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Soft-SCS: improving the security and robustness of the Scalar-Costa-Scheme by optimal distribution matching

In this paper we propose an extension of the Scalar-Costa-Scheme (SCS), called Soft-SCS, which offers better or equal achievable rates than SCS for the AWGN channel. After recalling the principle of SCS we highlight its secure implementations regarding the Watermarked contents Only Attack, and we also describe the relations between the alphabet size and the secure embedding parameters. Since the gap between the achievable rates of secure-SCS and SCS is important for low Watermark to Noise Ratios (W NR) regimes, we introduce Soft-SCS, a scheme which enables to achieve security by matching a given distribution of watermarked content while minimizing the embedding distortion. The embedding is given by the optimal transport and the distortion is computed using the transportation theory. Contrary to SCS, the distribution of watermarked contents is not piecewise uniform of width (1-α)∆, but contains affine portions parametrized by a new embedding parameter β used to maximize the robusness of Soft-SCS. As a consequence, the achievable rates of Soft-SCS for low W NR regimes for both its secure and robust implementations are higher than for SCS. Our conclusions are that (1) the loss of performance between the secure and robust implementations of Soft-SCS for W NR regimes smaller than 0 dB is negligible and (2) the robust implementation of Soft-SCS is equal to SCS for W NR regimes over 0 dB.

Introduction

Watermarking can be used to convey sensitive information in a secure and robust way. The security of symmetric watermarking techniques relies on the usage of a secret key by both the embedding and decoding schemes. One way to increase the security of the system is to use a different watermarking key for each content to be watermarked, however this solution is practically difficult to implement. For example, if one wants to watermark a database of images, he cannot use different keys for each images because the watermark decoder would have to know the mapping between the images and the keys. Another example is given by the watermarking of digital sequences where the watermark is embedded periodically and has to be decoded all along the sequence. In this practical scenario, the key has to be repeated from time to time in order to enable fast synchronization.

The assumption that a watermarking scheme uses the same key to watermark a set of N o contents has given birth to a set of security attacks and counter-attacks. The goal of these security attacks is to try to estimate the secret key used to generate the watermark signal, they use Blind Source Separation techniques such as ICA [START_REF] Cayre | Watermarking security: Theory and practice[END_REF][START_REF] Bas | Vulnerability of dm watermarking of non-iid host signals to attacks utilising the statistics of independent components[END_REF] and PCA [START_REF] Doërr | Danger of low-dimensional watermarking subspaces[END_REF][START_REF] Bas | Two key estimation techniques for the Broken Arrows watermarking scheme[END_REF] or clustering techniques such as K-means [START_REF] Bas | Evaluation of an optimal watermark tampering attack against dirty paper trellis schemes[END_REF] and feasible sets [START_REF] Pérez-Freire | Spread spectrum watermarking security[END_REF]. Counter-attacks are however possible through the development of secure watermarking schemes such as Natural Watermarking or its adaptations for Gaussian host [START_REF] Cayre | Kerckhoffs-based embedding security classes for WOA datahiding[END_REF], or the Scalar-Costa-Scheme (SCS) using specific parameters for uniform hosts. Those different schemes have been proved to be secure under the Watermarked contents Only Attack (WOA) assumption (e.g. the adversary only owns watermarked contents) and for i.i.d. embedded message. In this context the watermarking system can achieve perfect secrecy [START_REF] Pérez-Freire | Spread spectrum watermarking security[END_REF] aka stego-security [START_REF] Cayre | Kerckhoffs-based embedding security classes for WOA datahiding[END_REF] which means that the distributions of originals and watermarked contents are identical and that there is no information leakage about the secret key.

The goal of this paper is design a new robust watermarking scheme for uniform host which can be secure under the WOA setup. Section 2 presents SCS, its robust implementations (e.g. enabling to maximize the transmission rate) and its secure implementations (guarantying perfect secrecy). The maximum achievable rate for secure implementations is also analyzed for different Watermark to Noise Ratios (W NRs).

