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A General Formula for the Stabilization of Event-Based Controlled Systems

In this paper, a universal formula is proposed for event-based stabilization of general nonlinear systems affine in the control. The feedback is derived from the original one proposed by Sontag. Under the assumption of the existence of a smooth Control Lyapunov Function, it enables smooth (except at the origin) global asymptotic stabilization of the origin while ensuring that the sampling interval do not contract to zero. Indeed, for any initial condition within any given closed set the minimal sampling interval is proved to be strictly positive. Under homogeneity assumptions the control can be proved to be smooth anywhere and the sampling intervals bounded below for any initial condition.

INTRODUCTION

The classical so-called discrete time framework of controlled systems consists in sampling the system uniformly in time with a constant sampling period T and in computing and updating the control law every time instants t k = k • T . This field, denoted as the time-triggered case (or the synchronous case in sense that all the signal measurements are synchronous), has been widely investigated for linear control systems (see [START_REF] Åström | Computer Controlled Systems[END_REF] and the references therein), even in the case of delays, sampling jitter and measurement loss that can be seen as a kind of asynchronicity [START_REF] Cervin | How does control timing affect performance? analysis and simulation of timing using jitterbug and TrueTime[END_REF]. In the case of nonlinear control systems, one way to address a discrete-time feedback is to implement a continuous time control algorithm with a sufficiently small sampling period [START_REF] Hsu | The effect of discretized feedback in a closed loop system[END_REF]. However, the hardware used to sample and hold the plant measurements or compute the feedback control action may make it impossible to reduce the sampling period to a level that guarantees acceptable closed-loop performance. Other way to tackle this problem is the application of sampled-data control algorithms based on an approximate discrete-time models of the process [START_REF] Nešić | A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models[END_REF] which is not a trivial task. Another proposed approach consist to modify a continuous time stabilizing control using for instance Sontag's general formula to obtain a redesigned control suitable for sampled-data implementation [START_REF] Nešić | Lyapunov-based continuous-time nonlinear controller redesign for sampled-data implementation[END_REF].

To overcome these drawbacks, event-based control -also called event-triggered control -has been recently proposed. In this control strategy, the control task is executed after the occurrence of an external event, generated by an event mechanism. Thus in this scheme, the term sampling time denotes a time interval between two consecutive events (e.g. level crossings of the measure). Hence, two successive sampling instants may not be equidistant in time. Let us first consider general nonlinear systems of the form:

ẋ = f (x, u) (1) 
where x ∈ X ⊂ R n , u ∈ U ⊂ R p , and f a Lipschitz function vanishing at the origin. For sake of simplicity, we only consider in this paper null stabilization with initial time instant t 0 = 0. By event-based feedback, it is usually meant a set of the two following functions:

• an event function e : X × X → R that indicates if one needs (when e ≤ 0) or not (when e > 0) to recompute the control. In its more general form, the event function e takes the current state x as input and a memory m of its value last time e became negative. A memoryless version is also possible, that is an event function e : X → R that only requires the current value of the state. There is a priori no constraint on the regularity of e.

• a feedback function k. We talk about static event-based feedback when k : X → U . The time (then k : X × R + → U ) or simply the sampling index (then k : X × N → U ) can be added to build a dynamic event-based feedback.

