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Abstract We propose a construction method of non homogeneous solutions for the traction problem of an elastic

damaging bar. This bar has a softening behavior which obeys a gradient damaged model. The method is applicable

for a wide range of brittle materials. For sufficiently long bars, we show that localization arises on sets whose

length is proportional to the material internal length and with a profile which is also a material characteristic.

From its onset until the rupture, the damage profile is obtained either in a closed form or after a simple numerical

integration depending on the model. Thus, the proposed method provides definitions for the critical stress and

fracture energy that can be compared with experimental results. We finally discuss some features of the global

behavior of the bar such as the possibility of a snap-back at the onset of damage. We point out the sensitivity

of the responses to the parameters of the damage law. All these theoretical considerations are illustrated by

numerical examples.
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1 Introduction

It is possible to explain the rupture of materials with damage models. This can be done by means of the localization

of damage on zones of small thickness where strain is large and stress is small. The choice of the type of damage

model is essential to obtain valuable results. Rate independent local damage models where the local damage rate

only depends on the local strain and damage state of the material are viable for hardening behavior. Nonetheless,

they cease to give meaningful responses for softening behavior. Indeed, in this latter case the boundary-value

problem is mathematically ill-posed (Benallal et al. (1993); Lasry and Belytschko (1988); Comi (1995)) in the

sense that it admits an infinite number of linearly independent solutions. In particular, damage can concentrate on

arbitrarily small zones and thus failure arises in the material without energy dissipation. Furthermore, numerical

simulation with local models using the Finite Element Method are strongly mesh sensitive (Bažant et al. (1984);

de Borst et al. (1993); Lasry and Belytschko (1988)). Two main regularization techniques exist to avoid these

pathological localizations, namely the integral (Pijaudier-Cabot and Bažant (1987); Bažant and Pijaudier-Cabot

(1988); Pijaudier-Cabot and Benallal (1993)) and the gradient (Peerlings et al. (1996, 1998); Comi (2001); Comi

and Perego (2001); Lorentz et al. (2011)) damage approaches, see also Lorentz and Andrieux (2003) for an

overview. Both consist in introducing non local terms in the model which contains accordingly (at least) one

characteristic length.

In the present paper, we use gradient models in which the energy density function depends on the strain, the

damage variable and the gradient of damage variable. One of the basic ingredients of our approach which differs

from almost all previous works on the same subject consists in deriving the damage evolution problem from a
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variational approach based on an energetic formulation. Such energetic formulations— first introduced by Nguyen

(1987, 2000) and then justified by Marigo (1989, 2000) (see also DeSimone et al. (2001)) by thermodynamical

arguments for a large class of rate independent behaviors— constitute a very promising way to treat in a unified

framework the questions of bifurcation and stability of solutions to quasi-static evolution problems. After the

pioneering papers by Francfort and Marigo (1993, 1998), Mielke (2005) formalized these concepts for the very broad

class of rate independent evolution laws, Bourdin et al. (2008) developed this approach in Fracture Mechanics,

and Pham and Marigo (2010a,b) in Damage Mechanics.

The present paper is the natural continuation of Pham et al. (2011b) where the authors, first, studied the

stability of the homogeneous response of a bar under an increasing traction loading at one end, and then the

possibility of bifurcation from this homogeneous response1. The main result stated that a homogeneous state is

stable provided the bar is short enough, the critical length being a material property which involves the internal

length. Moreover this loss of stability is generally preceded by the possibility of bifurcation to a non homogeneous

response. For sufficiently long bars, the loss of stability and the possibility of bifurcations occur at the end of

the elastic phase while no damage has still appeared. But the construction of the bifurcated branches was not

investigated in Pham et al. (2011b). Such a task is achieved in Benallal and Marigo (2007) but for a very particular

gradient damage model. The goal of the present paper is to extend the results of Benallal and Marigo (2007) and

to complete those of Pham et al. (2011a) for a large class of elastic-softening material. However, we will only

focus on the construction of bifurcated branches corresponding to non-homogeneous solutions and the questions

of stability will not be investigated here.

More specifically, the paper is structured as follows. In Section 2, we first define the general class of gradient

damage models that are considered throughout the paper. These models where the damage variable is scalar are

characterized by two state functions of the damage variable and one internal length. Then we set the damage

evolution problem and deduce the local set of equations from its variational formulation. Section 3 is devoted to

a step-wise construction of the non-homogeneous solutions where damage grows only in the so-called localization

zones while the remaining part of the bar remains undamaged. Many properties are established and illustrated on

several examples. In particular, the irreversibility of damage is one of the most difficult condition to ensure and is

very discriminating in terms of the damage models. When it is satisfied, the construction can be performed up to

the rupture. We finally obtain the damage profile and the involved fracture energy when the bar breaks, in terms

of the parameters of the model. The last section is devoted to the analysis of the global behavior of the bar, in

particular to the force-displacement responses. We discuss the number of possible solutions and the shape of the

curves according to the bar length and the number of localization zones which grow. In particular, the possible

presence of snap-backs and of discontinuous evolutions is discussed.

The following notation is used: the prime denotes either the spatial derivative or the derivative with respect to

the damage parameter, the dot the time derivative, e.g. u′ = ∂u/∂x, E′(α) = dE(α)/dα, α̇ = ∂α/∂t. The qualifier

increasing (resp. decreasing) stands for strictly increasing (resp. strictly decreasing) and should not be confused

with non decreasing (resp. non increasing). In the same way, the qualifier positive (resp. negative) stands for > 0

(resp. < 0) and not for ≥ 0 (resp. ≤ 0).

2 Setting of the damage problem

2.1 The gradient damage model

We consider a one-dimensional gradient damage model in which the damage variable α is a real number growing

from 0 to 1, where α = 0 is the undamaged state and α = 1 is the full damaged state. The behavior of the

material is characterized by the state function W which gives the energy density at each point x. It depends on

the local strain ε(x) (if u denotes the displacement field, then ε(x) = u′(x) where the prime stands for the spatial

derivative), the local damage value α(x) and the local gradient α′(x) of the damage field at x. Specifically, we

assume that W takes the following form

W (ε, α, α′) =
1

2
E(α)ε2 + w(α) +

1

2
E0ℓ

2α′2. (1)

In (1), E0 represents the Young modulus of the undamaged material and E(α) the Young modulus of the material

in the damage state α. The second term w(α) can be interpreted as the density of energy dissipated by the material

during a homogeneous damage process (i.e. a process such that α′(x) = 0) during which the damage variable

grows from 0 to α. The last term in (1) is the “non local” part of the energy which plays, as we will see in the next

1 Homogeneous response means that both the strain and the damage fields are the same at all points of the bar at a
given time.
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section, a regularizing role by limiting the possibilities of localization of the damage field. For obvious reasons of

physical dimension, this term involves a material characteristic length ℓ which will give the size of the damage

localization zone. Denoting by σ the stress, the stress-strain relation reads as

σ = E(α)ε. (2)

The expression of the energy density (1) is analog to the one proposed by Comi and Perego (2001). It implicitly

assumes a symmetric behavior in tension and compression. It must be modified to take into account asymmetric

behaviors, like in Comi (2001) or Pham and Marigo (2010a,b). While remaining within the framework of symmetric

behavior, a model which can seem more general would consist in replacing the constant E0ℓ
2 by a function of α.

It can be shown in fact that after an adequate change of variable, the damage parameter α can always be chosen

so that the function becomes a constant, see Pham and Marigo (2010b). We thus assume here that the damage

parameter has been chosen to this end. Note that another choice was made in Pham et al. (2011b).

The qualitative properties of the (gradient or local) model, in particular its softening or hardening character,

strongly depend on some properties of the stiffness function α 7→ E(α), the dissipation function α 7→ w(α),

the compliance function α 7→ S(α) = 1/E(α) and their derivatives. From now on we will adopt the following

hypothesis:

Hypothesis 1 (Strongly brittle materials) α 7→ E(α) and α 7→ w(α) are non negative and (at least) twice

continuously differentiable functions on [0, 1) such that

E(0) = E0 > 0, w(0) = 0, E′(α) < 0, w
′(α) > 0 ∀α ∈ [0, 1), E(1) = 0, w(1) < +∞, (3)

−w
′(α)/E′(α) is non decreasing and w

′(α)/S′(α) is decreasing to 0 when α grows from 0 to 1. (4)

This corresponds to the family of strongly brittle materials with softening defined in Pham et al. (2011b).

Let us comment this Hypothesis before giving an example

1. The interval of definition of α can always be taken as [0, 1] after a change of the damage variable;

2. The condition E′ < 0 denotes the decrease of the material stiffness when the damage grows;

3. The condition E(1) = 0 ensures the total loss of stiffness when α = 1;

4. The positivity and the monotonicity of w is natural since w(α) represents the energy dissipated during a

damage process where the damage grows homogeneously in space from 0 to α;

5. The boundedness of w is characteristic of strongly brittle materials with softening; this condition disappears

in the case of weakly brittle materials with softening or in the case of brittle materials with hardening;

6. The condition of monotonicity of w
′/E′ is introduced for the sake of simplicity and is unessential. In a

homogeneous strain and damage response, it denotes that the strain does not decrease when the damage

grows, see Section 2.3. This refers to the strain-hardening property;

7. The condition of monotonicity of w′/S′ is essential; it denotes the softening property. In a homogeneous strain

and damage response, this property leads to the decreasing of the corresponding stress when the damage

grows, see Section 2.3;

8. The condition limα→1 w
′(α)/S′(α) = 0 ensures that the material cannot sustain any stress when its damage

state is 1.

