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1. Introduction

Let X = (X1, X2, · · · ) be a sequence of observations associated to a semi-
parametric model Pθ0 where θ0 denotes the (finite dimensional) parameter of
the true model. We assume that θ0 lies in the interior of Θ, a compact subset
of Rm.

We associate a subset P of M = {1, 2, · · · ,m} to the sub model ΘP = {θ ∈ Θ
s.t. for i /∈ P , θi = 0} : p, the cardinal of P, is the dimension of the model
ΘP , while M is the “support” of the dominating model ΘM of dimension m.
We study in this paper the problem of identifying P0, the support of the true
model ΘP0 :

P0 = {i ∈ M : θi,0 6= 0}.
The framework is that of model selection by penalized contrast ([2], [16], [14],

[12]). The selection criterion minimizes in P ⊆ M an estimating contrast Un(θ)
in ΘP , this contrast being penalized at a rate cn by the dimension p of model
ΘP . Precisely, the procedure is the following:
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(i) estimate θ0 in ΘP by minimizing contrast Un:

θ̂P ≡ θ̂P,n = arg min
θ∈ΘP

Un(θ) (1.1)

(ii) estimate P0 by:

P̂n = arg min
{

Un(θ̂P ) +
cn

n
p : P ⊆ M

}
. (1.2)

For instance, if Un is − 2
n times the log-likelihood, we meet the AIC criterion

with cn = 2 ([2]) and the BIC with cn = log n ([15]).

Therefore, we prefer P than the true model P0 if and only if:

∆n(P, P0)
.= Un(θ̂P )− Un(θ̂P0) <

cn

n
(p0 − p). (1.3)

Let us define the underfitting subset M−
n and the overfitting one M+

n in the
following way:

M−
n = {P̂n + P0} , M+

n = {P̂n ) P0}. (1.4)

Such a penalization criterion for model selection was first introduced by
Akaike ([2]). The literature on the subject is huge, but essentially deals with
consistency or asymptotic properties of the estimator θ̂P , or with the choice of
the penalization rate. There are less studies on the mis-fitting subsets (see for
instance [3], [4], [12]). Following Guyon and Yao’s approach ([12]), the aim of
this work is to describe those two subsets when Un is a least squares contrast.

Let us precise our framework: let θ 7→ γ(θ) be a continuous and injective
function from Θ = ΘM ⊆ Rm in RK and let Tn = Tn(X(n)) ∈ RK be an
estimator of γ(θ). In all this work, we consider the least squares contrast :

Un(θ) = ‖Tn − γ(θ)‖2 .

where ‖·‖ is the euclidian norm on RK .
Without any particular assumption, this simple specification on the type of

contrast allows us the description of the poor parametrization subsets. The least
squares contrast is commonly used and our result applies in many applications.
As an illustration, we give hereafter some examples.

Moments method: γ(θ) is a vector of K moments of a real random variable
with distribution Pθ, γ(.) allowing θ’s identifiability, and Tn is the empirical
moments estimator.

Linear regression: Y = Xθ + ε, and denoting Tn = (tXX)−1 tXY ,

Un(θ) = n−1 ‖Y −Xθ‖2 = un + ‖θ − Tn‖2
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Mixture models: The dominating model Θm is associated to a family of
component models in the following way:

Θm = ∪LΘl(αl) with L = {1, 2, ..., L}.
A sub model is then identified in two steps : (i) first choose a part V of L, (ii)
then choose a sub model in each Θl, l ∈ V .

For instance, in the regression model E[Y ] = a + b(x + cx2) + d(z + exz),
sub-models correspond to the choices Θ1 = {a}, Θ2 = {(b, c) : b 6= 0 if c 6= 0},
and Θ3 = {(d, e) : d 6= 0 if e 6= 0}. Here, for instance the choice of Θ2 means
that x2 can occur only together with x (and same for Θ3).