Section 3 proposes and extension of SCS called the Soft-Scalar-Costa-Scheme (Soft-SCS) and the embedding and computation of the distortion are detailed. Finally section 4 compares the achievable rates of SCS and Soft-SCS for both their secure and robust versions. The subscript . r denotes a robust implementation or parameter, e.g. the one maximizing the achievable rates and the subscript . s denotes the secure implementation or parameter, e.g. satisfying the constraint of perfect secrecy. Hence SCS r and SCS s denote respectively robust and secure implementations of SCS which use respectively parameters α r and α s .

Scalar Costa Scheme

SCS embedding and decoding

SCS [START_REF] Eggers | Scalar costa scheme for information embedding[END_REF] is built under the hypothesis called the flat host assumption. In this setting the distribution of the host signal x is considered as piecewise uniform, additionally the embedding distortion is very small regarding the host signal, e.g. σ 2 w σ 2

x . The method uses uniform quantizers of step ∆ during the embedding, this means that the distribution of the watermarked contents can be considered as periodical. As in the seminal paper, we will restrict our analysis on one period, e.g for x ∈ (-∆/2; ∆/2] . We denote by p x (x), p y (y) and p z (z) the PDFs of respectively x, y and z, ⊗ represents the circular convolution.

To embed a symbol d ∈ D, SCS extracts the quantization noise q obtained by applying one scalar uniform quantizer Q ∆ of width ∆ translated according to d:

q(d) = Q ∆ x -∆ d D + k - x -∆ d D + k , (1) 
where k denotes the secret key. The watermark signal is given by:

w = αq(d), (2) 
where α is a parameter that is used to maximize the achievable rate. In the sequel, we will assume that we are in the WOA setup and consequently that the secret key is constant. Without loss of generality, we set k = 0 . The distortion of the embedding is given by

σ 2 w = α 2 ∆ 2 12 , (3) 
and the authors have derived an approximation of the embedding parameter maximizing the achievable rate R for a given W NR. The approximation is given by:

α r = 1 1 + 2.71.10 -W NR/10 . (4) 
Using the flat host assumption, the rate R is given by the mutual information between the attacked signal and the embedded symbol:

R = I(z, d) = -ˆ∆ p z (z) log 2 p z (z)dz + 1 D d∈D ˆ∆ p z (z|d) log 2 p z (z|d)dz. (5) 
Since the expressions of p z (z) = p y (y) ⊗ p n (n) and p z (z|d) = p y (y|d) ⊗ p n (n) have no closed-form solutions due to the periodicity of the PDF, they are computed as in [START_REF] Eggers | A blind watermarking scheme based on structured codebooks[END_REF] by working in Fourier domain using the convolution theorem 1 . The integral term are also thereafter numerically computed.

The decoding is performed by computing the distance |zc(d)| where c(d) is the closest quantization cell for each of the D quantizers:

d = arg min d |z -c(d)|. (6) 
This tantamount to performing a maximum likelihood decoding:

d = arg max d p(z|d). (7) 

SCS secure modes

As it is mentioned in [START_REF] Pérez-Freire | Spread spectrum watermarking security[END_REF][START_REF] Guillon | Applied public-key steganography[END_REF], SCS achieves perfect secrecy under the WOA setup for an embedding parameter

α s = D -1 D . (8) 
Indeed in this case we have p y (y) = p x (x) and there is no information leakage about the location of the quantization cells. Additionally, the adversary is unable to distinguish watermarked samples from original ones. Two examples for D = 2 and D = 3 are illustrated on Fig. 1.
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Fig. 1: Distributions of the watermarked contents for the two first secure modes of SCS.

Eq. ( 8) and ( 4) imply that one can maximize robustness while assuring perfect secrecy only if α s = α r , e.g. for a set of "secure" W NR s equal to

W NR s = -10 log 10 1 2.71 D D -1 2 -1 . (9) 
The range of W NR s starts at -0.44dB for D = 2 and α s = 1/2, consequently one way to perform both secure and robust watermarking is to select the alphabet size D which gives a W NR s which is the closest to the targeted W NR. However SCS doesn't offer efficient solutions for low W NR (e.g. < -1dB).

