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ABSTRACT

This paper presents several watermarking methods preven-
ting the estimation of the secret key by an adversary. The
constraints for secure embedding using distribution matching,
where the decoding regions rely implicitly on the distribution
of the host signal, are first formulated. In order to perform in-
formed coding, different decoding regions are associated with
the same message using an appropriate partitioning function.
The minimization of the embedding distortion is afterwards
casted into an optimal transport problem. Three new secure
embeddings are presented and the performances of the pro-
posed embedding functions regarding the AWGN channel for
different W C Rs are evaluated. Depending on the embedding
and noise distortions, informed secure coding can outperform
classical secure coding or classical insecure coding such as
ISS or SCS.

Index Terms— Security - Secure embedding - Informed
coding - Optimal transport

1. INTRODUCTION

The robustness of a data-hiding scheme denotes its ability
to transmit a message whenever the content undergoes various
processes such as noise addition, format conversion, resyn-
chronization, compression, ... On the contrary, the security of
a data-hiding scheme denotes its ability to face an adversary
who can build his attack using different materials such as the
knowledge of the data-hiding scheme (Kerckhoffs’ principle
[1]), a pool of watermarked contents, or the watermark detec-
tor (Oracle attacks).

In the case of symmetric data-hiding, one objective of the
adversary is to estimate the secret key used by the embed-
ding and detection scheme. Once the decoding regions are
estimated, the adversary can tamper or remove the embedded
message [2]. Moreover, if the mapping function between the
possible messages and the decoding regions is known by the
adversary, he can also copy the message into another content
or modify it at will.

The sequel of this paper addresses the Watermarked
content Only Attack (WOA) setting[3], where the adversary
uses a pool of content watermarked with the same key to forge

its attack. In this framework, secure embedding schemes can
be designed in order to prevent the adversary to estimate the
decoding regions [4]. One example of such secure embedding
scheme is called Natural Watermarking [4] : the embedding
is performed in such a way that the distributions of original
and watermarked contents are the same, consequently the
adversary is unable to estimate the location of the decoding
regions. In this paper we propose new embedding schemes
relying on informed coding in order to increase the robustness
while keeping a minimum distortion.

1.1. Notations

The vector x denotes a d-dimensional (random) host vec-
tor (all vectors considered in the paper are d-dimensional).
We assume that x is composed of samples z; of variance o2,
independent and identically distributed (iid) according to a
distribution function px ().

The embedding of a message m is performed by applying
an embedding function f(.) on the host vector x to generate
y = f(x,m, K) (K denoting the secret key). The watermark
signal w is given by w = y —x and the variance of its samples
is denoted o2 W C R and W N R denote respectively the Wa-
termark to Content Ratio and the Watermark to Noise Ratio
and are expressed in dB.

2. SECURE EMBEDDING BY DISTRIBUTION
MATCHING

The goal of this section is to present secure embedding
functions f(x, m, K), such that for all secret keys K :

PX = PY|K- (D

These classes of embedding functions enable to obtain stego-
security [4]. The name stego-security comes from the fact that
this definition is similar to Cachin’s definition of perfect se-
crecy in steganography [5].

We assume that the data-hiding scheme embeds a binary mes-
sage with equal probability. In order to achieve stego-security,
the density functions for each bit have to satisfy :

Py |k = (Py|K,m=0 + Py |K,m=1)/2- 2



One way to fulfill constraint (1) is to choose a partitioning
function g : R — {0;1} such that [ g(x)px(x) = 1/2.
Py|K,m=0 and py |k ,—1 are consequently given by :

Py |K.m=0(X) = 29(X)px (X), 3

and
Py |Km=1(%) = 2(1 — g(x))px (x). “4)

The embedding function can now be considered as a set
of two mapping functions fo(x,m = 0,K) and f1(x,m =
1, K) satisfying respectively (3) and (4). The message deco-
ding is performed using the partitioning function g() :

9(z)=1=>m=0;g(z)=0=m=1. Q)

One straightforward solution to find mappings respecting
constraint (1) is to choose ¢() and generate random variables
of pdf py|x,m=0 and py|x m=1 (similar implementations
have been proposed in [6]in the steganography context). Ho-
wever this solution doesn’t take into account the distortion
constraint D = o2 The goal of the next section is to find
mappings respecting (1) and (2) while minimizing the ave-
rage embedding distortion. Next section explains how to find
such an optimal mapping.