Additionally, e can depend upon the time (then e : X ×R + → {0, 1}) or simply upon the sampling index (then e : X ×N → {0, 1}) and one then talks about dynamic event-based feedback. Classical sampled feedback of period T can be seen as a dynamic event-based feedback with e(x, t) ≤ 0 if and only if t/T ∈ N. Typical event-detection mechanisms are functions on the variation of the state (or at least the output) of the system, like in [START_REF] Årzén | A simple event-based PID controller[END_REF][START_REF] Sandee | Event-driven control as an opportunity in the multidisciplinary development of embedded controllers[END_REF][START_REF] Durand | Further results on event-based PID controller[END_REF][START_REF] Sánchez | Comparative study of event-based control strategies: An experimental approach on a simple tank[END_REF][START_REF] Sánchez | On the application of different event-based sampling strategies to the control of a simple industrial process[END_REF]. Although the event-triggered control is wellmotivated and allows to relax the periodicity for computations of the control law, only few works report theoretical results about the stability, convergence and performance of event-triggered control systems. In [START_REF] Åström | Comparison of Riemann and Lebesque sampling for first order stochastic systems[END_REF] for instance, it is proved that such an approach reduces the number of sampling instants for the same final performance. Recent works deal with the problem of scheduling the control task for continuous-time linear systems [START_REF] Åström | Comparison of Riemann and Lebesque sampling for first order stochastic systems[END_REF][START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF][START_REF] Lunze | A state-feedback approach to event-based control[END_REF][START_REF] Donkers | Output-based event-triggered control with guaranteed L ∞gain and improved event-triggering[END_REF] and discretetime linear system [START_REF] Eqtami | Event-triggered control for discretetime systems[END_REF] where stability and some robustness proprieties such as ISS and L ∞performance are exploited. Furthermore, in [START_REF] Eqtami | Event-triggered control for discretetime systems[END_REF] a Model Predictive Control scheme is used where the event-triggered policies are used for relaxing the computationally demanding algorithms. Some of the above contributions do not need the memory of the last sample, the event function e is memoryless, that is, it can simply be formulated as a function of X .

An alternative approach consists in taking e related to the variation of a Lyapunov function -and consequently to the state too -between the current state and the previous sample, like in [START_REF] Mazo | On self-triggered control for linear systems: Guarantees and complexity[END_REF][START_REF] Velasco | On Lyapunov sampling for event-driven controllers[END_REF], or in taking e related to the time derivative of the Lyapunov function. Convergence and stability in the nonlinear case is studied in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF][START_REF] Anta | Self-triggered stabilization of homogeneous control systems[END_REF][START_REF]To sample or not to sample: Self-triggered control for nonlinear systems[END_REF]. The main contribution from the above mentioned works is the existence of a minimal time between consecutive executions of the control task guaranteeing desired levels of performances in the absence of accumulation points. However, in these works is assumed the Input-to-State Stability (ISS) property of the system which is a very strong assumption. Moreover, these techniques are developed for two classes of nonlinear control systems, namely, state-dependent homogeneous systems and polynomial systems.

The solution of (1) with event-based feedback (e, k) starting in x 0 ∈ X at t = 0 is then defined as the solution of the differential system (when it exists, a discussion follows on that subject):

ẋ = f (x, k(m)) (2) 
m(x) = x if e(x, m) ≤ 0, x = 0 m elsewhere (3) 
with:

x(0) = x 0 and m(0

) = x(0) (4) 
If f is assumed to be Lipschitz, and events are punctual, a unique solution in the Caratheodory sense always exists without any smoothness assumption on k similarly to [START_REF] Clarke | Asymptotic controllability implies feedback stabilization[END_REF] when . However, this solution may not exists for all t ≥ 0 as shown in item 3 of section 2. Let t → x(t, x 0 ) denote this solution. Given an event function e, and a feedback k defined as above, for any initial condition x(t = 0) = x 0 it fully defines a sampling set T e,k,x0 := {t 0 , t Notations: In the following, B(d, x) will stand for the ball of radius d centered at x and B(d) for the ball of radius d centered at the origin. x(t; x 0 , t 0 , u) will denote the solution of a differential system starting in x 0 at t 0 with control u. For sake of simplicity, u will be omitted when trivial and x(t; x 0 ) will stand for x(t; x 0 , 0).

WHAT CAN HAPPEN WITH EVENT-BASED CONTROL ?