Example 1 A family of models which satisfy the assumptions above is the following one, when q > p > 0:

E(α) = E0(1− α)q, w(α) =
qσ2

c

2pE0

(

1− (1− α)p
)

. (5)

It contains five material parameters: the sound Young modulus E0 > 0, the dimensionless parameters p and q, the

critical stress σc > 0 and the internal length ℓ > 0 whose physical interpretation will be given in Section 2.3.

The condition q > 0 is necessary and sufficient in order that α 7→ E(α) be decreasing from E0 to 0 while the

condition p > 0 is necessary and sufficient in order that α 7→ w(α) be increasing from 0 to a finite value. If p > 0

and q > 0, then the condition q > p is necessary and sufficient in order that α 7→ −w
′(α)/E′(α) be increasing to

∞ while α 7→ w
′(α)/S′(α) is automatically decreasing to 0.

A particularly interesting class of materials which satisfy the conditions of Hypothesis 1 is that of perfectly

brittle materials which corresponds to the models in which p = q > 0 in the previous example. By definition,

these materials are such that w′/E′ is constant. This leads to the following definition:
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Hypothesis 2 (Perfectly brittle materials) They are strongly brittle materials such that w′/E′ is constant.

Accordingly, these materials are characterized by the unique state function α 7→ E(α) which is twice continuously

differentiable and must satisfy

E(0) = E0 > 0, E′(α) < 0 ∀α ∈ [0, 1), E(1) = 0, (6)

while w(α) is given by

w(α) = (E0 − E(α))
ε2c
2
, (7)

where εc is a given positive constant.

2.2 The damage problem of a bar under traction

Let us consider a homogeneous bar whose natural reference configuration is the interval (0, L) and whose cross-

sectional area is 1. The bar is made of the nonlocal damaging material characterized by the state function W

given by (1). The end x = 0 of the bar is fixed, while the displacement of the end x = L is prescribed to a value

Ut

ut(0) = 0, ut(L) = Ut ≥ 0, t ≥ 0 (8)

where, in this quasi-static setting, t denotes the loading parameter or shortly the “time”, and ut is the displacement

field of the bar at time t. The dependence of Ut on t is assumed to be smooth, at least continuous and piecewise

continuously differentiable. The evolution of displacement and of damage in the bar is obtained using a variational

formulation, the main ingredients of which are recalled hereafter, see Benallal and Marigo (2007) for details and

Pham and Marigo (2010a,b), Pham et al. (2011a,b) for a general discussion on the variational formulation of

damage evolution problems.

For a given U ∈ R, we denote by CU the set of “smooth” fields v defined on [0, L] and such that v(0) = 0,

v(L) = U , i.e.

CU =
{

v ∈ H1(0, L) : v(0) = 0, v(L) = U
}

(9)

where H1(0, L) denotes the usual Sobolev space of functions which belong to L2(0, L) and whose distributional

first derivative also belongs to L2(0, L). Accordingly, CUt
and CU̇t

denote the sets of kinematically admissible

displacement fields and kinematically admissible displacement rate fields, while C0 is their associated linear space.

The set of admissible damage fields is the convex set D defined by

D =
{

β ∈ H1(0, L) : 0 ≤ β(x) < 1, ∀x ∈ [0, L]
}

. (10)

Let us note that the value 1 for the damage is excluded because some quantities like the compliance S and its

derivatives are no more defined when α = 1. It turns out also that the real displacement field is no more regular

but is discontinuous at points x where α(x) = 1. Since this situation corresponds to the rupture of the bar, we

will merely determine at which time tr that happens and the analysis will stop at this moment.

By virtue of the irreversibility condition, damage can only grow and accordingly the convex cone Ḋ of admis-

sible damage rate is given by

Ḋ =
{

β ∈ H1(0, L) : β(x) ≥ 0, ∀x ∈ [0, L]
}

. (11)

With any admissible pair (u, α), we associate the total energy of the bar

P(u, α) :=

∫ L

0

W (u′(x), α(x), α′(x)) dx

=

∫ L

0

(

1

2
E(α(x))u′(x)2 + w(α(x)) +

1

2
E0ℓ

2α′(x)2
)

dx (12)

We are in a position to set the evolution problem. Specifically, for a given initial damage field α0, the damage

evolution problem reads as:

PB 1 (Variational damage evolution problem) Find t 7→ (ut, αt) absolutely continuous and such that

1. For all t ≥ 0, (ut, αt) ∈ CUt
×D,

2. For almost all t > 0, (u̇t, α̇t) ∈ CU̇t
× Ḋ,

3. For almost all t > 0 and for all (v, β) ∈ CU̇t
× Ḋ, P ′(ut, αt)(v − u̇t, β − α̇t) ≥ 0,
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with the initial condition α0(x) = α0(x). In the third item, P ′(u, α)(v, β) denotes the derivative of P at (u, α) in

the direction (v, β) and is given by

P ′(u, α)(v, β) =

∫ L

0

(

E(α)u′v′ +
(

1

2
E′(α)u′2 + w

′(α)
)

β + E0ℓ
2α′β′

)

dx

Remark 1 Note that the second item contains the irreversibility condition α̇t ≥ 0 and that our formulation

makes sense only if the evolution is sufficiently smooth in time. Therefore, we only consider evolutions such that

the displacement field and the damage field are absolutely continuous functions of time. To enlarge the search

to evolutions which are discontinuous in time, which is often necessary as we will see in the last section, one

has to reformulate the evolution problem and replace the third item by a condition which remains meaningful

for discontinuous evolutions. This is the essence of the variational formulation proposed in Pham and Marigo

(2010a,b) and Pham et al. (2011b) where the third item of PB 1 is replaced by a stability condition and an energy

balance. More precisely, the third item is a necessary but in general not sufficient condition in order that the

stability condition and the energy balance hold. It merely corresponds to a first order stability condition.

Choosing β = α̇t and v = u̇t+v0 with v0 ∈ C0 and inserting into the third item of PB 1, we obtain the variational

formulation of the equilibrium of the bar,

∫ L

0

E(αt(x))u
′
t(x)v

′
0(x) dx = 0, ∀v0 ∈ C0 (13)

From (13), we deduce that the stress is constant all along the bar and hence is only a function of time

σt = E(αt(x))u
′
t(x), ∀x ∈ (0, L) (14)

Dividing (14) by E(αt(x)), integrating over (0, L) and using boundary conditions (8), we find

σt

∫ L

0

S(αt(x))dx = Ut, (15)

which gives the overall force-displacement response of the bar once the damage field is known.

To obtain the damage problem which governs the evolution of the damage field in the bar, one inserts (13)–(15)

into the third item of PB 1. This leads to the variational inequality governing the evolution of the damage

∫ L

0

(

2w′(αt)− σ2
t S

′(αt)
)

(β − α̇t) dx+

∫ L

0

2E0ℓ
2α′

t(β
′ − α̇′

t)dx ≥ 0 (16)

where the inequality must hold for all β ∈ Ḋ and almost all t ≥ 0. Integrating by parts the second integral in (16)

leads to a new form of the variational inequality:

∫ L

0

(

2w′(αt)−σ2
t S

′(αt)−2E0ℓ
2α′′

t

)

(β− α̇t) dx+2E0ℓ
2
(

α′
t(L)

(

β(L)− α̇t(L)
)

−α′
t(0)

(

β(0)− α̇t(0)
)

)

≥ 0. (17)

Setting first β = 0 and then β = 2α̇t in (17), we obtain the equality:

∫ L

0

(

2w′(αt)− σ2
t S

′(αt)− 2E0ℓ
2α′′

t

)

α̇t dx+ 2E0ℓ
2
(

α′
t(L)α̇t(L)− α′

t(0)α̇t(0)
)

= 0. (18)

Inserting this equality into (17) leads to the following inequality:

∫ L

0

(

2w′(αt)− σ2
t S

′(αt)− 2E0ℓ
2α′′

t

)

β dx+ 2E0ℓ
2
(

α′
t(L)β(L)− α′

t(0)β(0)
)

≥ 0, ∀β ∈ Ḋ. (19)

Choosing first β ∈ C∞0 (0, L) ∩ Ḋ, where C∞0 (0, L) denotes the space of indefinitely differentiable functions with

compact support in (0, L), the inequality (18) becomes

∫ L

0

(

2w′(αt)− σ2
t S

′(αt)− 2E0ℓ
2α′′

t

)

β dx ≥ 0, ∀β ∈ C∞0 (0, L), β ≥ 0,

from which we deduce by standard arguments that the following inequality must hold almost everywhere in (0, L):

2w′(αt)− σ2
t S

′(αt)− 2E0ℓ
2α′′

t ≥ 0. (20)
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Choosing now β(x) = (1 − x/h)+ in (19) with 0 < h < L, a+ = max{0, a} denoting the positive part of a, one

gets
∫ h

0

(

2w′(αt)− σ2
t S

′(αt)− 2E0ℓ
2α′′

t

)(

1− x

h

)

dx− 2E0ℓ
2α′

t(0) ≥ 0.