3. DISTORTION MINIMIZATION USING OPTIMAL
TRANSPORT

Optimal transportation, also called optimal coupling, has
been defined by Monge in 1781 and consists in finding the
transport from one density function p; to another po that mi-
nimizes a cost function ¢(x1,xs) representing the average
transport [7]. Literally it is equivalent to the Monge’s optimal
transportation problem :

Minimize /X c(x, f(x))dp1(x) (6)

over all the mapping functions f such that their transport on
p1 equals ps.

If we consider the data-hiding framework we have p; =
px and p2 = py|k,m. Moreover we want to minimize the
embedding distortion usually formulated as a quadratic cost :
c(x,y¥) = ||x — y||?/d. We can afterwards use the results
of transportation theory in order to find the embedding func-
tions fo(x,m = 0, K) and fi(x,m = 1, K) as the optimal
mappings.

For d = 1, given F'x the cumulative distribution function
(cdf) of X, Fy |k, the cdf of YK, m and F, Y|K ., the quan-
tile function, one result of optimal transport f,: is that for
semi-continuous cdf, the optimal mapping for the quadratic
cost can be calculated as

Fopt(w,m) = Fye 0 Fx (). ()

The minimum distortion is given by

1
Drnin = /0 c(Fy g (@), Fx' (2))da. (8)

Note that for d > 1, closed-form solutions provided by
optimal transportation exist for mappings such as projections,
radial functions or densities of independent variables [8].

4. SECURE EMBEDDING FOR GAUSSIAN HOSTS

We assume in the sequel that the host components are iid
Gaussian and that d = 1. This hypothesis can be practically
verified since x can be the result of a projection of a vector
(the wavelet coefficients of an image for example [9]) on a
pseudo random carrier generated using the secret key K.

In the sequel, we use (7) to compute the optimal mapping,
it is based on Fx (x) = 0.5(1 + erf(x/\/202)). Fy g ,m(7)
is computed for different partitioning functions, and message
decoding is performed using Eq. 5.Without loss of generality,
we assume o2 = 1. Three partitioning functions and associa-
ted embedding schemes are presented.

4.1. p-NW embedding

In this case the real axis is splitted into 2M decoding areas
of same probability p = 1/2M. This can be achieved using
as partitioning function :

glx) =1 if wu(k) <z <u(k+0.5),
glz)=0 if w(k+0.5) <z <ulk+1). )
where u(k) = F;' (£ ). The optimal mapping is then :
N 1 ( Fx(z) | Mz]
f(x,0) = Fx < s T s >7 (10)
B 1 (Fx(z) |Mz]+1
flx,1) = Fy < R ) a1

where |z | denotes the floor function.

Classical (non-informed) coding is equivalent to 2 deco-
ding regions (one for 1, the other for 0) and p = 0.5. Trans-
portation Natural Watermarking or TNW[10] becomes conse-
quently a special case of p-NW.

The partitioning functions f(), px. Py |m—o and the opti-
mal mapping are depicted on Fig. 1.

4.2. p-NW embedding

This mapping can be seen has the symmetrised version
of the previous one : the decoding regions are symmetrised
according to the x-axis. This enables to have a decoding area
around O which is twice the size of the decoding area for p-
NW embedding. Now the partitioning function is :

g(z) =1
g(x) =0

it w(k) <|z| <u(k+0.5),
if w(k+0.5)<|z|<u(k+1). (12)
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(a) : partitioning function and associated pdfs

(b) Optimal mapping f(z,0)

Fig. 1. p-NW for M = 6 and 02 = 1.

And the mapping consists here in using (10) if z > 0 (resp.
xz < 0)and m = 0 (resp. m = 1), or using (11) if x > 0
(resp. x < 0) and m = 1 (resp. m = 0).