In order to compare the performance of SCS s and SCS r we have computed the achievable rates using respectively α r and α s for a wide range of W NR and different alphabet size. The comparison is depicted on Fig. 2. All the rates are upper bounded by the Capacity of the Ideal Costa Scheme (ICS) C ICS = 0.5 log 2 (1 + 10 W NR/10 ) [START_REF] Costa | Writing on dirty paper[END_REF][START_REF] Eggers | Scalar costa scheme for information embedding[END_REF]. We can notice (Fig. 2(a)) that the performance gap between SCS r and SCS s is important for low W NR and it becomes negligible for high W NR (Fig. 2(b)), provided that the adequate alphabet size is selected. Note also that for a given D the gap between the secure and robust implementations grows with respect with the distance between the used W NR and W NR s .

The inability of SCS s to achieve efficient embedding for low W NR is due to the fact that SCS r select a small embedding parameter α r whereas SCS s is lower bounded by α = 0.5. The goal of the scheme presented in the next section is to modify SCS in such a way that the secure embedding provide better rates for low W NR. 

Soft Scalar-Costa-Scheme

Contrary to classical watermarking embedding schemes, Soft-SCS is based on the principle of optimal distribution matching. In this context, the computation of the embedding can be seen as a two stages process. Firstly we set-up the distribution p Y (y|d) of the watermarked contents, this first step is mandatory if one wants to create an embedding that achieves perfect secrecy. Secondly we compute the embedding that enables to match p Y (y|d) from the host signal of distribution p X (x) while minimizing the average distortion. This second step is performed using optimal transport theory (see 3.2).

Because the performances of SCS s for low WNR are maximized for D = 2, the proposed scheme will be studied for binary embedding but could without loss of generality be extended rato D-ary versions.

Shaping the distributions of the watermarked contents

The rationale of Soft SCS is to mimic the behavior of SCS for α < 0.5 while still granting the possibility to have perfect secrecy. This is done by keeping the α parameter (we call it α in order to avoid confusion with the parameter used in SCS) and by adding a second parameter, called β, that will enable to have linear portions in the PDF of watermarked contents. β (respectively -β) are defined as the slope of the first (respectively the second) linear portions. The cases β = +∞ is equivalent to SCS embedding. The differences between the distributions of watermarked contents for SCS and Soft-SCS are depicted on Fig. 3. In order to fulfill the constraint that ´∆ p Y (y|d, y ∈ [0; ∆])dy = 1, the equation of the first affine portion on [0; ∆] is given by:

∆ p(y|d) (1 -α)∆ 1 (1-α)∆ 1 2(1-α)∆ (a) SCS ∆ (1 -α)∆ 1 (1-α)∆ p(y|d) 1 2(1-α)∆ p = βx + cst (b) Soft-SCS
p Y (y|d = 1, y ∈ [0; ∆]) = βy + 1 -α(1 -α)β∆ 2 2(1 -α)∆ = βy + A, (10) 
with

A = (1 -α(1 -α)β∆ 2 )/(2(1 -α)∆)
and by symmetry the second affine portion is gives p Y (y|d) = β(∆y) + A.

Depending of the values of α and β the distributions of p Y (y|d = 1, y ∈ [0; ∆]) for Soft-SCS can have three different shapes and the distributions will either look like a big-top, a canyon or a plateau. For illustration purpose, the 3 configurations are depicted on Fig. 4.