Passing to the limit when h goes to 0, one obtains

α′
t(0) ≤ 0. (21)

In the same way, choosing β(x) = (1− (L− x)/h)+ one gets

α′
t(L) ≥ 0. (22)

Hence, (17) is satisfied only if (20)–(22) are satisfied. Conversely, one immediately sees that if (20)–(22) are

satisfied, then (17) is also satisfied. Consequently, (17) and (20)–(22) are equivalent.

Using (20)–(22) and taking into account the irreversibility condition α̇t ≥ 0, (18) gives the following equalities:

(

2w′(αt)− σ2
t S

′(αt)− 2E0ℓ
2α′′

t

)

α̇t = 0, α′
t(0)α̇t(0) = 0, α′

t(L)α̇t(L) = 0, (23)

where the first one must hold almost everywhere in (0, L). Finally, one has obtained the following fundamental

local version of the evolution problem PB 1:

PB 2 The pair of absolute continuous functions of time t 7→ (ut, αt) ∈ CUt
×D is solution of PB 1 if and only

if, for almost all t ≥ 0, the following conditions hold true

1. Equilibrium : ut(x) = σt
∫ x
0
S(αt(y))dy and Ut = σt

∫ L
0

S(αt(y))dy,

2. Irreversibility : α̇t ≥ 0 a.e. in (0, L),

3. Damage criterion in the bulk : 2w′(αt)− σ2
t S

′(αt)− 2E0ℓ
2α′′

t ≥ 0 a.e. in (0, L),

4. Consistency condition in the bulk:
(

2w′(αt)− σ2
t S

′(αt)− 2E0ℓ
2α′′

t

)

α̇t = 0 a.e. in (0, L),,

5. Damage boundary condition : α′
t(0) ≤ 0 and α′

t(L) ≥ 0,

6. Consistency condition at the boundary : α′
t(0)α̇t(0) = 0 and α′

t(L)α̇t(L) = 0.

Remark 2 We have implicitly assumed that x 7→ αt(x) is a sufficiently smooth field so that the integration by

parts which leads to (17) is licit. The damage criterion in the bulk (20) makes sense provided that αt is at least

continuously differentiable. Such a regularity result could be obtained after a careful treatment of the variational

inequality (16), but it is outside the scope of the present paper and this regularity property will be admitted.

Remark 3 From the variational approach, we have deduced boundary conditions for the damage field. These

natural boundary conditions are due to the fact that no a priori restrictions are imposed to the damage at the

boundaries. Of course, these boundary conditions disappear if we assume that the end points of the bar cannot be

damaged. In such a case, the sets of admissible damage fields and of admissible rate damage fields become

D = {α ∈ H1
0 (0, L) : 0 ≤ α < 1 in [0, L]}, Ḋ = {α ∈ H1

0 (0, L) : α ≥ 0 in [0, L]}

and the conditions αt(0) = αt(L) = 0, α̇t(0) = α̇t(L) = 0 replace the items 5 and 6 in the setting of the

evolution problem PB 2. More generally, a large variety of boundary conditions can be considered in our variational

approach. In any case, by duality, a natural condition is associated with each degree of freedom left by the evolution

of damage at the boundary. It is one of the numerous advantages of the variational approach. In the present paper,

since no restrictions are imposed to the damage at the boundaries, the homogeneous response is possible whereas

the response is necessarily non homogeneous if one constraints the ends to remain undamaged. However, the

construction of the localized solution inside the bar does not depend on the damage boundary conditions.

In terms of energy, we have the following property

Property 1 (Balance of energy) Let us assume that the bar is undamaged and unstretched at time 0, i.e.

α0 = 0 and U0 = 0. By definition, the work done by the external loads up to time t is given by

We(t) =

∫ t

0

σsU̇sds, (24)

the total dissipated energy in the bar during the damage process up to time t is given by

Ed(t) =
1

2
E0ℓ

2
∫ L

0

α′
t(x)

2dx+

∫ L

0

w(αt(x))dx, (25)
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while the elastic energy which remains stored in the bar at time t is equal to

Ee(t) =
σ2
t

2

∫ L

0

S(αt(x))dx. (26)

By virtue of the conditions of PB 2 that the fields have to satisfy, the following balance of energy holds true at

each time:

We(t) = Ee(t) + Ed(t).

Proof. By virtue of the equilibrium condition and by definition of the elastic energy, the work done by the

external load can read as

We(t) =

∫ t

0

σs

(

σ̇s

∫ L

0

S(αs(x))dx+ σs

∫ L

0

S′(αs(x))α̇s(x)dx

)

ds

=

∫ t

0

Ėe(s)ds+
∫ t

0

∫ L

0

σ2
s

2
S′(αs(x))α̇s(x)dx ds.

Using the initial condition and the consistency condition in the bulk, one gets

We(t) = Ee(t) +
∫ t

0

∫ L

0

w
′(αs)α̇s dx ds− E0ℓ

2
∫ t

0

∫ L

0

α′′
s α̇s dx ds

= Ee(t) +
∫ L

0

w(αt)dx+ E0ℓ
2
∫ t

0

∫ L

0

α′
sα̇

′
s dx ds− E0ℓ

2
∫ t

0

(

α′
s(L)α̇s(L)− α′

s(0)α̇s(0)
)

ds.

Using once more the initial condition and the consistency condition at the boundary, we obtain the desired equal-

ity. �

2.3 The homogeneous solution and the issue of uniqueness

If we assume that the bar is undamaged at t = 0, i.e. if α0(x) = 0 for all x, then it is easy to check that the damage

evolution problem admits a solution where αt depends on t but not on x. This particular solution will be called

the homogeneous solution. Let us construct it in the case where the prescribed displacement is monotonically

increasing, i.e. when Ut = tL and under the stronger assumption that α 7→ −w
′(α)/E′(α) is increasing from

a positive value to +∞ when α grows from 0 to 1 (instead of being merely non decreasing as it is stated in

Hypothesis 1, see comment 6).

Since we assume spatial homogeneity for αt, we have ut(x) = tx and it remains to find the two time functions

t 7→ αt and t 7→ σt. From (15), we get σt = E(αt)t. Inserting this relation into (20) and (23) leads to

t2

2
≤ −w

′(αt)

E′(αt)
, α̇t

(

t2

2
+

w
′(αt)

E′(αt)

)

= 0. (27)

Since α0 = 0, the inequality for the damage criterion in (27) is strict at t = 0 and hence by continuity during a

certain time interval. During this time interval, the bar remains undamaged by virtue of the consistency condition

in (27). Hence αt = 0 holds as long as the inequality in (27) remains strict. Therefore αt remains equal to 0 as

long as t ≤ εc with

εc :=

√

2w′(0)

−E′(0)
. (28)

This corresponds to the elastic phase. For t > εc, since −w
′/E′ is assumed to be increasing, the first relation of

(27) must be an equality. Therefore αt is given by

αt =

(

−w
′

E′

)−1(
t2

2

)

(29)

and grows from 0 to 1 when t grows from εc to ∞. During this damaging phase, the stress σt is given by

σt =

√

2w′(αt)

S′(αt)
. (30)
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Since w
′/S′ is decreasing to 0 by virtue of Hypothesis 1, σt decreases from σc to 0 when t grows from εc to ∞

and the critical stress σc is given by

σc :=

√

2w′(0)

S′(0)
= E0εc. (31)

This last property corresponds to the softening character of the damage model as it was announced in comment 7

after Hypothesis 1. Note that σt tends only asymptotically to 0, which means that an infinite displacement is

necessary to break the bar in the case of a homogeneous response. The damage rate and the stress rate are

discontinuous at t = εc. Indeed, just before tc, one has α̇t = 0 and σ̇t = E0, while, just after, one has α̇t > 0 and

σ̇t < 0. For further comparison with non-homogeneous solutions, let us calculate the stress rate at the beginning

of the damage phase. Differentiating (29) with respect to t gives the damage rate α̇t, while differentiating (30)

with respect to t gives the stress rate σ̇t in terms of α̇t. Combining both relations finally gives

lim
t↓εc

σ̇t = − E0

2S′(0)2σ2
cE0

S′′(0)σ2
c − 2w′′(0)

− 1

. (32)

In terms of energy, the dissipated energy during the damage process is given by

Ed(t) = w(αt)L.

Hence, it is proportional to the length of the bar. The total energy spent to obtain a fully damaged state is equal

to w(1)L and hence is finite by virtue of Hypothesis 1.

The non local term has no influence on the homogeneous solution. The length of the bar does not play a role

and the homogeneous response is the same whatever the bar length.

Let us now examine the issue of the uniqueness of the response. In the case of local damage models (which

are obtained by taking ℓ = 0), it is well known that the evolution problem admits an infinite number of solution.

Does the gradient term ensure the uniqueness? The answer essentially depends on the ratio L/ℓ of the bar length

with the internal length, as it is proved in Benallal and Marigo (2007) in a particular case and in Pham et al.

(2011b) in the general case. Specifically it was shown in (Pham et al. 2011b, Proposition 4.4) that a bifurcation

from the homogeneous solution is possible at time t ≥ εc if and only if L ≥ D(t) with

D(t) = πℓ

√

2E0

σ2
t S

′′(αt)− 2w′′(αt)
.

In particular, a bifurcation can occur at the end of the elastic phase and leads to a non homogeneous damage

evolution if L ≥ Dc with

Dc = πℓ

√

2E0

σ2
cS′′(0)− 2w′′(0)

. (33)

The main goal of the next section is to construct explicitly such a bifurcated solution from the onset of damage

to the break of the bar.

