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Abstract

Industrial production of glass involves natural convection of viscous fluids heated from
above in shallow cavities. This problem is revisited by means of extensive numerical
simulations and analytical expansions for a 2D configuration.

This approach yields exact and approximate analytical expressions that can be practi-
cally used to evaluate the convective intensity and the heat flux in the different regimes.

These results also confirm that the control parameter for this problem is the product
of the Rayleigh number, based on the height of the enclosure, by the cavity aspect ratio
squared whatever the top boundary conditions.

Key words: Natural convection, glass furnace, Nusselt number, shallow cavity,
asymptotic analysis, numerical simulation

Nomenclature

Roman symbols

A aspect ratio, = H/L –
A0 Function of y in the zero order asymptotic solution –
A1 Function of y in the first order asymptotic solution –
B1 Function of y in the first order asymptotic solution –
C1 Function of y in the first order asymptotic solution –
D1 Function of y in the first order asymptotic solution –
ex Unit vector along the x coordinate –
ey Unit vector along the y coordinate –
g Gravity constant m·s−2

H Cavity height m
L Cavity length m
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Nu Nusselt number, = (∂T/∂n)/(∆T/H) –
〈Nu〉 Average Nusselt number based on L2 norm of Nu –
P , P Dimensionless pressure –
Pe Péclet number, = u0L/κ –
Pr Prandtl number, = ν/κ –
Ra Rayleigh number based on height H –
T Temperature K
u, u Dimensionless longitudinal velocity component –
v, v Dimensionless vertical velocity component –
x, x Dimensionless longitudinal coordinate –
y, y Dimensionless vertical coordinate –

Greek symbols

β Heat expansion coefficient K−1

∆T Temperature difference, = T+ − T− K
κ Heat diffusivity m2·s−1

ν Kinematic viscosity m2·s−1

θ Dimensionless temperature, = (T − T−)/(T+ − T−) –

Subscripts

0 Characteristic scale or zeroth order asymptotic solu-
tion

1 First order asymptotic solution
+ Cold temperature
− Hot temperature

Superscripts

′ Derivate with respect to y

1. Introduction

Although generally poorly known to the general public, industrial glassmaking involves
multiple heat and mass transfer phenomena. Glass furnaces are essentially made up of a
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combustion system and a tank within which raw materials undergo a series of high tem-
perature chemical reactions, finally producing a homogeneous glass. Within these long
and shallow tanks, convective motion driven by controlled temperature gradients move
the liquid “uphill”. The magnitude of the velocity sets the residence time distribution
and the mixing intensity, both of which impact the power needed to make glass, i.e. the
eventual energy consumption of an industrial plant. Although velocity and temperature
fields in glass furnaces can be computed using various numerical tools, the understanding
of heat and mass transfer phenomena is still partial. Furnace design should be improved
through better knowledge of the key parameters driving natural convection inside the
glass bath.

The purpose of this paper is to give a physical insight to the phenomena at play and
provide analytical “ready to use” formula on natural convection.

At high temperature, molten glass is a Newtonian fluid : its mechanical properties
are properly described by a scalar viscosity, that, depends on temperature [16]. In large
window glass furnaces, where the melt temperature varies from 1200 to 1500 ◦C, viscosity
ranges over about one order of magnitude. Molten glass being also a semi-transparent
media, heat transfer is not only conductive but also radiative. However, for most common
glasses, including ordinary transparent window glass, the absorption length is such that
radiation can be approximated by a conductive model [9, 17] where the equivalent heat
conductivity varies like T 3 (Rosseland approximation). As a consequence the Prandtl
number based on the effective conductivity and the viscosity ranges from 2 ·103 to 2 ·104.
Detailed calculations outside the scope of the paper show that the actual impact of these
variations does not bring any new phenomena.