Covariance of a time series, variogram mixture for an intrinsic ran-
dom field

Let (Xn)n∈Z be a zero mean stationary real valued time series, with covari-
ance C a mixture of possible accurate covariances. For instance, for C(h) =
C1(h, θ1)+C2(h, θ2) = a1c1(h, α1)+a2c2(h, α2), sub-models are based on Θ1 =
{a1, α1 : a1 6= 0, α1 ∈ Rl}, Θ2 = {a2, α2 : a2 6= 0, α2 ∈ Rq} and Θ1 ∪Θ2, with
the possibility of choosing sub-models in each Θi, i = 1, 2.

Tn is the empirical estimator of the vector γ(θ) = (C(h, θ) : h ∈ H)T where
H = {hk, k = 1,K} is a set of lags allowing identifiabilty of θ.

In the spatial case, we consider X = {Xs, s ∈ S} an intrinsic zero mean
random field defined on Rd with variogram 2γ(h) = E[(Xs+h −Xs)2] ([6], [5],
[10]; γ(h) = C(0)−C(h) when X is stationary with covariance C). As previously,
we determine the right variogram, a mixture of different predefined variogram,
using a penalized least squares contrast procedure (see § 3). Identification of the
variogram is the key function in geostatistics as it will be used to fit a model of
the temporal/spatial correlation of the observed phenomenon.

The paper is organized as follows. We present the evaluation of the misfitting
subsets M−

n and M+
n in section 2. Then, coming back to the examples of a

mixture of covariances or of variograms in the spatial framework, we give in
section 3 general assumptions on the underlying processes and on the sequence
of penalization rates that lead to true model identification.

2. Description of the over and under parametrization subsets

The identification procedure is given by (1.2) and over and under parametriza-
tion subsets are given by (1.4).

2.1. The nearest neighbour distance for a model P

Let us note γ0 = γ(θ0) and, for P ⊆ M , ΓP = {γ(θ) : θ ∈ ΘP } the γ−image of
ΘP . Since the map γ(.) is continuous, ΓP is a compact submanifold of RK , ΓM

being the dominating manifold: if P ⊆ Q ⊆ M , ΓP ⊆ ΓQ ⊆ ΓM ⊆ RK .
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For any g ∈ RK and P ⊆ M , because of the continuity of δ 7→ ‖δ − g‖2
together with ΓP ’s compactness, there exists γP (g) ∈ ΓP , a nearest neighbour
of g in ΓP , and θP (g) ∈ ΘP such that:

σP (g) = ‖γP (g)− g‖2 = min
δ∈ΓP

‖δ − g‖2 = min
θ∈ΘP

‖γ(θ)− g‖2 = U(θP (g), g).

θP (g) can be seen as a least squares estimator of θ in ΘP if g estimates γ(θ),
and γP (g) = γ(θP (g)) as a nearest neighbour of g for the model P.

Let us underline the different behaviours of g 7→ σP (g) depending on whether
P corresponds to an under or over model:

• if P + P0, σP (γ0) > 0; indeed, there exists i ∈ P0 such that i /∈ P , in
which case θi,0 6= 0 and θi = 0 for all θ ∈ ΘP ; thus δ 6= γ0 for all δ ∈ ΓP .

• On the contrary, if P ⊇ P0, γ0 ∈ ΓP and σP (γ0) = 0.

The continuity control of map g 7→ σP (g) is the main point, leading to the
description of M−

n and M+
n . Coming back to their writings (1.3), we have to

compare ∆n(P, P0)
.= Un(θ̂P ) − Un(θ̂P0) with cn

n (p0 − p). Thus, we use the
following decomposition:

∆n(P, P0)
.= Un(θ̂P )− Un(θ̂P0) = σP (Tn)− σP0(Tn) (2.1)
= ξ1 + ξ2(P, P0) + ξ3, where

ξ2(P, P0) = σP (γ0)− σP0(γ0), and (2.2)

ξ1 = σP (Tn)− σP (γ0), ξ3 = σP0(γ0)− σP0(Tn). (2.3)

2.2. The underfitting subset M−
n

2.2.1. Continuity of the nearest neighbour distance

For g, g′ ∈ RK and P ⊆ M , denote the points g, γP (g), g′ and γP (g′) of RK by
A,B, C and D respectively, and let UV be the length of [U, V ]. g, g′ are any
points in RK and γP (g), γP (g′) are in ΓP . We have:

σP (g′)− σP (g) = CD2 −AB2 = (CD −AB)(CD + AB). (2.4)

Since D is a nearest neighbour of C in ΓP , CD ≤ CB. Moreover, the triangle
inequality gives CB ≤ CA + AB. Then we can write:

CD −AB ≤ CB −AB ≤ CA.