Example 2 For the family of models of Example 1, the homogeneous response is given by

σ =











E0ε if ε < εc =
σc
E0

σc

(

ε

εc

)

p+q

p−q

if ε ≥ εc
and α =











0 if ε < εc =
σc
E0

1−
(

ε

εc

)
2

p−q

if ε ≥ εc
.

Since q > p > 0, the stress is a decreasing function of the strain in the damaging phase. This corresponds to a

property of softening. For a given p > 0, the exponent of the power law goes from −∞ to −1 when q goes from

p to +∞. The area under the curve, i.e. the energy dissipated during the full process of homogeneous damage, is

finite. This latter feature is typical of strongly brittle behavior, see Pham et al. (2011b).

In the limiting case p = q, the damage evolves while the strain remains constant and equal to εc. This

corresponds to a perfectly brittle behavior, see Figure 1.

In the limiting case p = 0 or q = ∞, the stress-strain curve is an arc of hyperbola in its softening part. The

area under the curve, i.e. the energy dissipated during the full process of homogeneous damage, is infinite. This

change of the boundedness of the dissipated energy marks the transition between a strongly brittle and a weakly

brittle behavior, see Pham et al. (2011b).
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εc

σ

ε

σc

p =
0

p
=

q

σ

σc

ε

w(1)

Fig. 1 Left: The stress-strain response (black curve) associated with the homogeneous evolution in the case of the models
of Example 1 with q > p > 0. The limit cases of perfectly brittle material (p = q) and weakly brittle material (p = 0) are
in gray. Right: Graphical interpretation of the dissipated energy at the end of a homogeneous damage process.

3 Non homogeneous solutions of the damage problem

We assume throughout this section that the ratio L/ℓ is sufficiently large in order that the boundary conditions

at x = 0 and x = L do not perturb the construction of the non homogeneous solution.

3.1 The method of construction of non homogeneous solutions

Let us consider a solution of the evolution problem. We deduce from (20) that 0 ≤ σt ≤ σc. Indeed, σt ≥ 0 by

virtue of (8) and (15). Then, integrating (20) over (0, L) and using the boundary conditions (21) and (22), we

obtain

σ2
t

∫ L

0

S′(αt(x))dx ≤
∫ L

0

2w′(αt(x))dx+ 2E0ℓ
2(α′

t(0)− α′
t(L)) ≤

∫ L

0

2w′(αt(x))dx. (34)

But, since w
′/S′ is a decreasing function of α by virtue of Hypothesis 1 and since αt ≥ 0, we have

2w′(αt(x)) ≤ σ2
cS

′(αt(x)), ∀x ∈ (0, L).

Integrating over (0, L) and inserting the result into (34) gives σ2
t ≤ σ2

c . Therefore σc is the maximal stress that

the material can sustain in any evolution and not only during a homogeneous damage process.

Let us remark that any solution of the evolution problem contains the same elastic phase, i.e. αt = 0 as long

as Ut remains smaller than εcL. Therefore, damage localizations can appear only when Ut has reached the critical

value εcL and hence σt has reached the critical value σc. This critical time is denoted tc.

The starting point in the construction of non homogeneous solutions is to seek for solutions for which the

equality in (20) holds only in some parts of the bar. For a given t > tc, the damage field will be characterized by

the set St =
⋃

i S
i
t made of a finite number of intervals Si

t where αt > 0. In [0, L]\St, the material is supposed to

be sound and αt = 0. This part of the bar will be called the (still) elastic part of the bar while the interval Si
t

will be called a (damage) localization zone and the damage field inside a (damage) localization profile. We must

discriminate an inner localization zone where Si
t is an open interval of the form (xi−Di

t, xi+Di
t) ⊂ (0, L) from a

boundary localization zone where Si
t is an interval of the form [0, Di

t) or (L−Di
t, L]. To simplify the presentation,

we first consider the inner localization zones. We will indicate after what is changed in the case of a boundary

localization zone. The successive steps of the construction are as follows:

1. For a given t > tc, assuming that σt is known, we determine the profile of the damage field in a localization

zone;

2. We study the dependence of the damage profile on the stress σt;

3. We analyze under which condition the irreversibility condition is satisfied.
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3.2 Damage profile in a localization zone

Let σt be the stress at time t > tc, supposed to be known. We know that σtc = σc and that σt cannot be greater

than σc. The limiting case σt = σc will be treated as a particular case and hence one assumes that σt < σc. We

will see that σt = 0 when the damage field takes the critical value 1 somewhere in the bar. This limiting case will

also be treated as a particular case. Accordingly, by continuity, we first consider the cases where σt ∈ (0, σc).

Throughout the remaining part of this subsection and up to the end of the next one, since t is fixed, we

omit the index t in all quantities which are time-dependent. We omit also the index i denoting the size D of the

considered localization zone (it will appear that this size is, in fact, the same for all localization zones). Let σ be

the stress and Si = (xi −D,xi +D) be a putative inner localization zone. The damage field α must satisfy

α > 0 and − σ2S′(α) + 2w′(α)− 2E0ℓ
2α′′ = 0 in Si. (35)

Since we assume by construction that the localization zone is matched to an elastic zone where α = 0 and since

α and α′ must be continuous (see Remark 2), the damage field also has to satisfy the boundary conditions

α(xi ±D) = α′(xi ±D) = 0. (36)

Multiplying (35) by α′ and integrating with respect to x, we obtain the first integral

−σ2S(α) + 2w(α)− E0ℓ
2α′2 = C in Si, (37)

where C is a constant. Using (36) and Hypothesis 1, we get C = −S0σ
2 with S0 = 1/E0 and (37) can read as

ℓ2α′(x)2 = F(σ, α(x)) in Si. (38)

In (38), F denotes the function defined in [0, σc]× [0, 1) by

F(σ, β) := 2S0w(β)− S0σ
2 (S(β)− S0) . (39)

Since E0
∂F

∂β
(σ, β) = 2w′(β)− σ2S′(β) and since, by virtue of Hypothesis 1, w′(β) > 0 and 1− σ2S′(β)

2w′(β)
decreases

from 1 − σ2/σ2
c > 0 to −∞ when β grows from 0 to 1, there exists a unique value of β in (0, 1), say α∗(σ), for

which ∂F/∂β vanishes:

α∗(σ) =

(

w
′

S′

)−1(
σ2

2

)

.

Accordingly, F(σ, ·) vanishes at β = 0, is monotonically increasing in the interval (0, α∗(σ)), then is monotonically

decreasing in the interval (α∗(σ), 1) and tends to −∞ when β goes to 1. Hence there exists a unique value of β

in (0, 1), say ᾱ(σ), for which F vanishes:

F(σ, ᾱ(σ)) = 0, α∗(σ) < ᾱ(σ) < 1. (40)

Since α > 0 and ℓα′ = ±
√

F(σ, α) in Si, by standard arguments for this type of ordinary differential equations,

one deduces that α′(xi) = 0, α(xi) = ᾱ(σ) and

ℓα′ =

{

+
√

F(σ, α) in (xi −D,xi)

−
√

F(σ, α) in (xi, xi +D).
(41)

In other words, ᾱ(σ) corresponds to the maximal value of damage (at the given time), taken at the center of

the localization zone. The damage state α∗(σ) corresponds to the damage state of the bar under the same stress

during a homogeneous damage process, see (30). This means that the center part of any localization damage zone

is more damaged while the remaining part of the bar is less damaged than in a homogeneous process at the same

stress level.

The size of the localization zone is deduced from (41) and (36) by integration. It also depends only on σ and

is given by

D(σ) = ℓ

∫ ᾱ(σ)

0

dβ
√

2S0w(β)− S0σ2 (S(β)− S0)
. (42)
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Hence D(σ) is proportional to the internal length and is finite because the integral is convergent 2. Provided that

L ≥ 2D(σ), it is thus possible to insert a localization zone of size 2D(σ) inside the bar. The position xi of the

center can be chosen arbitrarily in the interval [D(σ), L−D(σ)].

We finally deduce from (41) and (36) that, in the localization zone, the damage field is given by the following

implicit relation between x and α:

|x− xi| = ℓ

∫ ᾱ(σ)

α

dβ
√

2S0w(β)− S0σ2 (S(β)− S0)
. (43)

The damage field is symmetric with respect to the center of the localization zone, decreasing continuously from

ᾱ(σ) at the center to 0 at the boundary. The spatial regularity of the damage profile is governed by the regularity

of the constitutive functions α 7→ w(α) and α 7→ S(α). Under Hypothesis 1, x 7→ α(x) as a solution of (35) is at

least three times continuously differentiable in Si provided that σ ∈ (0, σc). The damage profile is even indefinitely

differentiable when the constitutive functions are. We will see in the next subsection that this regularity is lost at

the limit σ = 0.

Remark 4 The size of an inner localization zone and the damage localization profile depend only on σ. Since σ

is a global quantity, all the inner localization zones have the same size and the same profile at a given time. One

can also consider localization zones which start at the boundary. In such a case, the consistency condition at the

boundary enforces that α′
tα̇t vanishes at the boundary and consequently the profile is still given by (42)-(43) with

xi = 0 or xi = L and x ∈ [0, D(σ)] or x ∈ [L−D(σ), L]. In other words, the profile of a localization zone starting

at the boundary is a half of the profile of an inner localization zone, see Figure 2. Accordingly, the total length of

the set S of localization zones is nD(σ) with n the number of half-localization zones. Note, however, that such a

half-localization zone becomes impossible when one changes the boundary conditions and does not allow that the

end of the bar be damaged.

