50,
with RMSE between 0.62 and 1.34 g 100g™. Overall the bias is reduced (ME values close to
zero) when compared to the results obtained without EPO pre-processing. The accuracy of
prediction on the wettest samples (day 1 of the experiment) is comparable to the prediction using
air-dried samples. This shows that the EPO has effectively removed the effect of moisture from

the spectra.

Figure 8 shows the prediction for the 20 independent validation samples (dataset B) which were
collected at 7 different moisture contents. The prediction for all the samples looks similar despite

of the variation in moisture content. Table 2 shows the improved accuracy for prediction of the

12
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samples at the highest moisture content (day 1), in terms of R* values (0.68 to 0.89), less bias
(ME near zero) and lower RMSE values (3.2 to 0.5 g 100g™). Overall, the prediction accuracy of

the soil with varying moisture content is comparable to the prediction of air-dried soil samples.

Figure 6. Prediction of soil organic carbon content on samples from dataset A at three different

moisture conditions using EPO-PLS.

Figure 7. Prediction of soil organic carbon content on the validation dataset (dataset B) at

different moisture contents using EPO-PLS.

3.3 The effect of the number of samples used for EPO development

As explained in the Methods section, we used three independent datasets for this approach, and
the success of the EPO processing will depend on the number and representative samples used in
dataset A (EPO development data). Representative samples here meaning that they should
represent a range of soil types and SOC contents. Here we perform a numerical experiment to
examine the effect of the number of samples required to develop an effective EPO spectral pre-
processing method. From the 100 samples (of dataset A), we sampled for a range number of
samples: 5, 10, 20, 30, 40 ..., 100 to create EPO test datasets. The sampling is based on a
systematic sampling approach: first the data is sorted based on their SOC content, to obtain s
number of samples, the data was divided into s section, and a sample was taken in the middle of
the section. We now have a range test datasets, each having different number of samples (5, 10,
20, 30, 40 ..., 100). As previously, for each of the test dataset, we developed an EPO
transformation matrix P. We then applied the transformation matrix to dataset C (calibration
data) to create transformed spectra. The transformed spectra were calibrated for SOC using PLS.

The PLS function was used to predict SOC on dataset A and B.

Figure 8 shows the RMSE values for dataset A and B as a function of number of samples used in

developing the EPO transformation matrix. The boxplot represents the RMSE values at various

13
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moisture contents. When the number of samples was between 5 and 50, the RMSE values in both
datasets A and B showed variable results. For example, using 10 samples showed a low RMSE,
but the RMSE increased when using 20 samples. After 60 samples, the RMSE values appeared
to be more stable and below the general mean value of 0.35 (log[g 100™]). Therefore in this
example, we can conclude that we need at least 60 samples to develop a stable EPO
transformation matrix. And of course, the choice of the right samples is essential (covering the

full range of soil type, SOC and represented in the spectra).

Figure 8. The effect of the number of samples used in the EPO development on the root mean
square error (RMSE) values for the prediction of soil organic carbon content on datasets A and
B. The boxplot represents RMSE values at different moisture contents.The line in the middle of

the plot represents the grand mean.

4. Conclusions

Near infrared diffuse reflectance spectroscopy could constitute a revolution in monitoring SOC
content in the field if robustness of calibration models can be improved. Moisture content
undoubtedly affects the model prediction and is an environmental factor that is not easy to
control while analysing soils in situ. This first laboratory experiment shows a feasible and robust
method to predict SOC independent of (field) moisture content. Pre-processing the data with the
EPO method allows the removal the moisture effect, to a large degree, which improves the
quality of the prediction model. This method will facilitate a field method for rapid measurement
of SOC content.

We are yet to test the transferability of a dried ground spectra library to a field intact soil spectra
prediction using the EPO-PLS approach. In this case, there are two variables that need to be
addressed: the soil structure effect and soil moisture. Since spectroscopy is a volumetric
measurement, we need to deal with the soil structure issue, as the measurement also implies the

change in mass by volume.

14
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We propose to use 3 independent datasets, as demonstrated in this paper, for the field NIR
calibration procedure:

- The calibration dataset contains soil samples with measured spectra and SOC content under
standard (or laboratory) condition (air-dried). The number of samples is preferably greater than
100.

- The EPO development dataset contains spectra under laboratory condition (air-dried samples)
and spectra collected under field conditions (varying soil moisture content). In this paper, we
found that at least 60 samples to be optimum.

- The validation dataset contains spectra collected under field condition and measured SOC
content.

The EPO development data were used to develop the EPO pre-processing of the spectra. The
spectra from the calibration dataset were then transformed using EPO, and a PLS regression
model (or other multivariate prediction techniques) was developed to predict SOC content from
the transformed spectra. The validation dataset can be used to check the accuracy of the

prediction model.

We need to further investigate the effect of the EPO spectral transformation on the prediction of
other soil properties. Further work is ongoing to validate this method for field NIR

measurements.
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Figure captions

Figure 1. The effect of moisture on the absorbance spectra for a loamy soil with 17% clay and
1.1% SOC content. The spectra from the lower to higher absorbance are for the soil at
gravimetric moisture content of 4, 5, 6, 12, 14, 16, and 20%.

Figure 2. The difference spectra of 100 soil samples (from dataset A), showing the difference in
absorbance between the soil at moist condition (first day after wetting) and at air-dried.

Figure 3. Correlation between predicted SOC and measured SOC for samples at three moisture
conditions using PLS calibrated on air-dried samples (dataset A).

Figure 4. External Parameter Orthogonolisation (EPO) pre-processing algorithm of the spectra.
The original spectra X is multiplied by transformation matrix P to obtain transformed spectra X*
which is free from soil moisture effect. The transformed spectra are then used in a partial least
squares (PLS) regression calibration.

Figure 5. Root mean square error (RMSE) of the prediction of SOC content on dataset A using
transformed spectra at different number of EPO dimension and different number PLS factors (k).
Figure 6. (a) Original standard normal variate (snv) spectra of a soil at different moisture
contents and (b) the spectra after EPO transformation.

Figure 7. Prediction of soil organic carbon content at 3 different moisture conditions on dataset A
using the EPO- PLS regression.

Figure 8. Prediction of soil organic carbon content on dataset B (validation data) at different
moisture contents using the EPO-PLS regression.

Figure 9. The effect of the number of samples used in EPO development on the root mean square
error (RMSE) values for the prediction of SOC content on dataset A and B. The boxplot
represents RMSE values at different moisture contents. The line in the middle of the boxplot

represents the grand mean.
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