Since furnaces are generally longer and wider than they are high (for a precise de-
scription of technology see Ref. [19]), main flow structures take place in the longitudinal
plane. The problem can thus be studied in a long 2D cavity. To mimic the fact that glass
is heated by gas flames from above and cooled by raw materials floating on the surface
next to where they are charged, an uneven temperature profile is applied on the upper
boundary. The presence of raw materials and sometime foam floating at the surface of
a glass furnace make it difficult to describe the kinematic conditions for the liquid. It is
known in this kind of convection problems [4] that the choice of slip or no slip does not
modify the fluid physics at play in the bulk nor the scaling laws for the overall motion.
For our goal, we do choose the simplest case for our model, i.e. an all no-slip condition
enclosure. Although a number of authors have recently studied similar problems [4, 10],
none has yet provided a set of laws that could be used by a practitioner to design such
a convection tank and control the flow structure.

In the following, a sinusoidal temperature profile is imposed along the top of the
cavity like already done by Somerville [18]. Such a choice brings numerous benefits:
it allows for a regular solution at the corners and makes some analytical calculations
possible. That does not restrict the generality of the analysis since it is the first term
of a Fourier development of any similar, realistic, imposed temperature profile. Finally,
in the following analysis, the Prandtl number is assumed to be large in order to mimic
glass properties.

This situation is not far from the case where the cavity is heated along its side walls. In
both cases, convection occurs without threshold and is mainly driven by the longitudinal
thermal gradient. As it has been shown in [7], scaling laws can be obtained by balancing
terms in the equations of motions, without involving the actual boundary conditions. For
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the cavity heated along its side walls, Böhrer [3] compiled a large amount of numerical and
experimental data. He studied kinematic and thermal structures and suggested that the
governing parameter is the product of the Rayleigh number by the aspect ratio squared1,
Ra A2. Later, Flesselles and Pigeonneau [7] presented a scale analysis to explain why
Ra A2 is the governing parameter. That is compatible with the results of Chiu-Webster
et al. [4], where a linear profile was applied to the upper limit, but analyzed with a
different set of variables (although with similar notations).

The problem is presented in section 2, where cavity geometry and boundary conditions
are defined. Section 3 is devoted to the presentation of the numerical results and their
analysis. Conclusions are given in section 4. Appendix A details the asymptotic solution
of heat and mass transfer in the enclosure when the aspect ratio is small.

2. Problem statement

We consider a two-dimensional rectangular shallow cavity of height H and length L
placed within the gravity field g. It is filled with an incompressible fluid, the kinematic
viscosity, ν, and the heat diffusivity, κ, of which are constant. Figure 1 gives the kinematic
and thermal boundary conditions. The following temperature profile is imposed along
the upper boundary

T (x) = T− +
∆T

2

[

1 − cos
(

π
x

L

)]

. (1)

The temperature difference is defined by ∆T = T+ − T− where T+ > T−. Adiabatic
conditions are applied along the other walls. Equation (1) ensures continuity with the
vanishing heat flux along the left and right sides. No-slip conditions are used along all
boundaries.

The problem is governed by three dimensionless numbers (see Batchelor [1]) viz. the
Prandtl number Pr, the aspect ratio A, and the Rayleigh number Ra given respectively
by:

Pr =
ν

κ
, (2a)

A =
H

L
, (2b)

Ra =
gβ∆TH3

νκ
, (2c)

where, in Eq. (2c), β is the heat expansion coefficient. The Prandtl number Pr depends
only on the fluid’s physical properties. Previous work of Rossby [15], Lim et al. [13]
and Gramberg et al. [10] has shown that heat and mass transfer are insensitive to the
Prandtl number if the latter is large enough. Consequently, Pr is henceforth taken as
constant and equal to 103. In the following, the aspect ratio A is less than unity. The
Rayleigh number, Ra, controls heat and mass transfer.

In articles [5, 7], the authors showed that the longitudinal velocity scales as Raκ/L for
small aspect ratios and small Rayleigh numbers. This velocity is used to normalize bal-
ance equations. All spatial coordinates are normalized by the height, H . Dimensionless
equations written within the framework of the Oberbeek-Boussinesq approximation are

1Definitions of these quantities will be given below and can also be found in the Nomenclature.
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Figure 1: Rectangular cavity with kinematic and thermal boundary conditions.