We can summarize our construction of a localized solution by the following property:

Property 2 (Profile of a localized damage field) For a given stress σ ∈ (0, σc), the damage field in an inner

localized damage zone (xi −D(σ), xi +D(σ)) is given by (43) while the half-length D(σ) of the localized damage

zone is finite, proportional to the internal length ℓ and given by (42). The damage profile is symmetric with respect

to the center xi of the localized damage zone, maximal at the center, the maximal value ᾱ(σ) being given by (40).

The damage profile is a continuously differentiable function of x, decreasing from ᾱ(σ) at the center to 0 at the

boundary of the localized damage zone. The matching with the undamaged part of the bar is smooth, the damage

and the gradient of damage vanishing at the boundary of the localized damage zone, see Figure 2.

DHΣL xi-DHΣL xi xi+DHΣL
x

Α
—
HΣL

Α

Fig. 2 A typical damage profile in an inner localization zone and in a boundary localization zone when 0 < σ < σc

3.3 Dependency of the damage profile on the overall stress

The maximal value of damage depends only on σ and enjoys the following property:

Property 3 (Variation of the maximal value of the damage with the stress) When σ decreases from σc
to 0, the maximal value ᾱ(σ) taken by the damage field at the center of a localization zone increases from 0 to 1.

2 Indeed, F(σ, β) behaves like ∂F
∂β

(σ, 0)β near β = 0 and like ∂F
∂β

(σ, ᾱ(σ))(β − ᾱ(σ)) near β = ᾱ(σ). Since ∂F
∂β

(σ, 0) > 0

and ∂F
∂β

(σ, ᾱ(σ)) < 0, the integral is convergent.
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Proof. Let 0 < σ1 < σ2 < σc. Since 0 = F(σ1, ᾱ(σ1)) = F(σ2, ᾱ(σ2)) < F(σ1, ᾱ(σ2)), and since F(σ1, β) < 0 when

ᾱ(σ1) < β < 1, we have ᾱ(σ1) > ᾱ(σ2). Hence σ 7→ ᾱ(σ) is decreasing.

Let us prove that ᾱ0 := limσ→σc ᾱ(σ) = 0. The limit exists and is non-negative because σ 7→ ᾱ(σ) is

monotone and positive on (0, σc). Passing to the limit in F(σ, ᾱ(σ)) = 0 when σ goes to 0 gives F(σc, ᾱ0) = 0.

Since F(σc, 0) = 0 and ∂F/∂β(σc, β) < 0 for β > 0, we can conclude that ᾱ0 = 0.

Let us prove that ᾱ1 := limσ→0 ᾱ(σ) = 1. The limit exists and belongs to (0, 1] because ᾱ(σ) is decreasing and

belongs to (0, 1). If ᾱ1 < 1, passing to the limit in F(σ, ᾱ(σ)) = 0 when σ goes to 0 gives 0 = F(0, ᾱ1) = 2w(ᾱ1),

a contradiction. Hence ᾱ1 = 1. �

Let us consider the limiting cases σ = σc or σ = 0, i.e. the onset of the damage localization and the moment

at which the bar breaks.

Case σ = σc. In such a case, the differential system (35)-(36) governing the damage profile in a damage

localization zone becomes

−σ2
cS

′(α) + 2w′(α)− 2E0ℓ
2α′′ = 0 in Si, α = α′ = 0 on ∂Si.

Integrating the differential equation over Si and using the boundary conditions lead to

σ2
c

∫

Si

S′(α)dx = 2

∫

Si

w
′(α)dx.

But, by Hypothesis 1, since σ2
cS

′(α) ≤ 2w′(α) for all α ∈ [0, 1] and since the equality holds if and only if α = 0,

the unique solution of the differential equation is α(x) = 0 for all x. This is in agreement with the previous

analysis where it was shown that the amplitude of the damage profile tends to 0 when σ goes to σc. It means that

the onset of the damage localization process is progressive as a function of the overall stress. To find the shape

of the damage profile when σ is close to σc, one way is to expand the solution (42)-(43) in terms of the small

parameter σ2
c − σ2. This requires a careful analysis of the behavior of the integrals when σ goes to σc. One can

show for instance that limσ↑σc
D(σ) = Dc > 0 whereas limσ↑σc

ᾱ(σ) = 0. This means that the onset of damage

localization is of small amplitude but occurs in a zone of finite length. This result can be obtained directly by

considering the bifurcation equation. Let us follow this latter way as it is customary in bifurcation problems.

Specifically, since we are seeking for small damage fields for σ close to σc, one linearizes the differential equation

(35) which becomes

α > 0 and (σ2
cS

′′(0)− 2w′′(0))α+ 2E0ℓ
2α′′ = (σ2

c − σ2)S′(0) in Si = (xi −Dc, xi +Dc) (44)

the boundary conditions remaining unchanged. To obtain (44) we have taken into account that S′(0)σ2
c = 2w′(0).

This is the desired bifurcation equation. Then by standard arguments and after easy calculations which are left

to the reader, one gets

α(x) =
2S′(0)(σ2

c − σ2)

σ2
cS′′(0)− 2w′′(0)

cos2
π(x− xi)

2Dc
, Dc = πℓ

√

2E0

σ2
cS′′(0)− 2w′′(0)

. (45)

One has thus obtained the following property:

Property 4 (The onset of a damage localization process) A localization of damage can occur when the

stress has reached the critical value σc given by (31). Damage then appears in one (or several) zones of finite

size whose half-length Dc is given by (45), with a profile which is approximately a sinusoid whose amplitude

progressively increases when the stress decreases, see (45).

Note that this value of Dc is the same as in (33), which simply means that Dc is the minimal length of the bar

for which one can construct a non-homogeneous solution at the end of the elastic phase. The localized solution

which requires less space is of course the one which starts at one boundary, its size being half of the size of an

inner localization zone, see Remark 4.

Example 3 In the case of the family of models of Example 1, the half-length of the damage zone and the amplitude

of the damage profile at the onset of damage are given by

ᾱ(σ) =
2

p+ q

(

1− σ2

σ2
c

)

, Dc =

√

2

(p+ q)q

πℓ

εc
.
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Case σ = 0. In this case, our previous construction of the damage profile is not valid. Indeed, the differential

system (35)-(36) becomes

α > 0 and w
′(α)− E0ℓ

2α′′ = 0 in Si, α = α′ = 0 on ∂Si.

Integrating the differential equation over Si and using the boundary conditions leads to
∫

Si
w
′(α)dx = 0, which is

impossible by Hypothesis 1. As suggested by the fact that the maximal value of damage tends to 1 when σ goes

to 0, one has to search for profile such that the damage field takes the value 1 at the center of the zone. Since

some quantities like the compliance function α 7→ S(α) and its derivatives become infinite when α goes to 1, the

regularity of the damage field is lost and α′(x) is no more defined at x = xi but undergoes a jump discontinuity.

So the differential system now reads

α > 0 and w
′(α)− E0ℓ

2α′′ = 0 in Si \ xi, α(xi) = 1, α = α′ = 0 on ∂Si.

Multiplying by α′ the differential equation valid on each half-zone and taking into account the boundary conditions

at the ends, one still obtains a first integral E0ℓ
2α′(x)2 = 2w(α(x)) in Si \ xi. Since α > 0 in Si, denoting by D0

the half-length of the localization zone, one necessarily has

ℓα′ =

{

+
√

2S0w(α) in (xi −D0, xi)

−
√

2S0w(α) in (xi, xi +D0).

Since α(xi) = 1, the jump of α′ at xi is equal to −2
√

2S0w(1)/ℓ. By integration, we obtain the damage profile

and the half-length of the localization zone:

|x− xi| = ℓ

∫ 1

α

dβ
√

2S0w(β)
, D0 = ℓ

∫ 1

0

dα
√

2S0w(α)
. (46)

One can remark that this solution can be obtained formally by taking σ = 0 and ᾱ(0) = 1 in (42)-(43). We have

proved the following

Property 5 (Rupture of the bar at the center of a localization zone) At the end of the damage process,

when the stress has decreased to 0, the damage takes the critical value 1 at the center of the localized damage

zone. The damage profile and the half length D0 of the damage zone are then given by (46). The profile is still

symmetric and continuously decreasing to 0 from the center to the boundary, but its slope is discontinuous at the

center.

Example 4 In the cases of the family of models of Example 1, the half-length of the damage zone and the

amplitude of the damage profile when the bar breaks are given by

|x− xi| =
ℓ

εc

√

p

q

∫ 1−α

0

dv√
1− vp

, D0 =
ℓ

εc

√

p

q

∫ 1

0

dv√
1− vp

.

For p = 1, the profile is made of two symmetric arcs of parabola:

α(x) =

(

1− |x− xi|
D0

)2

, D0 =
2ℓ

εc
√
q
.

For p = 2, the profile is made of two symmetric arcs of sinusoid:

α(x) = 1− sin
π|x− xi|

2D0
, D0 =

πℓ

εc
√
2q

.

The greater p is, the greater the size of the damage zone and the damage field, see Figure 3.