Analogously, we have AB − CD ≤ CA, that is:

|CD −AB| ≤ CA.

Let us define r = sup{‖δ‖ : δ ∈ ΓM}. Since ΓM is compact, r < ∞ and
CD + AB is upper bounded by ‖g‖+ ‖g′‖+ 2× r. This ensures:

∀P ⊆ M , ∀g, g′ ∈ Rk : |σP (g′)− σP (g)| ≤ {‖g‖+‖g′‖+2×r}×‖g′ − g‖ . (2.5)
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2.2.2. Control for ∆n(P, P0)

From (2.5) and since γ0 ∈ ΓM ,

|ξ1| and |ξ3| ≤ δ(Tn, γ0) = {‖Tn‖+ 3× r} ‖Tn − γ0‖ .

Besides, if P # P0, σP (γ0) > 0 and

∆ = inf{σP (γ0)− σP0(γ0) : M ⊇ P # P0} = inf{σP (γ0) : M ⊇ P # P0} > 0.
(2.6)

Then we have ξ2(P, P0) ≥ ∆ > 0 and ∆n(P, P0) ≥ ∆− 2δ(Tn, γ0).
We then set:

η0 =
∆
m

and δ0 =
1
2
(∆−m

cn

n
). (2.7)

Therefore, δ0 is strictly positive if cn staisfies:

cn

n
< η0, (2.8)

in which case, if δ(Tn, γ0) < δ0,

∆n(P, P0) ≥ ∆− 2δ(Tn, γ0) > m× cn

n
≥ (p0 − p)× cn

n
,

meaning, from (1.3), that P0 is prefered than P .
This gives a first description of M−

n :

if
cn

n
< η0, then M−

n ⊆ {(‖Tn‖+ 3× r) ‖Tn − γ0‖ ≥ δ0}.

Now, let us note An = {(‖Tn‖+ 3× r) ‖Tn − γ0‖ ≥ δ0}, Bn = {‖Tn − γ0‖ ≥
δ0}, Bn = {‖Tn − γ0‖ < δ0}. We have:

An = (An ∩Bn) ∪ (An ∩Bn) ⊆ Bn ∪ (An ∩Bn).

But Bn ⊆ Cn = {‖Tn‖ < ‖γ0‖ + δ0}. Therefore we get the final description of
M−

n :

M−
n ⊆ An ⊆ Bn ∪ {An ∩Bn} ⊆ Bn ∪ {An ∩ Cn}
⊆ {‖Tn − γ0‖ ≥ δ0} ∪ {(‖γ0‖+ δ0 + 3× r) ‖Tn − γ0‖ ≥ δ0}

⊆ {‖Tn − γ0‖ ≥ δ∗0} where δ∗0 = inf{δ0,
δ0

‖γ0‖+ δ0 + 3× r
}.

2.3. The overfitting subset M+
n

We assume that P ) P0. We denote the points γ0, γP (γ0), g′ and γ(g′) of RK

by A, B, C and D respectively. Since γP (γ0) = γ0, A and B are identical and
σP (γ0) = 0. Let us then evaluate |σP (g′)− σP (γ0)| = σP (g′).
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Since D is a point of ΓP nearest of C, CD2 ≤ CA2. So, uniformly in P ,
P ) P0 :

|σP (g′)− σP (γ0)| = σP (g′) ≤ ‖g′ − γ0‖2 .

Moreover, ξ2(P, P0) = 0 in formula (2.1). Therefore, ‖Tn − γ0‖ <
√

cn

2n leads to:

∆n(P, P0) ≥ −2 ‖Tn − γ0‖2 > −cn

n
≥ (p0 − p)

cn

n
,

that is P0 is prefered to P . We deduce that, without any condition on cn:

M+
n ⊆ {‖Tn − γ0‖ ≥

√
cn

2n
}.