∂u

∂x
+

∂v

∂y
= 0, (3a)

u
∂u

∂x
+ v

∂u

∂y
= −∂P

∂x
+

Pr

Ra A

(

∂2u

∂x2
+

∂2u

∂y2

)

, (3b)

u
∂v

∂x
+ v

∂v

∂y
= −∂P

∂y
+

Pr

Ra A

(

∂2v

∂x2
+

∂2v

∂y2

)

+
Pr

RaA2
θ, (3c)

u
∂θ

∂x
+ v

∂θ

∂y
=

1

RaA

(

∂2θ

∂x2
+

∂2θ

∂y2

)

. (3d)

The horizontal and vertical velocity components are, respectively, u and v where P is
the pressure. The dimensionless temperature is

θ =
T − T−

T+ − T−

. (4)

We present herewithin a numerical solution obtained using a commercial CFD software
based on the finite volume method. A segregated solver is used to solve iteratively each
equation. Pressure and velocity fields are decoupled via the semi-implicit method for
pressure linked equation (SIMPLE), [8]. The convective term gradients are determined
by a third-order QUICK scheme introduced by Leonard [12]. About hundred cases have
been run for which A varies between 1/50 and 1/5 and Ra from 1 to 109. The domain
is meshed with a mapped grid using a square finite volume. The mesh size is equal to
2 · 10−2 regardless of the Rayleigh number, so that the largest number of finite volumes
is 125000 obtained for A equal to 1/50. This spatial resolution is enough to capture the
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Isotherms Streamlines

(a) Ra=1e-3

(b) Ra=1e6

Figure 2: Isotherms and streamlines in a cavity with aspect ratio equal to 1/5 for Ra = 10−3 (first row)
and Ra = 106 (second row).

boundary layer that is observed in the numerical solution and that follows the scaling
established in the next section. The steady state solution is obtained when the residuals
on the continuity and energy equations are equal to 10−8. For the momentum equations,
the residuals are 10−6.

3. Results

Previous results [3, 4, 7] suggest that two kinds of flow emerge. The first one, ob-
served at small Rayleigh numbers, is dominated by thermal conduction and is called the
conductive regime. The second kind of flow is obtained at large Rayleigh numbers and
is characterized by a boundary layer below the upper boundary. This second regime is
driven by convection and is therefore called the convective regime.

The typical thermal and kinematic patterns for (a) a small Rayleigh number, (10−3),
and (b) a large Ra, (106), in a cavity with A = 1/5 are shown in Figure 2. When
Ra = 10−3, the flow is in the conductive regime. The main thermal gradient is along
the longitudinal coordinate. The streamlines present a pointwise symmetry around the
center of the cavity. In the convective regime (see Figure 2-b), the symmetry is broken
both on isotherms and streamlines. The thermal field is mainly driven by convection,
which leads to the boundary layer just below the top boundary and a strong stratification
in the bulk of the cavity. As seen in the streamline pattern, the flow is shifted toward
the cold side (to the left of the enclosure). Close to the top left corner, the fluid falls
down in the form of a plume.

In the following, the convective intensity and the heat flux on the upper limit are
successively studied. The numerical results are compared to the asymptotic solution,
given in Appendix A, obtained when A and Ra are small.

3.1. Péclet number in the enclosure

The maximum of the x-velocity sets the velocity scale in the enclosure and characterizes
the convective intensity. The Péclet number is defined as

Pe =
|u|maxL

κ
, (5)

where |u|max is the maximum of the longitudinal velocity in physical dimensions. With
the normalization used to numerically solve the problem, the x-velocity maximum is
equal to the ratio Pe / Ra.
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Figure 3: Pe A2 as a function of Ra A2 for cavities with aspect ratios of 1/50, 1/40, 1/30, 1/20, 1/10,
1/7 and 1/5.

In order to investigate the convective intensity, PeA2 versus RaA2 is plotted in Figure
3 for seven aspect ratios and Ra ranging from 1 to 109. The merging of all numerical
data onto a single curve confirms that Ra A2 remains the control parameter whatever the
boundary conditions: differentially heated end walls [3, 7] or an uneven top temperature
profile. In both situations, convection occurs without threshold. It follows from the
criteria pointed out by Joseph [11], i.e. the non zero value of the cross product of the
thermal gradient and the gravity vector. So, the observed scaling is the consequence of
the balance between the vorticity and the thermal gradient.