To illustrate different phenomena that can arise with event-based feedback systems, we consider the simple linear integrator ẋ = u. All event functions considered in these examples are assumed to be memoryless that is to be just functions of X . Between two sampling instants t i and t i+1 , u remains constant so that: and the trajectory x(t) = 0 is defined for all t ∈ [0, +∞[.

x i+1 = x i + (t i+1 -t i ) • u, x i

k(x)

= -x, e(x) = 0 when |x| = exp(-κ), κ ∈ Z and initial condition x 0 = 1. Assuming that at time t i of the sampling set T e,k,x0 , the state of the system is x i = ± exp(-κ i ), then at the next sampling instant t i+1 , the state of the system becomes

x i+1 = ± exp(-κ i+1 ) = ± exp(-κ i -1
). The sampling is therefore periodic of period 1 -exp(-1):

T e,k,x0 := {j • (1 -exp(-1)), j ∈ N}
The trajectory is well-defined for all t ∈ [0, +∞[.

3. k(x) = -x, e(x) = 0 when |x| = exp(-κ • |κ|), κ ∈ Z and initial condition x 0 = 1.
In that case, one can calculate that t i = i -i j=1 exp(-2j + 1). And when i tends to infinity, t i tends to t := exp(-1)

1-exp(-2) . The trajectory is then well-defined only for all t ∈ [0, t[.

4. k(x) = -x 3 , e(x) = 0 when |x| = exp(-κ), κ ∈ Z and initial condition x 0 = 1. In that case, t i+1 -t i = x i+1 -x i -x 3 i = exp(2i) • [1 -exp(-1)]
and when i tends to infinity, t i+1 -t i also tends to infinity. Although the inter-sampling duration tends to infinity, the trajectory is well-defined for all t ∈ [0, +∞[ as in case 2.

k(

x) = -x • (1 -exp(-1)) • (1 -log |x|) if |x| ≤ 1, k(x) = -x • (1 -exp(-1)
) elsewhere, and k(0) = 0 by continuity, e(x) = 0 when |x| = exp(-κ), κ ∈ Z and initial condition x 0 = 1.

Here, one can prove that t i+1 -t i = 1 i+1 and therefore t i+1 -t i tends to zero when i tends to infinity as in case 3 but the t i 's do not converge to a finite limit.

Consider now the unstable system ẋ = (x + u) 3 . The control u being constant between each sampling instant, the solution is the one of a Bernoulli differential system whose solution is:

x i+1 = x i + u 1 -2(t i+1 -t i ) • (x i + u) 2 -u
Then, taking 6. k(x) = -2x, e(x) = 0 when |x| = exp(-κ), κ ∈ Z and initial condition x 0 = 1. Then the inter-sampling duration is:

t i+1 -t i = exp(2i) 2 • 1 - 1 (2 -exp(-1)) 2
and when i tends to infinity, t i+1 -t i also tends to infinity. However, the origin of the closed loop system can be proved to be asymptotically stable and the trajectories well-defined on [0, +∞[ for all initial condition.

In cases 1 to 6, the system can trivially be proved to be globally null-asymptotically stable taking V (x) := 1 2 x 2 . Cases 1 and 2 show that the sampling set is clearly initial condition dependent. Case 2 to 5 show that for the same system and initial condition, the sampling can be periodic, contractile or expansile (with a finite or infinite limit) depending upon the event function or the feedback. Case 6 shows the inconsistency of the Shannon criteria in the event based paradigm and in particular that the inter-sampling duration can infinitely increase even when insuring the stability of the closed loop of an open-loop unstable system.