The intervals of the first linear portion (the second being computed by symmetry) and the type of shape are summarized on Table 1, they depend on a limit value of β called β l which is different for α < 1/2 or for α ≥ 1/2. For canyon and plateau shapes, the uniform portion of the PDF is equal to the one of SCS: 

p Y (y|d, y ∈ [0; ∆]) = 1/((1 -α)∆). ( 11 
) α < 1/2, β l = 1 α(1-α)∆ 2 α ≥ 1/2, β l = 1 (1-α2 )∆ 2 β ≤

Embedding computation and decoding

The optimal way for computing the embedding that match the distribution of watermarked contents while minimizing the average distortion is to use the transportation theory [START_REF] Villani | Topics in Optimal Transportation[END_REF][START_REF] Mathon | Optimization of natural watermarking using transportation theory[END_REF]. Given F Y (y|d) the CDF associated with p Y (y|d) and F X (x) the CDF associated with p X (x), the optimal transport minimizing the average L 2 distance is given by:

T (x) = F -1 Y • F X (x), (12) 
and the distortion by:

σ 2 w = ˆ1 0 (F -1 Y (x|d) -F -1 X (x)) 2 dx. (13) 
The embedding function T (.) for the different configurations and d = 1 are given in Appendix A. Depending of the value of x, the transport is either nonlinear affine:

T (x) = ν 1 + ν 2 + 2β(x -ν 3 ) β , (14) 
or affine:

T (x) = (1 -α)x + α∆ 2 , (15) 
where ν 1 , ν 2 and ν 3 are constants formulated in Table 2 of appendix A.

For visualization and parametrization purposes, since β ranges on R + and depends on ∆, we prefer to use β such that: ). Note that the embedding for d = 0 can be easily computed by translating both the host signal and the watermarked one by ∆/2. The embedding distortion is computed using eq. ( 13) and contains 2 terms related respectively to the affine and non-linear portions of the embedding. Its close-form is detailed in appendix B. Fig. 6 illustrates the fit between the closedform formulae and Monte-Carlo simulations.

β = 4 tan πβ /2 /∆ 2 , (16) 
-∆/2 0 ∆/2 -∆/2 0 ∆/2 x T (x) (a) α = 1 2 , β = 0.4 -∆/2 0 ∆/2 -∆/2 0 ∆/2 x T (x) (b) α = 1 2 , β = 0.6 -∆/2 0 ∆/2 -∆/2 0 ∆/2 x T (x) (c) α = 2 5 , β = 0.1
As for SCS, the decoding is performed using maximum likelihood decoding [START_REF] Doërr | Danger of low-dimensional watermarking subspaces[END_REF].

Performance analysis

Secure Embedding

It is easy to show that for α = αs = 0.5 and D = 2, Soft-SCS achieves perfect secrecy, the distributions can only have two shapes in this case which are the big-top and the plateau illustrated on Fig. 4(a) and Fig. 4(b) respectively. Using numerical optimization, we compute for a given W NR the value of β which enables to maximize the achievable rate ( 5) and obtain β s . The result of this optimization, and its approximation using least square regression is given on Fig. 7. The approximation gives

(β s ) = 0.9 × 1.1 W NR , W NR < 0 dB (β s ) = 1 , W NR ≥ 0 dB. (17) 
which means that Soft-SCS s and SCS s differ only for W NR < 0 dB. The achievable rates of Soft-SCS s are depicted on Fig. 8and are compared with SCS r and SCS s . We notice that Soft-SCS s not only outperforms the secure version of SCS but also the robust one. The gap between Soft-SCS s and SCS increases with respect to the noise power and is null for W NR = -0.44 dB. The figure shows also that the gap between the implementation for the optimal value of β s and the approximation given in (17) is negligible.

Robust Embedding

The same methodology is applied without the security constraint in order to obtain the robust configuration of Soft-SCS. This time the rate has to be maximized according to α and β and their values after the numerical optimization -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 10 -3 Surprisingly we notice that there is no difference between Soft-SCS r and Soft-SCS s for W NR < -9 dB, the common optimal value being α = 0.5 and the difference between the two schemes is negligible for W NR < -0 dB. For high W NR however, the approximation is identical to SCS r with (α r ) = α r (eq . 4) and (β r ) = 1. We can conclude that the implementation Soft-SCS r behaves as Soft-SCS w for low W NR and as SCS r for high W NR.