In summary, for the convective intensity:
For Ra A2 ≤ 10,

Pe A2 =
π
√

3

432
RaA2

≈ 1.26 · 10−3 Ra A2, (6)

and for RaA2 ≥ 104,

PeA2 = 4.6 · 10−1(Ra A2)2/5, (7)

Eq. (6), plotted as a solid line in Figure 3, comes from the asymptotic analysis. In that
regime, PeA2 is proportional to Ra A2. Eq. (7) is plotted as a dashed line in Figure 3.
The coefficient comes from fitting numerical data to (Ra A2)2/5, where the 2/5 exponent
is explained in [7].

Finally, in order to obtain a practical estimate of the convective intensity, a harmonic
average of Eqs. (6) and (7), written as follows, can be used:

PeA2 =

{

(

1.26 · 10−3 Ra A2
)−1

+
[

4.6 · 10−1(Ra A2)2/5
]

−1
}

−1

. (8)
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The dotted-dashed line in Figure 3 represents this solution. It is close to all numerical
data with an error smaller than 15 %.

3.2. Nusselt number on the upper limit

The Nusselt number represents the normalized heat flux. With our normalization, it
can be defined locally as follows

Nu(x) =
∂θ(x, 1)

∂y
. (9)

From the asymptotic solution given in Appendix A, the Nusselt number in the con-
ductive regime is given by

Nu(x) = −π2A2

2

(

1 − A2 π2

3

)

cos(πAx) +
Ra A4π4 cos(2πAx)

1920
−

(Ra A2)2π4 cos(πAx) sin2(πAx)

967680
+ O(A6, (Ra A2)3). (10)

For small Rayleigh numbers, the leading term of Nu is proportional to A2. Higher
order terms are proportional to powers of A2 and Ra A2. Equation (10) is compared to
numerical results on Figure 4. When RaA2 is sufficiently small (typically less than 102),
the Nusselt number follows the sinusoidal function as predicted by (10): the local Nusselt
number reaches its maximum at the top corners of the enclosure. As RaA2 increases,
the convective transfer leads to a qualitative change of behavior in the Nusselt number
along the longitudinal axis: the local maxima move from the vertical sides to the interior
of the enclosure. The asymptotic solution reproduces this trend.

A global expression of the Nusselt number is needed to study the heat flux over the
entire range of Rayleigh numbers. Since the average heat flux is null, we take the L2

norm of Nu(x) defined by:

〈Nu〉 =

√

A

∫ 1/A

0

Nu2(x)dx. (11)

〈Nu〉, obtained from numerical simulations, is plotted as a function of Ra A2 in Figure
5. Once again, RaA2 appears as a relevant quantity. The results can be summed up as
follows:
For Ra A2 ≤ 10:

〈Nu〉 =
π2A2

2
√

2

(

1 − A2 π2

3

)

, (12)

and for RaA2 ≥ 103:
〈Nu〉 = 0.245(RaA2)1/5. (13)

Eq. (12) corresponds to the conductive regime represented by horizontal lines in Figure
5. The Nusselt number is independent of RaA2 and depends only on the aspect ratio
squared. Eq. (13) is a consequence of the scaling law for the convective regime whose
the coefficient is a fit of numerical data. In this regime, the heat flux is driven by the
boundary layer occurring just below the upper limit of the cavity.
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The scaling obtained in the convective regime can be easily recovered using a simple
argument. Under the convective regime, cavity height is irrelevant to scale the boundary
layer thickness and dimensional analysis shows that the only possible length scale is
[κνL2/(gβ∆T )]1/5. Consequently, the laws for the Nusselt number in the convective
regime should hold no matter what temperature profile is applied to the upper boundary
of a long cavity filled with a high Prandtl number fluid.

Between these two asymptotic regimes, i.e. for Ra A2 ∈]10; 103[, the Nusselt number
rises sharply due to the contribution of convection. Heat flux must be a function of Ra A2

when convection becomes predominant. A fit in this intermediate region is:

〈Nu〉 = 1.8 · 10−4(Ra A2)1.4. (14)

The approximation (14), represented by solid line in Figure 5, accurately represents the
transition regime.

As for convective intensity, a generalized average of (14) and (13) is obtained by

〈Nu〉 =

{

[

1.8 · 10−4(RaA2)1.4
]−3/2

+
[

0.245(RaA2)1/5
]

−3/2
}

−2/3

. (15)

This gives a practical estimate of the Nusselt number for the transition and convective
regimes as is shown by the dashed line in Figure 5.