PRELIMINARY DEFINITIONS FOR EVENT-BASED SYSTEMS

Usually, the event is of null measure, in the sense that the control is recomputed only at distinct x (in the countable sense). However, taking e(x) = 0 for all x ∈ X would mean that one recomputes the control at each x and therefore that one applies a classical continuous-time feedback. On the sets of non null measure where e(x) = 0, the solution is understood in the classical sense (with all possible solution existence problems if the field is discontinuous). Elsewhere, the solution can be intended in the Caratheodory sense. To go further on that, we define: Definition 3.1 (Well-defined event-based control). An event-based control (k, e) will be said well-defined if and only if for any initial condition x 0 at t = 0, the solution t → x(t; x 0 ) exists for all t ≥ 0. Property 3.1 (Minimal Sampling Interval -MSI). An event-based control (k, e) will be said to fulfill the Minimal Sampling Interval property (MSI) if and only if for any initial condition x 0 at t = 0, there exists a non zero minimal sampling interval τ (x 0 ) defined by:

τ (x 0 ) := inf i∈N,ti∈T (x0) 
t i+1 -t i > 0

In that case, the control is piecewise constant between each time sample and we define:

• x i , i ∈ I ⊂ N with x 0 := x(t = 0) as the series of successive values of the state at which e is negative for a given initial condition x 0

• t i , i ∈ I ⊂ N with t 0 := 0 as the corresponding series of time instants

The aim of definition 3.1 is to exclude solutions with sampling intervals converging to zero at some time (case 3 of section 2) or to infinity (case 5 of section 2). It quite trivially follows: Theorem 3.2. An MSI event-based control is well-defined.

Proof. of Theorem 3.2 The proof is trivial since if the event-based control is MSI, then T (x 0 ) is either finite or countably infinite and the t i are isolated in R + . The solution t → x(t; x 0 ) hence exists for all t ≥ 0 in the Caratheodory sense.

This minimal sampling period is useful for implementation purpose but also when the feedback k is discontinuous for robustness purpose [START_REF] Sontag | Clocks and insensitivity to small measurement errors[END_REF]. However, it would be more suitable to have such a bound less depending upon initial condition: 

τ := inf i∈N,ti∈T (x0),x0∈X
t i+1 -t i > 0 Properties 3.1 to 3.3 can be specified using the qualifying term "global" when X = R n in opposition to the term "local" that was omitted above for sake of simplicity. Now that the above notions for event-based controlled systems are appropriately defined, notions like stability, asymptotic stability and stabilizability naturally follow since they rely on the resulting trajectory. The question that arises then is: does a universal formula for uniformly discrete event-based feedback stabilization exist similarly to the continuous time case ? This is the purpose of the next section.

A UNIVERSAL FORMULA FOR EVENT-BASED STABILIZATION

In the sequel, the analysis is restricted to systems affine in the control:

ẋ = f (x) + g(x)u = f (x) + i g i (x)u i (5) 
where f and g are smooth functions with f vanishing at the origin. We assume that a Control Lyapunov Function (CLF) exists for system [START_REF] Nešić | Lyapunov-based continuous-time nonlinear controller redesign for sampled-data implementation[END_REF], that is a smooth and positive definite function V : X → R so that for each x = 0 there is some u ∈ U such that:

∂V ∂x f (x) + ∂V ∂x g(x)u < 0 (6) 
In addition, one may require that the CLF V fulfills the small control property [START_REF]Mathematical control theory, deterministic finite dimensional systems[END_REF], that is that for each ε > 0 there is some δ > 0 such that for any x in the ball B(δ)\ {0}, there is some u with u ≤ ε such that (6) holds. Then, it is known that it is possible to design a smooth feedback control that asymptotically stabilizes the system. This is known as the Sontag's universal formula:

Theorem 4.1 (Sontag's universal formula). If there exists a CLF for system (5), then the feedback k : X → U , smooth on X \ {0} is such that:

∂V ∂x f (x) + ∂V ∂x g(x)k(x) < 0, x ∈ X \ {0} (7) 
for k defined by: if y 2 = 0 0 if y 2 = 0 [START_REF] Durand | Further results on event-based PID controller[END_REF] with q : R → R is any real analytic function such that q(0) = 0 and y 2 q(y 2 ) > 0 whenever y 2 = 0. Moreover, if the CLF satisfies the so called small control property, then taking q(y 2 ) := y 2 , the control is continuous at the origin [START_REF]Mathematical control theory, deterministic finite dimensional systems[END_REF].