2.4. Descriptions of M−
n and M+

n

Finally we have the following result.

Theorem 2.1. Let Un be the least squares contrast

Un(θ) = ‖Tn − γ(θ)‖2

where θ 7→ γ(θ) is injective and continuous from the compact set Θmin RK and
Tn ∈ RK is an estimator of γ(θ).

Let Θm be the dominating model with support M = {1, ...m}, θ0 the true
value of the parameter, γ0 = γ(θ0), and P0 the true model’s support. We have
the following estimations of mis parametrization subsets (1.4) for the model
selection criterion (1.2):

(i) Underfitting subset M−
n :

We set ∆ = infP {minθ∈ΘP ‖γ(θ)− γ0‖2 : M ⊇ P # P0} > 0. If cn

n < ∆
m

there exists a strictly positive threshold δ∗0 such that

M−
n ⊆ {‖Tn − γ0‖ ≥ δ∗0} (2.9)

(ii) Overfitting subset M+
n : Without any condition on cn, we have:

M+
n ⊆ {‖Tn − γ0‖ ≥

√
cn

2n
}. (2.10)

Comments.

1. As in Shibata ([16], see also ([12])), the result points the important dis-
symmetry of M−

n and M+
n .

2. Similar results hold for the contrast Vn(θ) =
√

Un(θ) = ‖Tn − γ(θ)‖. In
fact, the previous step can be applied replacing g 7→ σP (g) by τP (g) =
‖γP (g)− g‖. For the same constants η0 and δ0 (2.7), we get the estima-
tions:

if
cn

n
< η0 : M−

n ⊆ {‖Tn − γ0‖ ≥ δ0},
and without any assumption on cn:

M+
n ⊆ {‖Tn − γ0‖ ≥ cn

2n
}.
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3. Applications

3.1. A covariance mixture

Let (Xn)n∈Z be a zero mean real valued stationary time series with covariance
function C. The goal is to determine C under very mild assumptions on X. In
fact, we will assume that X is an η−weakly dependent process ([8]); this class of
dependent processes generalizes and avoids some difficulties linked with strong
mixing properties. It includes a lot of models like linear or bilinear strong mix-
ing processes, non causal time series or gaussien weakly dependant processes
particularly.

We assess C is a mixture of three covariances, those of a white noise, an ex-
ponential covariance and a Gaussian one. We set C(h) = C1(h, θ1)+C2(h, θ2)+
C3(h, θ3), with

C1(h, θ1) = σ2
1 1{0}(h), θ1 = σ2

1 > 0,

C2(h, θ2) = σ2
2 exp{−ρ2 |h|}, θ2 = (σ2

2 , ρ2), σ2
2 > 0, ρ2 > 0 and

C3(h, θ3) = σ2
3 exp{−ρ3|h|2}, θ3 = (σ2

3 , ρ3), σ2
3 > 0, ρ3 > 0.

We consider the sub-models P1 to P7 = M linked to the following settings:
θ1, θ2, θ3, (θ1, θ2), (θ1, θ3), (θ2, θ3), (θ1, θ2, θ3).

For a n− sample (X1, ..., Xn), we denote Ĉ(h) = 1
n−h

∑n−h
i=1 XiXi+h the

empirical covariance at lag 0 ≤ h < n. Let H = {h1, ..., hK} be a subset of K

lags (K ≥ m), γ(θ) = (C(h), h ∈ H)T ∈ RK and Tn = (Ĉ(h), h ∈ H)T . The
set H is chosen such that it ensures to identify θ. It’s not always easy to check
analytically this condition, but we can increase K to make it sure.

For each sub-model P, the least squares contrast and associated estimator
are defined by

Un(θ) = ‖Tn − γ(θ)‖2 =
∑

i=1,K

(
Ĉ(hi)− C(hi; θ)

)2

and θ̂P = arg min
θ∈ΘP

Un(θ).

We set the following assumptions on the X process : there exists q > 4 such
that E[|X|q] < ∞, and X is an η−weakly dependent process ([8], [9]) such that
the sequence η = (ηr)r∈N verifies: 0 < ηr = O(r−α) with α > max(3, 2m−1

m−4 ).
This condition is not very restrictive and is satisfied, for example, for a Gaussian
process whose covariance decreases exponentially.