4.3. A-NW embedding

In order to transpose the Scalar Costa Scheme (SCS) [11]
in the secure embedding context, we now choose g() such
that each decoded region has the same width A. Due to the
symmetry of the Gaussian distribution, this is possible if

A
g(x) =Y _Talw— 3 +2k4), (13)
k

where IIa (z) is the centered rectangular window function of
width A. Using (7), the optimal mapping can then be expres-

sed as :
1 (F — Vg4
e (B =)
Pyt (Fx(x)Z— w2i) _ (14)

Here vy; < Fix(x) < vg; + 2Fx((2i + 1)A) for m = 0 and
wa; < Fx () < wa; + 2Fx (2iA) for m = 1 with

f(,0)

f(:)%l) =

v=2 Y [Pl - 1)A) - Fx(2kA)],

k=—oc0

and

wai =2 Y [Fx((2k = 2)A) = Fx((2k = 1)A)].
k=—o0
Note that contrary to p-NW and p-NW where the embed-
ding distortion cannot be chosen a-priori because they rely
on the integer M, A-NW offers a continuous range of em-
bedding distortions which are function of the scalar A.

5. PERFORMANCE COMPARISON

The goal of this section is to compare to different secure
embedding schemes for the AWGN channel. In order to pro-
vide a fair comparison, each scheme has to be evaluated for
the same embedding distortion. For comparison purposes, we
also compute the Bit Error Rate (BER) for two robust but
insecure embedding schemes : Improved Spread Spectrum
(ISS) [12] and the Scalar Costa Scheme (SCS) [11].

Fig. 2 compares the robustness of two implementations
of Natural Watermarking : Transportation Natural Watermar-
king [10] uses optimal mapping but no informed coding, in
comparison A-NW uses optimal mapping and informed co-
ding. For W N R > —9dB the use of informed coding enables
to increase the robustness of the scheme and the gap between
the two implementations regarding the W N R is above 3dB.
Note that in this case the embedding distortion is fixed for
TNW because it depends only of o2 .

0.4 i
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Fig. 2. BER of TNW [10] and A-NW, WCR = —0.7dB.

Fig. 3 and 4 present the performances of the different
embeddings respectively for WCR = —5dB and WCR =
—11dB . For p-NW and p-NW these distortions are respecti-
vely equivalent to M = 2 and M = 6.

The performances of the secure embeddings differ accor-
ding to the distortion but general remarks can be drawn. For
WCR = —11dB and WNR > —5dB, the A-NW embed-
ding is the secure scheme that provides the best performance
and has a BER close to SCS for WN R = 0dB. Such beha-
vior can be explained by the facts that for W N R = 0dB and
low WC'Rs, (i) the distributions inside each decoding regions
can be approximated as uniform and (ii) the embedding para-
meter for SCS is o = 0.52 which is very close to the secure
embedding parameter of SCS for uniform hosts (cse. = 0.5)
[13]. For such regimes SCS and A-NW embedding are conse-
quently very similar in term of robustness and security.

For WCR = —5dB the decoding regions of A-NW are
too far for each other and the scheme provides poor perfor-
mance in comparison with p-NW (for large W N R) and p-
NW (for small W N R). Note also that for small W N R, the
proposed secure-embedding schemes can outperform the per-
formance of the ISS (for both W Rs) and SCS (for WCR =
—5dB).
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Fig. 3. Comparison between secure and insecure embeddings,
WCR = —5dB.

BER

011 o~ A'NW —=SCS
—e— p-NW —— ISS
0H— f)—NW

| | | | |

~10 -5 0 5 10
WNR(dB)

Fig. 4. Comparison between secure and insecure embeddings,
WCR = —11dB.

6. CONCLUSION

We have proposed different secure embedding functions
using informed coding. This is combined with the transporta-
tion theory framework which enables to find a mapping mi-
nimizing the distortion after the embedding while taking the
security constraint into account. We have noticed that the use
of infomed coding enables to increase the robustness of the
secure scheme and can also compete in some cases with in-
secure schemes such as ISS or SCS. Our future works will
focus on the design on more general partitioning functions
and on the computation of the capacity of secure embedding
schemes.
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