k i (x) := -b i (x)φ(a(x), β(x)), i ∈ {1, . . .
The main purpose of this paper is to establish that a universal formula also exists in the event-based context up to a slight modification of the original formula proposed by Sontag: Theorem 4.2. If there exists a CLF for system (5), then the event-based feedback (e, k) defined below is semi-uniformly MSI, smooth on X \ {0}, and such that:

∂V ∂x f (x) + ∂V ∂x g(x)k(m) < 0, x ∈ X \ {0} (9) 
where m is defined by (3) and:

k i (x) := -b i (x)γ(x) (10) e(x, m) := -a(x)-b(x)k(m)-σ a(x) 2 +β(x)α(x) (11) 
where a(x), b(x) and β(x) are as in Theorem 4.1, α : X → R + is any smooth function strictly positive on S := {x ∈ X |β(x) = 0}, σ ∈]0, 1[, and

γ(x) := a(x)+ √ a(x) 2 +β(x)α(x) β(x) if x ∈ S 0 if x / ∈ S (12) 
As in Theorem 4.1, if the CLF satisfies the so called small control property, then the control is continuous at the origin. Moreover, if there exists some smooth function w : X → R + strictly positive on S and such that w(x)β(x) -a(x) ≥ 0 on S, then the control is smooth on X with the choice:

α(x) := w(x) 2 β(x) -2w(x)a(x) (13) 
Before giving the proof of Theorem 4.2, let us explain the ideas behind the construction of feedback [START_REF] Sánchez | On the application of different event-based sampling strategies to the control of a simple industrial process[END_REF]. In the event function, a(x) + b(x)k(m) is the time derivative of the Lyapunov function V and therefore the event function detects when the Lyapunov function V stops to be enough decreasing. In the control, the term a(x) outside the square root is here to compensate the autonomous evolution of the CLF. The term a(x) inside the square-root is linked to the one outside by smoothness considerations. In the term β(x)α(x), β(x) is added for smoothness reasons in connection with the β(x) at the denominator and α(x) plays a fundamental role by tuning how fast the CLF must decrease when an event occurs. This is the term that enables to avoid too close successive events.

We next focus on homogeneous systems that gave rise to an important literature for general nonlinear systems (see for instance [START_REF] Faubourg | Control Lyapunov functions for homogeneous Jurdjevic-Quinn systems[END_REF][START_REF] Grüne | Homogeneous state feedback stabilization of homogeneous systems[END_REF] and the references therein) and more recently for event-based approaches (mainly in [START_REF]To sample or not to sample: Self-triggered control for nonlinear systems[END_REF][START_REF] Mazo | On self-triggered control for linear systems: Guarantees and complexity[END_REF][START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]). However, in these event-based contributions, ISS is assumed contrary to the proposed result. We shortly recall some definitions given for general nonlinear system (see the cited references for more detailed definitions and properties): Definition 4.1. For n positive real numbers r i , i ∈ {1, . . . , n}, d > -min i r i , all λ > 0, and Λ r = diag(λ r1 , λ r2 , . . . , λ rn ),

1. a function V : X → R is homogeneous of degree d if for all x ∈ X , V (Λ r x) = λ d V (x) 2. a function e : X × X → R is homogeneous of degree d if for all x, m ∈ X , e(Λ r x, Λ r m) = λ d e(x, m) 3. a vector field h : X → X is homogeneous of degree d if for all x ∈ X , h(Λ r x) = λ d Λ r h(x)
4. a controlled system of the form [START_REF] Åström | Computer Controlled Systems[END_REF] 

with feedback u = k(x) is homogeneous of degree d if k is such that x → f (x, k(x)) is homogeneous of degree d 5. an event-based controlled system of the form (2-4) is homogeneous of degree (d 1 , d 2 ) if k is such that (x, m) → f (x, k(m)
) and (x, m) → e(x, m) are respectively homogeneous of degree d 1 and d 2 .