10 -2 10 -1 W NR(dB) R (bit/element) ICS SCSr D = 2..∞ Soft-SCSs β s Soft-SCSs (β s ) SCSs D = 2

Conclusion and perspectives

We have proposed in this paper an adaptation of the Scalar Costa Scheme based on the principle of optimal distribution matching. The computation of the embedding needs (1) to choose the distribution of the watermarked contents and (2) to compute the optimal mapping from the host to the watermarked con- tents. This method enables to outperform SCS both for its secure and robust implementations for W NR ≤ 0 dB.

Contrary to a spread idea that robustness and security are antagonist constraints in watermarking, we have shown in this study that there exists watermarking schemes that can guaranty perfect secrecy while maximizing the achievable rate. SCS s can be used for high W NR with appropriate dictionary α s = (D -1)/D; and Soft-SCS s can be used for low W NR , αs and β s and provide negligible loss of rate.

However, one can argue that for low W NR regimes the rates is rather small and that one system involving redundancy or error correction should be used in order to increase the reliability of the decoded symbols. This solution has to be employed in a very cautious way since the redundancy might compromise the security of the whole system [START_REF] Pérez-Freire | Security of latticebased data hiding against the Known Message Attack[END_REF]. Future works will investigate this direction if there is a way to perform secure coding.

A Embedding formulas for Soft-SCS

Here, for the shake of simplicity the α parameter of Soft-SCS is written α.

A.1 Plateau shape (β ≥ β l ),
The CDF is given by, for

α∆ 2 - 1 2(1-α)β∆ ; α∆ 2 + 1 2(1-α)β∆
by:

F Y (x) = β 2 x + A β 2 ,
and the inverse function on [0; y 1 ] is given by:

F -1 Y (x) = -A + √ 2βx β .
with

F Y α∆ 2 + 1 2(1 -α)β∆ = 1 2(1 -α) 2 β∆ 2 = y 1 .
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 10 -2 -The optimal transport on [0; y 1 ∆] is given by (y 1 ∆ corresponds to the point were F X (x) = y 1 ):

T (x) = F -1 Y • F X (x) = -A + 2βx/∆ β . On x ∈ α∆ 2 + 1 2(1-α)β∆ , ∆ 2 
, we now have:

F Y (x) = 1 (1 -α)∆ x - α 2(1 -α) ,
The optimal transport on [y

1 ∆, ∆ T (x) = F -1 Y • F X (x) = (1 -α)x + α∆ 2 .
A.2 Canyon shape (α < 1/2, β < β l ) for x ∈ [0; α∆] and α < 0.5, the CDF is given by:

F Y (x) = β 2 x 2 + Ax
The inverse function is given by for

x ∈ [0; y 2 ], with y 2 = F Y (α∆) = βα 2 ∆ 2 /2 + α∆A: F -1 Y (x) = -A + A 2 + 2βx β .
-The optimal transport is given on [0; y 2 ∆] by (y 2 ∆ corresponds to the point were F X (x) = y 2 ):

T (x) = F -1 Y • F X (x) = -A + A 2 + 2βx/∆ β .
On [α∆; ∆/2] , we now have:

F Y (x) = 1 (1 -α)∆ x - α 2(1 -α) ,
The optimal transport on [y 2 ∆, ∆ 2 ] is given by:

T (x) = F -1 Y • F X (x) = (1 -α)x + α∆ 2 .
A.3 Big Top shape (α > 1/2, β < β l ) for x ∈ [(2α -1)∆/2; ∆/2] and α > 0.5, the CDF is given by: 

F Y (x) = β 2 x 2 + Ax -(2α - 
F -1 Y (x) = -A + A 2 + 2β(x -C) β .
The optimal transport is given on [0; ∆/2] by:

T (x) = F -1 Y • F X (x) = -A + A 2 + 2β(x/∆ -C) β .
B Distortions formulas for Soft-SCS

σ 2 w = 2 ˆ1/2 0 (F -1 Y (x) -F -1 X (x)) 2 dx σ 2 w = 2 ˆx1 x0 ν 1 + ν 2 + 2β(x -ν 3 ) β -∆x 2 dx +2 ˆx2 x1 (1 -α)∆x + α∆ 2 -∆x 2 dx = I 1 + I 2 .
The values of x 1 and x 2 depend of the configuration of the PDF and their closed-form are given in Table 2.