As we will see in the next subsection, the growth of the localization damage zone when the stress decreases is

essential in order to satisfy the irreversibility condition. However, if we compare the size of the damage zone at

the onset of damage with its size when the bar breaks, i.e. if we compare Dc with D0, it is not clear whether

D0 ≥ Dc. If we consider, for instance, the family of models of Example 1 one has

D0

Dc
=

√

p(p+ q)Ip

π
√
2

, Ip =

∫ 1

0

dv√
1− vp

.

Since q ≥ p > 0, the inequality D0 ≥ Dc holds only if pIp ≥ π. But, since pIp is an increasing function of p which

is equal to π when p = 2, one has D0 ≥ Dc if and only if p ≥ 2. If we plot the graph of σ 7→ D(σ) for different
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Fig. 3 Damage profile in the localization zone when the bar breaks, for q = 4 and different values of the parameter p
(p = 1/2, 1, 2, 4) in the family of brittle materials of Example 1
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p = 2, q = 2

p = 2, q = 4

Fig. 4 Evolution of the half-length of the damage zone as a function of the stress for three models of the family of brittle
materials of Example 1: for p = 1/2 and q = 2, D decreases all along the damage process; for p = q = 2, D remains constant;
for p = 2 and q = 4, D increases all along the damage process.

values of the parameters, one sees that D(σ) is a decreasing function of σ only for large enough values of the

parameters p and q, see Figure 4. So, the monotonicity of σ 7→ D(σ) is a material property which depends only

on the two state functions α 7→ E(α) and α 7→ w(α). Note that the value of the internal length does not play a

role. Since the study of the general case is quite difficult, we will merely establish a sufficient condition for the

monotonicity of σ 7→ D(σ) in the case of perfectly brittle materials.

Property 6 (Variation of the size of a localization zone with the stress.) For perfectly brittle materials

in the sense of Hypothesis 2, if α 7→
√

E(α) is convex, then σ 7→ D(σ) is non increasing. In particular, this

condition is satisfied in the family of models of Example 1 when p = q ≥ 2.

Proof. Let us consider a perfectly brittle material and set σc = E0εc, S0 = 1/E0. For σ ∈ (0, σc), the function F

defined in (39) now reads

F(σ, α) = S0

(

S0σ
2
cE(α)− σ2

)

1− S0E(α)

E(α)
, α ∈ [0, 1).

The maximal value ᾱ(σ) of the damage is hence given by

ᾱ(σ) = E−1

(

σ2

σ2
c
E0

)

.

Inserting into the definition of D(σ) yields

D(σ) = ℓ

∫ ᾱ(σ)

0

√

E0E(α)
(

S0σ
2
cE(α)− σ2

)

(1− S0E(α))
dα.
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Let us consider the change of variable α 7→ θ at given σ:

S0E(α) = 1− θ + θ
σ2

σ2
c
.

θ increases from 0 to 1 when α increases from 0 to ᾱ(σ). Making this change of variable in the integral giving

D(σ) yields

D(σ) =
ℓ

2εc

∫ 1

0

dθ

|Φ′(α)|
√

θ(1− θ)
,

where Φ stands for the function α 7→ Φ(α) :=
√

S0E(α) and Φ′(α) is the derivative of Φ at α. If α 7→
√

E(α) is

convex, then Φ′ is a non-decreasing function of α. Since E is a decreasing function of α, so is Φ and |Φ′(α)| =
−Φ′(α). Hence |Φ′(α)| is a non increasing function of α. Since α is a decreasing function of σ at given θ ∈ (0, 1),

|Φ′(α)| is a non-decreasing function of σ at given θ. Accordingly D is a non-increasing function of σ.

In the case of Example 1, the material is perfectly brittle when p = q > 0 and then E(α) = E0(1−α)p. Hence,

α 7→
√

E(α) is convex when p ≥ 2. Note that when p = 2, a straightforward calculation gives

D(σ) =
πℓ

2εc
,

and hence the size of the localization zone remains fixed all along the damage process. �

εc

"
(x− xi)

α

t

�1.0 �0.5 0.5 1.0

0.2

0.4
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Fig. 5 The damage profile for a given t and its evolution with t by assuming that t 7→ σt is decreasing in the case of the
model of Example 1 with p = 2 and q = 4. The rupture occurs when σt = 0 and ᾱ(σt) = 1. We check numerically that
σ 7→ D(σ) is decreasing, see Figure 4.

3.4 Checking of the irreversibility

It remains to check that the localized damage fields that we have constructed at different values of σ lead to an

evolution in time which satisfies the irreversibility condition α̇ ≥ 0. Let us reintroduce the time and the index

t in the notation. Since the center of the localization zone is fixed, the condition of irreversibility is satisfied

only if t 7→ ᾱ(σt) = αt(xi) is non-decreasing. Since σ 7→ ᾱ(σ) is decreasing, this is possible only if t 7→ σt
is non-increasing. Since αt(xi, xi + D(σt)) = 0 and since αt(x) > 0 for |x − xi| < D(σt) by construction, the

condition of irreversibility is satisfied only if t 7→ D(σt) is non decreasing. This requires that σ 7→ D(σ) is non

increasing, condition which is not automatically satisfied by the damage model, see Figure 4. When this condition

is not satisfied, our construction of localized solutions is no more valid. We must consider an evolution of the

damage where a part of the localization zone reenters in a non damaging phase, the size of the still damaging

part decreasing with time. To avoid such a situation we make the following hypothesis:

Hypothesis 3 We assume that α 7→ E(α) and α 7→ w(α) are such that σ 7→ D(σ) is non increasing.

Note that this hypothesis is satisfied in the class of models of Example 1 when p = q ≥ 2 by virtue of Property 6.

Under this condition, it is possible to obtain the following property:
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Property 7 Under Hypothesis 3, in order that t 7→ αt given by (43) in a localization zone (and equals to 0

otherwise) is non-decreasing, it is necessary and sufficient that t 7→ σt is non-increasing.

Proof. We know that it is necessary, it remains to prove that it is sufficient. Let us assume that t 7→ σt is non

increasing. Then t 7→ ᾱ(σt) and t 7→ D(σt) are non decreasing. Let t1 < t2 and x be such that |x− xi| ≤ D(σt1).

It is sufficient to prove that α2 := αt2(x) ≥ αt1(x) =: α1. Owing to (43), since F is a decreasing function of σ and

since σt2 ≤ σt1 , we have

0 ≤ D(σt2)−D(σt1) =

∫ α2

0

ℓ dβ
√

F(σt2 , β)
−
∫ α1

0

ℓ dβ
√

F(σt1 , β)
≤
∫ α2

α1

ℓ dβ
√

F(σt1 , β)
.

Hence α2 ≥ α1. �

By virtue of this last property, our construction of a non homogeneous solution is valid provided that the bar

is sufficiently long for a localization zone to appear and grow without reaching the boundary. Since the size of

the localization zone increases with t, that leads to the inequality L ≥ 2D0. If we consider a non homogeneous

solution which starts at one end, our construction is valid provided that the localization zone does not reach the

other end of the bar and hence provided that L ≥ D0. Owing to (46), that gives the following lower bound for L:

L ≥ ℓ

∫ 1

0

dα
√

2S0w(α)
. (47)

Proposition 1 (A solution of the evolution problem with damage localization) Under Hypotheses 1

and 3, we have constructed a damage evolution t 7→ αt which satisfies the evolution problem PB 2 if the bar

is long enough and if we can control the loading in such a manner that the stress is continuously decreasing. A

typical example of the evolution of the damage from its onset to the rupture is given in Figure 5.

In the case where Hypothesis 3 is not satisfied, our construction is no more valid, the irreversibility condition

is not satisfied because the size of the damage zone is decreasing. In such a case, it is possible to construct an

evolution which satisfies the irreversibility condition by considering the upper envelope of the damage fields, i.e.

by considering the evolution t 7→ α∗
t such that

α∗
t (x) = max

s≤t
αt(x), ∀x ∈ [0, L], ∀t ≥ 0

where αt denotes the damage field given by (42)-(43) for a given σt. Such a construction is illustrated in Figure 6

for the model corresponding to p = q = 0.5 in the family of Example 1. For this model, σ 7→ D(σ) is decreasing.

Note that the difference between the upper envelope and the damage profile initially expected when σ = 0 is

important. This means that the true energy dissipated to break the bar is quite greater than the predicted one.

�6 �4 �2 2 4 6

0.2

0.4

0.6

0.8

1.0

α

εc

"
(x− xi)

upper envelop

σ = 0

Fig. 6 Construction of an evolution which respects the irreversibility condition in the case where the size of the damage
zone predicted by the initial construction decreases while the stress decreases. This consists in taking the upper envelope
of the evolution obtained without the irreversibility condition. Here is the case when p = q = 1/2. Note the gap between
the upper envelope and the previously considered damage profile when the bar breaks.
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3.5 Energy dissipated in a localization zone

By virtue of Property 1 and of (25) the energy dissipated in an inner localization zone when the stress is σ is

given by

Ed(σ) =
∫ xi+D(σ)

xi−D(σ)

(

1

2
E0ℓ

2α′(x)2 + w(α(x))
)

dx.