3.3. Comparison with previous results

The results obtained in this article can be compared to previous works. As already
pointed out by Böhrer [3], the Ra A2 parameter is the control parameter even if the
temperature is imposed on the upper limit. The agreement is the consequence of the
meaning of the quantity Ra A2. This product can be seen as the ratio of thermal diffusion
time over H to the advection time over the length L. Low values of RaA2 mean that
thermal diffusion is efficient. When RaA2 is high, thermal advection is the relevant
phenomena that controls the thermal field.

In ref. [4], Ra is based on the cavity length. So A5 Ra, against which Pe is plotted
for A < 1, is equivalent to our expression RaA2. Moreover, the Péclet number in [4] is
defined as the maximum of the stream function, i.e. the integral of the velocity field. In
the conductive regime, the scaling obtained in [4] is equivalent to our result where the
Péclet number is proportional to the Rayleigh number. In the convective regime, the
Péclet number scales as (Ra A2)1/5 according to Chiu-Webster et al. whilst our results
show that PeA2 is proportional to (Ra A2)2/5. The apparent discrepancy is a consequence
of the definition of Pe. Indeed in the convective regime, the derivative along the y-axis
of the stream function scales like 1/δ where δ is the scale of the boundary layer below
the upper limit. As pointed out in [7], δ ∝ 1/(RaA2)1/5. Consequently, the expression
found in [4] is in agreement with our scaling.

As for the Péclet number, the comparison of the Nusselt number with the previous
work of Chiu-Webster et al. [4] has to be carefully studied. In [4], the Nusselt number
is taken as the average of the absolute value of the thermal gradient and based on the
longitudinal dimension. In the conductive regime, Chiu-Webster et al. show that the
Nusselt number is proportional to the aspect ratio whereas our results give a scaling in
A2. These two results are in fact in perfect agreement if the same spatial scale is used.
In the convective regime, our results agree with ones given in [4]. Note that this scaling
has been already pointed out by Rossby [14].
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4. Conclusion

In this article, the problem of natural convection in a shallow enclosure is investigated,
where a sinusoidal temperature profile is applied to the upper boundary, while the side
and bottom walls are adiabatic. With this choice, it is shown that Ra A2 (see definition in
Nomenclature) remains the control parameter. Two main regimes emerge: the first one,
observed for Ra A2 < 10, is dominated by conduction whereas the second, for Ra A2 >
103, is driven by convection. Analytical laws for convective intensity and heat flux are
derived that are based on an analytical asymptotic expansion and on extensive numerical
calculations. Under the convective regime, numerical coefficients for these laws come from
fitting numerical data, their functional form relying on analytical expansions.

An expression for convective intensity is given over the whole range of Ra A2 based
on a harmonic average. When Ra A2 belongs to [10; 102], an approximate relationship
is proposed to describe the sharp increase in heat flux. Finally, a generalized average
describes the heat flux in both the transition, when Ra A2 ∈ [10; 102], and the convective
regimes. The choice of variables makes these expressions directly applicable to practical
situations.

From these developments, the characteristic velocity under the conductive regime is
shown to be proportional to Ra κ/L = βg∆TH3/(νL). This parameter is highly sensitive
to cavity height and depends also on length and dynamic viscosity but not on heat
conductivity. In the convective regime, characteristic velocity is independent of enclosure

height since it can be written as u0 ∼ (β∆Tg/ν)
2/5

κ3/5L1/5 but increases with length
and thermal conductivity. Viscosity’s importance is reduced since it appears with a 2/5
exponent. These results provide physically grounded answers to the empirical suggestions
given by Trier [19].

Regarding heat transfer, the conductive regime leads to a thermal flux on the upper
boundary, ∂T/∂n, proportional to enclosure height and inversely proportional to length
squared. Under the convective regime, heat flux becomes independent of enclosure height:
as with characteristic velocity it is completely driven by the boundary layer below the
upper limit.

These results serve as guides to analyze heat and mass transfer in more complex
situations closer to those experienced in industrial plants.