6. the notation • Λ r will denote the homogeneous p-norm, that is:

x Λ r = n i=1 |x i | p r i 1 p
with p sufficiently large so that the norm is smooth except at the origin.

Property 4.3. Consider now an event-based controlled dynamical system homogeneous of degree (d 1 , d 2 ) then as long as the trajectory exists and is unique, the solution is such that:

x(t; Λ r x 0 ) = Λ r x(λ d1 t; x 0 ) (14) 
Proof. of Property 4.3 Between events, ( 14) holds by homogeneity of f (x, k(m)). e being homogeneous of degree d 2 , e(Λ r x, Λ r m) = λ d2 e(x, m). λ being strictly positive, e(Λ r x, Λ r m) and e(x, m) have the same sign, therefore events along the trajectories of t → x(t; Λ r x 0 ) appear for the same t as for t → Λ r x(λ d1 t; x 0 ).

For homogeneous systems, Theorem 4.2 becomes:

Theorem 4.4. Assume that f and each g i are homogeneous respectively of degree d f and d g , identical for all g i , i ∈ {1, . . . , p} with d g < d f . Assume in addition that the CLF V is homogeneous of degree d V , then the following feedback proposed in [START_REF] Tsinias | Remarks on feedback stabilizability of homogeneous systems[END_REF], that corresponds to [START_REF] Sánchez | On the application of different event-based sampling strategies to the control of a simple industrial process[END_REF] with α as in [START_REF] Lunze | A state-feedback approach to event-based control[END_REF] and

w(x) = x d f -2dg-d V Λ r , k i (x) := -νb i (x) x d f -2dg-d V Λ r (15) 
with ν > 0 sufficiently large and e as in [START_REF] Åström | Comparison of Riemann and Lebesque sampling for first order stochastic systems[END_REF] is such that:

1. the event-based controlled system is homogeneous of degree (

d f , d V + d f )
2. the event-based control is smooth and uniformly MSI 3. the CLF is strictly decreasing for all x ∈ X \ {0}

The end of the section is dedicated to the proofs of Theorems 4.2 and 4.4.

Proof. of Theorem 4.2 We begin the proof by establishing that γ is smooth on X \ {0}. For this, consider the algebraic equation:

F (x, p) := β(x)p 2 -2a(x)p -α(x) = 0 (16) 
Note first that p = γ(x) is a solution of ( 16) for all x ∈ X . It is easy to prove that the partial derivative of F with respect to p is always strictly positive on X \ {0}:

∂F ∂p := 2β(x)p -2a(x)
Indeed, when β(x) = 0, equation ( 6) gives ∂F ∂p = -2a(x) > 0 and when β(x) = 0, equation [START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF] gives ∂F ∂p = 2 a(x) 2 + β(x)α(x) > 0, ∂F ∂p never vanishes at each point of the form {(x, γ(x))|x ∈ X \ {0}}. Furthermore, F is smooth with respect to x and p since so are functions a, β and α. Therefore, using the implicit function theorem, γ is smooth on X \ {0}.

The decrease of the CLF is trivial to prove. Indeed, for each x i , i ∈ N:

dV dt (x i ) = ∂V ∂x (x i )f (x i ) + ∂V ∂x (x i )g(x i )k(x i ) = -a(x i ) 2 + β(x i )α(x i ) < 0 for all x = 0
With the updated control, the event function becomes strictly positive: e(x i , To prove that the event-based control is MSI, we have to prove that for any initial condition in a priori given set, the sampling intervals are bounded below. First of all, notice that events occur only when V vanishes or when x = 0 and therefore from equation ( 9) there is no event on the set {x ∈ X |β(x) = 0} ∪ {0}. We therefore restrict the study to the set S\ {0} where α is strictly positive by assumption. Let us rewrite the time derivative of the CLF along the trajectories:

x i ) = (1 - σ) a(x i ) 2 + β(x i )α(x i ) > 0.
dV dt (x) = a(x) + b(x)k(m) = -a(x) 2 +β(x)α(x)+b(x)(k(m)-k(x)) (17) 
where, defining for m ∈ S, ϑ m := V (m) and the set V ϑm := {x ∈ X |V (x) ≤ ϑ m }, x belongs to V ϑx ⊂ V ϑm . Note that although m must belong to S, this is not necessarily the case for x. First see that for t = t i , x = m and therefore, since α is strictly positive on S and a necessarily non zero on the frontier of S (except possibly at the origin):

dV dt (x) = -a(m) 2 + β(m)α(m) ≤ -inf m∈S s.t. V (m)=ϑm a(m) 2 + β(m)α(m) =: -χ(ϑ m ) < 0
Considering now the second time derivative of the CLF:

V (x) = ∂a ∂x (x) + k(m) T ∂b T ∂x (x) (f (x) + g(x)k(m))
By continuity of all the functions involved, both terms can be bounded for all x ∈ V ϑm by the following upper bounds ̺ 1 (ϑ m ) and ̺ 2 (ϑ m ):

̺ 1 (ϑ m ) := sup m∈S s.t. V (m)=ϑm x∈V ϑm ∂a ∂x (x) + k(m) T ∂b T ∂x (x) ̺ 2 (ϑ m ) := sup m∈S s.t. V (m)=ϑm x∈V ϑm f (x) + g(x)k(m)
Therefore, V is strictly negative at any event instant t i and can not vanish until the time τ (ϑ m ) is elapsed and this minimal sampling is only depending on the level ϑ m of the CLF in m:

τ (ϑ m ) ≥ χ(ϑ m ) ̺ 1 (ϑ m )̺ 2 (ϑ m ) > 0 (18) 
which ends the proof, the event-based feedback (10-11) is semi-uniformly MSI.

To prove the continuity of k at the origin, we only need to consider the points where β(x) = 0 since we already have k(x) = 0 if β(x) = 0. Considering first the subset where a(x) > 0, we have:

k(x) ≤ |a(x)| + a(x) 2 + β(x)α(x) β(x) ≤ 2 |a(x)| β(x) + α(x)
With the small control property, for any ε > 0, there is δ > 0 such that for any x ∈ B(δ)\ {0}, there exists some u with u ≤ ε such that a(x) + b(x)u < 0. Therefore |a(x)| < β(x)ε. The continuity of α at the origin where it vanishes yields that for the same ε there is a δ ′ > 0 such that for all x ∈ B(δ ′ )\ {0}, α(x) ≤ ε. Therefore, for any x ∈ B(min(δ, δ ′ ))\ {0}:

k(x) ≤ 3ε
Now, if a(x) ≤ 0, using the triangular inequality:

0 ≤ a(x) + a(x) 2 + β(x)α(x) ≤ β(x)α(x)
And therefore using again the continuity of α:

k(x) ≤ α(x) ≤ ε
which ends the proof of the continuity. Finally, with α as in ( 13), the control becomes k i (x) = -b i (x)w(x) which is obviously smooth on X .

Proof. of Theorem 4.4 Take ν such that:

ν > sup x∈{x∈X | x Λ r =1,a(x)≥0} a(x) β(x) x d f -2dg-d V Λ r (19) 
As in [START_REF] Tsinias | Remarks on feedback stabilizability of homogeneous systems[END_REF], k is homogeneous of degree d f -d g and the system is therefore homogeneous of degree d f . In addition e is homogeneous of degree d V + d f . Item 1 therefore holds. Thanks to Theorem 4.2, item 3 also holds and k is smooth on X . To finish the proof, remains to establish that the event-based feedback is uniformly MSI. For this, we invoke the homogeneity of the Lyapunov level sets V ϑm together with [START_REF] Donkers | Output-based event-triggered control with guaranteed L ∞gain and improved event-triggering[END_REF], it follows that for all ϑ m > 0:

τ (ϑ m ) = τ (1)

EXAMPLES

Consider the linear time-invariant system:

ẋ = Ax + Bu (20) 
Take P , a positive definite matrix solution of the Riccati equation P A+A T P -4εP BB T P = -P (that can be proved to exist as soon as (A, B) is a stabilizable pair). Then V (x) := x T P x is a CLF for system [START_REF]To sample or not to sample: Self-triggered control for nonlinear systems[END_REF] since for all x = 0, u = -2εB T P x renders V strictly negative. Since a(x) = x T (P A + A T P )x, b(x) = 2x T P B and β(x) = 4x T P BB T P x, the Riccati equation gives:

εβ(x) -a(x) = x T P x = V (x) ≥ 0 ∀x = 0 Therefore, taking w(x) = ε, and α(x) according to [START_REF] Lunze | A state-feedback approach to event-based control[END_REF] the control is smooth everywhere and linear: k(x) = -εb(x) T

We next consider the nonlinear system proposed in [START_REF] Jankovic | CLF based designs with robustness to dynamic input uncertainties[END_REF]:

ẋ1 = -x 5 1 + x 1 x 2 ẋ2 = x 2 2 + u (21) 
which admits V (x) = 1 2 x 2 as CLF and a(x) = -x 6 1 + x 2 1 x 2 + x and σ = 0.1, it gives the trajectories of the states, control and event function represented in Figure 1. Now, taking w(x)

= 1 2 (1 + x 2 ) 2 , w(x)β(x) -a(x) = x 3 1 x 2 1 -1 2 -1 2 1 2 x 3 1 x 2 + 1 2 x 4 2
is strictly positive for all x = 0. Therefore with α(x) as in ( 13), the control is smooth. The resulting trajectories with σ = 0.1 are represented in Figure 2.

CONCLUSION

In this paper, we proposed an extension of the universal formula for smooth feedback stabilization to event-based controlled systems. A modification of the original formula is necessary to ensure that there is a minimal sampling interval between two consecutive events avoiding phenomena like accumulation points. As in the original work, if the Control Lyapunov Function fulfills the small control property, then the control is continuous at the origin. With additional homogeneity assumptions, the control can be proved to be smooth everywhere and the minimal sampling intervals bounded below for all initial conditions. 

  denoting the value of the state when the i th event occurs. With the following different feedback laws and event functions and initial conditions, it gives: 1. k(x) = -x, e(x) = 0 when |x| = exp(-κ), κ ∈ Z and initial condition x 0 = 0. Then T e,k,x0 := {0}

Property 3 . 3 (Property 3 . 4 (

 3334 Semi-uniformly MSI event-based control). An event-based control (k, e) will be said semi-uniformly MSI if and only if for any δ > 0:τ (δ) := inf i∈N,ti∈T (x0),x0∈B(δ)t i+1 -t i > 0 Uniformly MSI event-based control). An event-based control (k, e) will be said uniformly MSI if and only if:

  , p} where a(x) := ∂V ∂x f (x), b(x) := ∂V ∂x g(x), β(x) := b(x)

3 2 ,

 2 b(x) = x 2 . Taking α(x) = β(x) + a(x) 2

Figure 1 :

 1 Figure 1: System (21) under event-based control with α(x) = β(x) + a(x) 2 . The red dots represent the events instants.

Figure 2 :

 2 Figure 2: System (21) under smooth event-based control. The red dots represents the events instants.

  Therefore, by smoothness of the Lyapunov function V , f and g, it clearly follows that dV dt (x(t; x i , t i )) < 0 for all t ∈ [t i , t i+1 [, that is until the next event occurs. t i+1 is necessarily bounded since, if not, the Lyapunov function V should converge to a constant value where dV dt = 0. The event function precisely prevents this phenomena detecting dV dt is close to vanish and updates the control if it happens.