By symmetry, it is twice the energy dissipated in a half-zone. Using the change of variable x → α and (38), we

obtain

Ed(σ) = ℓ

∫ ᾱ(σ)

0

4w(α)− σ2(S(α)− S0)
√

2S0w(α)− S0σ2(S(α)− S0)
dα. (48)

It is easy to check that σ 7→ Ed(σ) is decreasing with Ed(σc) = 0, while Ed(0) represents the energy dissipated in

a localization zone during the process of damage up to rupture. Let us call fracture energy and denote by Gc this

energy by reference to the Griffith surface energy density in Griffith’s theory of fracture. Since ᾱ(0) = 1, we have

Property 8 (Fracture energy) The energy dissipated in an inner localization zone during the damage process

up to rupture is a material constant Gc which is given by

Gc = ℓ

∫ 1

0

√

8E0w(α)dα. (49)

Because of the lack of constraint on the damage at the boundary, the dissipated energy in a boundary localization

zone up to the rupture is Gc/2.

Example 5 In the case of the family of strongly brittle materials of Example 1, the fracture energy is given by

Gc = 2Jp

√

q

p
σcℓ, Jp =

∫ 1

0

√
1− vp dv. (50)

Thus Gc is proportional to the product of the critical stress by the internal length, the coefficient of proportionality

depending on the exponents p and q. This link between surface fracture energy, critical stress and internal length

is quite similar to the link between the analogous quantities in cohesive force models, see Charlotte et al. (2000);

Marigo and Truskinovsky (2004). More generally, cohesive force models and gradient damage models have very

similar properties. Both can be seen as regularization of Griffith’s model in fracture mechanics, with in each case

the great advantage (by comparison to Griffith’s model)of containing a critical stress and an internal length. A

more fundamental comparison of these two regularized models deserves to be made. The interested reader can refer

to Lorentz et al. (2011) for a first interesting attempt in this direction.

4 The force-displacement relation and global quantities

In this section we consider the global behavior of the bar during the damage evolution process, in particular the

force-displacement response and the different energies involved during the process. We assume that Hypothesis 3

is satisfied and hence that the damage localization profile is given by (43) at a time beyond the elastic phase and

when the stress is σ. The stress is assumed to be controlled during this damaging phase in such a manner that

t 7→ σt is decreasing. How this control can be realized in practice is beyond the scope of this paper. The case

when t 7→ Ut is controlled will be considered at the end of the section.

4.1 The additional average strain due to damage

Let σt be the stress prevailing in the bar and Ut be the displacement of the end x = L at time t. Then, the average

strain of the bar is εt = Ut/L. If tc denotes the critical time corresponding to the onset of the damage localization

process, one has σt = E0εt for 0 ≤ t ≤ tc. Let us now consider t > tc. Let us assume that the bar contains a

time dependent set of localization zones St =
⋃

i S
i
t whose total length is nD(σt) with n ∈ N∗ (n represents the

number of half localization zones, recalling that a half-zone can grow at each end). Using (15) and recalling that

αt = 0 outside the damage zone, we get

Ut = σt

∫ L

0

S(αt(x))dx = σt

(

∑

i

∫

Si
t

S(αt(x))dx+ S0(L− nD(σt))

)

.
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The integral
∫

Si
t

S(αt(x))dx can be transformed into an integral over the range of α by using (38). Indeed,

considering an inner localization zone, by symmetry that integral can read as 2
∫ xi

xi−D(σt)
S(αt(x))dx. Making the

change of variables x → α, since ℓdα =
√

F(σt, α)dx, we obtain

∫

Si
t

S(αt(x))dx = 2ℓ

∫ ᾱ(σt)

0

S(α)dα
√

F(σt, α)
.

Recalling (42), we finally obtain the overall stress-strain relation

εt = εe(σt) +
nℓ

L
εd(σt), (51)

with

εe(σ) = S0σ, εd(σ) =

∫ ᾱ(σ)

0

σ(S(α)− S0)
√

2S0w(α)− S0σ2(S(α)− S0)
dα. (52)

Remark 5 For a given t, (51) gives the average strain in term of the stress. When t varies, this corresponds to

a curve in the ε − σ plane parametrized by t. When 0 ≤ t ≤ tc, the response is elastic and one has ε = εe(σ)

with 0 ≤ σ ≤ σc. When t > tc, since we assume that t 7→ σt is decreasing, this curve can also be parametrized by

σ with σ decreasing from σc to 0. Thus ε can be decomposed into two terms, one associated with a purely elastic

response, the other due to the damage of the localization zones. Note that σ 7→ εd(σ) depends neither on the length

of the bar nor on the internal length of the material. The size effects are merely due to the factor ℓ/L.

The monotonicity properties of the function σ 7→ εd(σ) depend on the state functions α 7→ E(α) and α 7→ w(α).

But, since εd(σc) = 0 and since εd(σ) > 0 for σ < σc, σ 7→ εd(σ) is necessarily decreasing in a neighborhood of

σc and we are ensured that t 7→ εd(σt) is increasing in a neighborhood of tc. We have in particular

Property 9 (Behavior of σ 7→ εd(σ) near σc) εd(σc) = 0 and

dεd

dσ
(σc) = − π23/2S′(0)2σ2

cE
1/2
0

(S′′(0)σ2
c − 2w′′(0))3/2

. (53)

Therefore, in the case of the family of models of Example 1 we have

σc
dεd

dσ
(σc) = −23/2q1/2π

(p+ q)3/2
.

Proof. When σ is close to σc, then ᾱ(σ) is close to 0 and by (45) we have

ᾱ(σ) ≈ 2S′(0)(σ2
c − σ2)

S′′(0)σ2
c − 2w′′(0)

.

For α ∈ (0, ᾱ(σ)), setting α = θᾱ(σ), the integrand of εd is approximately given by

S(α)− S0
√

F(σ, α)
≈

√
2E0S

′(0)
√

S′′(0)σ2
c − 2w′′(0)

√

θ

1− θ
.

Then, εd(σ) becomes

εd(σ) ≈ 23/2S′(0)2E
1/2
0

(S′′(0)σ2
c − 2w′′(0))3/2

∫ 1

0

√

θ

1− θ
dθ σc(σ

2
c − σ2)

and, since the integral in θ is equal to π/2, the result follows. �

On the other hand, the behavior of εd(σ) when σ/σc is small is very sensitive to the constitutive parameters as

it is shown in the following example and on Figure 7 (the details of the calculations are left to the reader).
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Example 6 In the case of the family of models of Example 1, we have

lim
σ↓0

εd(σ) =











0 if q < 2

π/2 if q = 2

+∞ if q > 2

. (54)

In the case p = q = 2, εd(σ) can be obtained in a closed form in the full range of values of σ and one gets

εd(σ) =
π

2

(

1− σ

σc

)

.

Consequently, when q > 2, the overall strain goes to infinity when the stress goes to 0, contrary to what happens

for the homogeneous response in the case p = q > 2 where the strain remains constant. On the other hand, when

q < 2, the average strain is equal to 0 when the bar breaks. Note however that in some cases, for instance when

p = q < 2, Hypothesis 3 is not satisfied and we should use the upper envelope α∗
t instead of αt.

Π�2 Ε
d0.0

0.2

0.4

0.6

0.8

1.0
Σ�Σc

σ

2�εd

σc

Gc

Fig. 7 Left: evolution of εd (part of the average strain of the bar due to damage in a localization zone) in a stress-strain
diagram. Here are plotted the curves associated with three models of Example 1. Dashed line: p = 0.5, q = 1; thin line:
p = 1, q = 2; thick line: p = 2, q = 4. Right : graphical identification of the fracture energy

The value of the fracture energy Gc can be seen also in the σ − εd diagram by virtue of the following

Property 10 (Identification of the fracture energy) The ratio Gc/2ℓ is equal to the area of the region of

the (εd, σ) plane delimited by the curve σ 7→ εd(σ) and the σ axis, see Figure 7. Since the product ℓεd(σ) can

be obtained by measuring the displacement U and the stress σ, this relation can be used to measure the fracture

energy.

Proof. Let us calculate this area. Throughout the calculation α 7→ σ̄(α) denotes the inverse function of σ 7→ ᾱ(σ)

and we use the fact that F(σ, ᾱ(σ)) = F(σ̄(α), α) = 0 for σ ∈ (0, σc) and α ∈ (0, 1).

∫ σc

0

εd(σ)dσ =

∫ σc

0

∫ ᾱ(σ)

0

σ(S(α)− S0)
√

2S0w(α)− S0σ2(S(α)− S0)
dα dσ

=

∫ 1

0

∫ σ̄(α)

0

σ(S(α)− S0)
√

2S0w(α)− S0σ2(S(α)− S0)
dσ dα

=

∫ 1

0

−
√

2E0w(α)− E0σ2(S(α)− S0)
∣

∣

∣

σ=σ̄(α)

σ=0
dα

=

∫ 1

0

√

2E0w(α)dα.

Comparing with (49) gives the desired result. �
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4.2 Size effects and the force-displacement response

The number n of half-localization zones is limited by the length of the bar. If we consider the onset of damage,

we must have n < L/Dc, while, if we consider the damage process up to the rupture, we must have n ≤ L/D0.

Accordingly, if L ≤ Dc, then no localization can occur and the homogeneous response is the unique solution of

the evolution problem.