A. Asymptotic solution for small aspect ratio

In the conductive regime, flow develops in the whole cavity. Therefore, spatial length
scales are proportional to enclosure size and spatial coordinates are normalized as follows2

x =
x

L
, (16)

y =
y

H
. (17)

The results obtained in [7] are used to normalize velocity in the conductive regime.

2In this appendix, the bar is used over dimensionless variables.
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The scaling of u and v is:

u =
u

κ Ra /L
, (18)

v =
v

κ RaH/L2
. (19)

With this scaling, balance equations are written:

∂u

∂x
+

∂v

∂y
= 0, (20a)

A2 Ra

Pr

(

u
∂u

∂x
+ v

∂u

∂y

)

= −∂P

∂x
+ A2 ∂2u

∂x2
+

∂2u

∂y2
, (20b)

A4 Ra

Pr

(

u
∂v

∂x
+ v

∂v

∂y

)

= −∂P

∂y
+ A4 ∂2v

∂x2
+ A2 ∂2v

∂y2
+ θ, (20c)

RaA2

(

u
∂θ

∂x
+ v

∂θ

∂y

)

= A2 ∂2θ

∂x2
+

∂2θ

∂y2
. (20d)

Equations (20a-20d) are similar to those used by Bejan [2] (chapter 5) and can be used
to find the perturbation solution expanded in terms of A2 at small Rayleigh numbers.
From equation (20d), the expansion in terms of A2 is valid when RaA2 � 1. Note that
the problem is singular [6] since all x-derivatives disappear if A is taken equal to zero.
Actually, the form (20a-20d) corresponds to an external solution valid in the enclosure’s
core.

To find the asymptotic solution, all quantities are developed as (see Bejan [2])

f = f0 + A2f1 + A4f2 + · · · + A2ifi + · · · . (21)

At zeroth order, the solution is3

u0(x, y) = π sin(πx)A′

0(y), (22a)

v0(x, y) = −π2 cos(πx)A0(y), (22b)

θ0(x, y) =
1

2
[1 − cos(πx)], (22c)

with

A0(y) =
y2(y − 1)2

48
. (22d)

At first order, the solution is

u1(x, y) =
Raπ3

2304
sin(2πx)

[

A′

1(y) +
B′

1(y)

Pr

]

+
π3

24
sin(πx)C′

1(y), (22e)

v1(x, y) = −Raπ4

1152
cos(2πx)

[

A1(y) +
B1(y)

Pr

]

− π4

24
cos(πx)C1(y), (22f)

θ1(x, y) =
Raπ2 sin2(πx)

96
D1(y) − π2

4
cos(πx)(y2 − 1), (22g)

3The symbol ′ corresponds to differentiation with respect to y.
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with

A1(y) =
y9

630
− y8

140
+

y7

105
− y4

30
+

16y3

315
− 3y2

140
, (22h)

B1(y) = − y9

252
+

y8

56
− y7

30
+

y6

30
− y5

60
+

y3

252
− y2

840
, (22i)

C1(y) =
y6

20
− y5

10
− y4

6
+

13y3

30
− 13y2

60
, (22j)

D1(y) =
y5

5
− y4

2
+

y3

3
− 1

30
. (22k)

At zeroth order, the temperature is similar to the boundary condition on y = 1. The
function A0(y) is identical to the one obtained by Cormack et al. [5]. Function u0 differs
from the Cormack et al. solution by the quantity π sin(πx)/2. The velocity solution at
zeroth order is derived from the purely conductive temperature field. The function u0 is
minimum and maximum for y equal to (3 +

√
3)/6 and (3−

√
3)/6, respectively. At first

order, the thermal solution has two terms: the first linked to convection and the second
to conductive transfer.

To determine the local Nusselt number in the conductive regime, the integral form
of energy equation (20d) is used. Indeed, integration over the vertical direction with
boundary conditions gives the local Nusselt number:

Nu(x) = −A2 d2

dx2

∫ 1

0

θ(x, y)dy + Ra A2 d

dx

∫ 1

0

uθdy. (23)

By taking the two first orders of the asymptotic solution, equation (10) is found. The
integro-differential equation (23) is useful to determine the local Nusselt number since
the term proportional to A4 is obtained without the solution at second order.
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