α < 1/2 α ≥ 1/2 β < β l
Canyon shape Big Top shape (x0, x1, x2) (0 ; βα 2 ∆ 2 /2 + α∆A ; 1/2) (0 ; 1/2 ; 1/2) (ν1, ν2, ν3) (-A, A 2 , 0) (-A, A 2 , ν3) β > β l Plateau shape Plateau shape (x0, x1, x2) (0 ; 1/ `2(1α) 2 β∆ 2 ´; 1/2) (0 ; 1/ `2(1α) 2 β∆ 2 ´; 1/2) (ν1, ν2, ν3) (-A, 0, 0) (-A, 0, 0)

β l 1 α(1-α)∆ 2 1 (1-α 2 )∆ 2
Table 2: The different configurations for the computation of the distortion. I 1 and I 2 are given by:

I 1 = 2(∆ 2 x 3 3 x1 x0 + 2 -2∆ν 1 β x 2 2 x1 x0 + 2ν 1 3β 3 (ν 2 -2βν 3 + 2βx) 3/2 x1 x0 +I 3 + ν 2 1 + ν 2 -2βν 3 β 2 (x 1 -x 0 ))
with

I 3 = - 2∆ 3β 2 
x (ν 2 -2βν 3 + 2βx) 

I 2 = 2α 2 ∆ 2 3 x 2 - 1 2 3 - x 1 - 1 2 3 
.

2. 1

 1 Notations W CR and W NR denote respectively the Watermark to Content Ratio and the Watermark to Noise Ratio and are expressed in dB. y represents a sample of the watermarked signal, x of the host sample and w of the watermark sample with y = x + w. d is the symbol to embed over an alphabet D and D = |D|. Sample y suffers a AWGN n to produce to attacked sample z = y + n.
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 1232 Fig.2: Achievable rates for secure and robust SCS. The capacity of the Ideal Costa Scheme is also represented.
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 3 Fig. 3: Comparison between the distributions of SCS and Soft-SCS.
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 14 Fig. 4: Distributions of the watermarked contents for the 3 different configurations of Soft-SCS.

  where β ∈ [0, 1(. The shape of the distribution becomes independent of ∆ and the couple β = 0.5 and α = 0.5 corresponds to the case where the distribution p Y (y|d) is at the junction between the big-top and the plateau. The cases β = 0 and β → 1 correspond respectively to β = 0 and β → +∞.

Figure 5

 5 Figure 5 illustrates different embeddings for d = 0 and different configurations of (α, β). Note that the embedding for d = 0 can be easily computed by
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 5 Fig. 5: Optimal transport for different configurations of Soft-SCS (d = 0).
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 96 Fig. 6: Empirical distortions (σ 2 w ) computed by Monte-Carlo simulations with 10 6 trials, and closed-form distortions (σ 2 w ) for ∆ = 1024, and 1024 bins used to compute the distributions.
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 7 Fig. 7: β s and its approximation.
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 8 Fig. 8: Achievable rate of Secure Soft-SCS.
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 9 Fig. 9: Approximation of αr and β t .
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 10 Fig. 10: Achievable rates for Soft-SCS r .

1 ) 2 2 x 2 +

 1222 β∆ 2 /8 -A(2α -1)∆/2 = β Ax + C, with C = -(2α -1) 2 β∆ 2 /8 -A(2α -1)∆/2.The inverse function is given by for x ∈ [0; 1/2]:

Table 1 :

 1 The different shapes of the distributions according to α and β.

	β l	Canyon shape	Big Top shape
	Domain of the affine portion β > β l	h	[0; α∆]	[(2 α -1)∆/2; ∆/2] Plateau shape i
	Domain of the affine portion		α∆ 2 -	1 2(1-α)β∆ ; α∆ 2 +	1 2(1-α)β∆

In[START_REF] Pérez-Freire | Revealing the true achievable rates of scalar costa scheme[END_REF] authors have considered a similar approach in order to compute the achievable rate for Gaussian hosts.