Let us consider the case L > Dc. The slope of the stress-strain curve associated with a solution made of n

half localization zones, just after t = tc, is given by

dε

dσ
(σc) = S0 +

nℓ

L

dεd

dσ
(σc) := −S0

(

n
Ls

L
− 1

)

, (55)

where

Ls := ℓ
π23/2S′(0)2σ2

cE
3/2
0

(S′′(0)σ2
c − 2w′′(0))3/2

. (56)

With the current notation, the slope of the stress-strain curve associated with the homogeneous solution, just

after t = tc, can read as

dε

dσ
(σc) = −S0

(

Ls

Dc
− 1

)

,

see (32). Let us remark that the ratio Ls/Dc is not less than 1 since it is given by

Ls

Dc
=

2S′(0)2σ2
cE0

S′′(0)σ2
c − 2w′′(0)

.

The inequality Ls ≥ Dc holds by virtue of Hypothesis 1 and of the monotonicity of −w
′/E′. Indeed, since

−2w′(0)/E′(0) = σ2
c/E

2
0 and since (w′/E′)′(0) ≤ 0, a straightforward calculation gives the desired inequality.

This inequality ensures that there is no snap-back in the homogeneous response.

If we compare the slope of the homogeneous response with that of a response with n localizations, since

n < L/Dc, one sees that the response with n localizations has a slope at t = tc greater than that of the

homogeneous response. This means that the localization induces softening than the homogeneous response, cf

Figure 8. Moreover, the response with n localizations will present a snap-back at t = tc if the slope is positive.

Accordingly, there is a snap-back when L > nLs. We have thus obtained the following property:

Property 11 (Number and shape of the responses with localization) According to the bar length we are

in one the three following cases

1. If L ≤ Dc, then no localization zone can appear at t = tc and the homogeneous response is the unique solution;

2. If Dc < L ≤ Ls, then one or several localization zones can appear inside the bar or at the boundary. The

maximal number of half localization zones is L/Dc. With each possible number of half localization zones is

associated a curve in a stress-strain diagram which starts below the curve of the homogeneous response and

without snap-back at the bifurcation point;

3. If L > Ls, then the properties are the same as in the previous case except that one or several curves (in

particular the curve associated with a unique localization zone located at one end of the bar) present a snack

back at the bifurcation point;

The above property is local in time and limited to the behavior of the curves at the onset of damage. Global

properties depend both on the model and on the bar length. We give below two examples.

Example 7 In the case of the family of strongly brittle materials of Example 1 with q > 2 and q > p > 0,

D0 > Dc, limσ→0 ε
d(σ) = +∞ and the two critical lengths are given by

Dc =

√

2

(p+ q)q

πℓ

εc
, Ls =

2
√
2q

(p+ q)3/2
πℓ

εc
,

Ls

Dc
=

2q

p+ q
.

Since q > p > 0, Ls/Dc ∈ (1, 2). Therefore, one can discriminate the two following cases (cf Figure 8):

1. Case Dc < L ≤ Ls < 2Dc. Then the number n of half localization zones is necessarily equal to 1 and there

exists a unique bifurcated branch starting at t = tc from the undamaged state. This branch corresponds to a

localization zone growing from one end of the bar (by symmetry, the two ends are equivalent). The curve starts

below the homogeneous response without snap-back and goes to infinity.
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2. Case nDc ≤ L < (n+1)Dc with n ∈ N, n ≥ 2. Then there exist n bifurcated branches starting at t = tc from

the undamaged state. For i ∈ [1, n], the ith branch corresponds to the solutions which contain i half localization

zones. When i is odd, such a solution contains necessarily a localization zone located at the boundary, while,

when i is even, a solution can contain only inner damage zones as well as inner damage zones with a damage

zone at each end of the bar. If iLs < L, then the branch presents a snap-back at t = tc. In any case the first

branch presents a snap-back.

1
Ε�Εc

1
Σ�Σc

1
Ε�Εc

1
Σ�Σc

Fig. 8 Overall stress-strain responses for the model of Example 1 with p = 2 and q = 4 (hence Ls = 4Dc/3). Thin
curve: homogeneous response; Thick curves: responses with localization of damage after the elastic phase. Left: for a bar of
intermediate length, Dc < L < Ls, only one boundary localization zone is possible, there is no snap-back; Right: for a long
bar, L > Ls (here L = 4D0 ≈ 4.9Dc), several localization zones are possible (here up to 4), the first three curves (1 ≤ i ≤ 3)
present a snap-back, the lowest curve corresponds to i = 1 and only one half localization zone located at x = 0 or x = L.

Example 8 In the particular case of perfectly brittle materials of Example 1 with p = q > 2, then Dc = Ls <

D0 and limσ→0 ε
d(σ) = +∞. In the homogeneous response the damage grows at fixed strain. A response with

localization is possible only if L > Dc. In such a case, any curve associated with damage localization presents a

snap-back at the damage onset and goes to infinity when the maximal value of the damage goes to 1 (cf Figure 9).

1
Ε�Εc

1
Σ�Σc

Fig. 9 Overall stress-strain responses for the model of Example 1 with p = q = 4 (hence D0 = 1.67Dc). Thin curve:
homogeneous response; Thick curves: responses with localization of damage after the elastic phase. For L > Dc (here
L = 4D0 ≈ 6.67Dc), half localization zones can appear (here up to 6, but only the first four are plotted), all present a
snap-back and go to infinity. The lowest curve corresponds to i = 1.

4.3 Response of the bar in the case of a hard device control

Let us consider a loading process where Ut = tL, i.e. such that the displacement of the end x = L is monotonically

increasing. The question is: what is the response of the bar just after tc? We know that the homogeneous response

is always possible. But, by Property 11, other possibilities exist provided that the bar length is large enough. In

such a case, the question becomes: how to choose among all possible responses? A natural criterion of selection is
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the stability condition proposed in Pham and Marigo (2010b) and used in Pham et al. (2011b) to test the stability

of the homogeneous response. We will recall here the main results obtained in Pham et al. (2011b) which allows

us to conclude in the neighborhood of the bifurcation point t = tc. The analysis of the stability of the states with

damage localization in the full range of t is outside the scope of the present paper and is reserved for future works.

The two main results obtained in Pham et al. (2011b) are the following

Property 12 (Instability of the homogeneous state and snap-back on non homogeneous response)

1. If L < Ls, then, at t = tc the undamaged state (α = 0, u(x) = tcL) is stable and there exists an interval

of time [tc, tc + h) such that all the states of a branch solution of the evolution problem which passes by this

homogeneous state at time tc are also stable, see (Pham et al. 2011b, Proposition 4.5).

2. If L > Ls, then, at t = tc the undamaged state (α = 0, u(x) = tcL) is unstable, (Pham et al. 2011b, Proposi-

tion 3.4).

By virtue of these stability results, let us consider the three cases according to the length of the bar.

1. Case L ≤ Dc. Then, at least in a neighborhood t = tc, the homogeneous response is the unique solution and

is stable;

2. Case Dc < L ≤ Ls. Then, at least in a neighborhood t = tc, the homogeneous response as well as the possible

response with localizations are stable. Accordingly, the damage can grow homogeneously or can appear and

grow in a localization zone. The choice can be governed by imperfections or inertial effects;

3. Case L > Ls. The response is no more homogeneous just after tc. But the response associated with the lowest

curve (and hence the lowest energy) corresponds to one localization zone at the boundary (n = 1) and presents

a snap-back. Then, if we assume that the bar prefers the state with the lowest energy, then the response will

be discontinuous at time tc. Note that if the state of the bar jumps from the undamaged state A to the state of

the lowest branch B at the same average strain tc, then there is no more conservation of energy, see Figure 10.

The additional energy given to the bar during the jump can be transformed either into kinetic energy or into

more dissipated energy. In the latter case, the final damage state after the jump will be greater than that

corresponding to point B.

1
Ε�Εc

1

Σ�Σc A

B

Fig. 10 Case of a long bar (L > Ls. Because of the snap-back of the response with lowest energy and the instability of the
homogeneous response (thin curve), the evolution is discontinuous at the bifurcation point A. If the state of the bar jumps
from A to B then the energy corresponding to the gray area is transformed into kinetic energy or into energy dissipated in
further damage.

5 Conclusion and perspectives

We have proposed a construction method of non homogeneous solutions for the one-dimensional damage evolution

problem of a bar under traction. We have shown that the properties of such localized solutions are very sensitive

to the parameters of the model. This strong dependency could be very interesting from an experimental viewpoint

to identify the constitutive law and the main parameters of the model as the critical stress, the internal length or

the fracture energy.

From a theoretical viewpoint, the presence of the gradient of damage in the model has as expected a regularizing

role. It limits the possibility of damage localization since the size of a localization zone is necessarily proportional
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to the internal length of the material, the factor of proportionality depending on the other parameters of the

model.

The gradient damage term also induces size effects in the response of the bar. For sufficiently short bars, a

damage localization cannot occur and the unique solution is the homogeneous response where the damage field is

uniform in the bar. On the other hand, for sufficiently long bars, solutions with several damage localization zones

are possible and even more could be constructed, as was made in Benallal and Marigo (2007).

This drastic lack of uniqueness — that the introduction of a non local term has not removed! — requires to

add a selection criterion into our formulation of the damage evolution problem. A good candidate is of course

the stability criterion introduced in Benallal and Marigo (2007) and Pham and Marigo (2010b). The criterion has

been successfully used in Pham et al. (2011b) to study the stability of the homogeneous response and it turned

out that the homogeneous damage state is not stable if the bar is long enough. The next challenge is to find

which solutions among all those constructed here satisfy the stability criterion. Another important perspective is

to extend all these results to a three-dimensional setting.
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