Denoting θ0 the true value of the parameter, then the vector
√

n(Tn− γ(θ0))
converges in distribution to a zero mean Gaussian variable ([9] theorem 1). This
implies that the penalized least squares criterion identifies the true sub-model
with probability 1 as soon as the sequence of penalization rates is such that
cn →∞ and cn = o(n).

We can consider many variants on the previous covariance model ([17], [6], [5])
as, for instance, C2 extand to the 3-dimensional model C2(h, θ2) = σ2

2 cos(τh) exp{−ρ2 |h|},
θ2 = (σ2

2 , ρ2, τ).
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Example 2 - A variogram mixture in geostatistics
Let X = {Xs, s ∈ S} be a real valued intrinsic random field on Rd, with

variogram v(h) = v1(h, θ1) + v2(h, θ2) + v3(h, θ3), where v1 is the pure nugget
variogram, v2 is Matérn’s variogram, and v3 is the power variogram ([6], [5],
[10]):

v1(h, θ1) = σ2
1 pour ‖h‖ > 0, γ1(0, θ1) = 0, θ1 = σ2

1

v2(h, θ2) = σ2
2{1−

21−ν

Γ(ν)
(b ‖h‖)νKν(b ‖h‖)}, b > 0, ν > −1, θ1 = (σ2

2 , ν, b),

v3(h, θ3) = σ2
3 ‖h‖c , 0 < c ≤ 2, θ3 = (σ2

3 , c).

Here ‖·‖ is the euclidian norm on Rd and Kν is the Bessel function of the second
kind of parameter ν ([1]); ν = 1

2 (resp. ν = ∞) correspond to the exponential
(resp. gaussian) variograms.

If the first two components of v can be associated to a stationary covariance,
it is not the case for the third one since it is not bounded. This mixture model
includes 6 parameters, and involves standardly seven sub-models. We can also
extend the model to anisotropy, for instance, geometric anisotropy where ‖h‖2
is replaced by ‖Ah‖2 for A definite positive.

Suppose that X is observed on a sequence of increasing domains Dn of car-
dinal dn; for instance, Dn = (nB(0, r)) ∩ Zd where B(0, r) is the ball of radius
r of Rd, and dn = O(nd). We choose a family of lags H = {h1, ..., hK} such that
the map γ : θ → γ(θ) = (v(h), h ∈ H)T is injective. For each h ∈ H we define
the empirical estimator linked to the variogram cloud {(si − sj), si, sj ∈ Dn},

γ̂n(h) =
1

2|Nn,h|
∑

si,sj∈Nn,h

(Xsi −Xsj )
2

where Nn,h = {(si, sj) ∈ Dn : ||si − sj || ' h} approximates the class of couples
of sites (si, sj) at distance h ([6]). Therefore, we note Tn = (γ̂n(h), h ∈ H)T .

For each sub-model P, we consider the least squares contrast and the associ-
ated estimator

Un(θ) = ||Tn − γ(θ)||2 =
K∑

i=1

(γ̂n(hi)− γ(hi; θ))
2

θ̂n,P = arg min
θ∈ΘP

Un(θ).

Let us note for each lag h ∈ H, Z(h) = {Zs(h) = (Xs+h − Xs), s ∈ Rd}
the field of the h−increments. We make the following assumptionṡ. There exists
η > 0 such that E[Zs(h)4+η] < ∞, and Z(h) is α−mixing ([7]) satisfying:

∃C < ∞ and τ >
(4 + η)d

η
such that for all k, l, m : αk,l(m) ≤ Cm−τ . (3.1)

Then the vector d
− 1

2
n (Tn − γ(θ))T is asymptotically zero mean Gaussian dis-

tributed ([10], [13]). Therefore, the penalized least squares criterion well-identifies
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the true sub-model with probability tending to 1 as soon as the sequence of pe-
nalization rates tends to infinity and verifies cn = o(d−1

n ).Condition (3.1) above
is not very restrictive and is verified in many cases; for instance it applies for
gaussian stationary fields Z(s) with exponentially decreasing covariance.
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