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RENEWAL THEOREMS FOR RANDOM WALKS IN RANDOM SCENERY

NADINE GUILLOTIN-PLANTARD AND FRANCOISE PENE

ABsTrRACT. Random walks in random scenery are processes defined by Z,, := ZZ:1 EXit X
where (X%, k > 1) and (&, y € Z) are two independent sequences of i.i.d. random variables. We
suppose that the distributions of X; and &y belong to the normal domain of attraction of strictly
stable distributions with index « € [1,2] and 8 € (0,2) respectively. We are interested in the
asymptotic behaviour as |a| goes to infinity of quantities of the form ) -, E[h(Z, — a)] (when
(Zn)n is transient) or 3 o E[h(Zs) — M(Zn — a)] (when (Zy), is recurrent) where h is some
complex-valued function defined on R or Z.

1. INTRODUCTION

Renewal theorems in probability theory deal with the asymptotic behaviour when |a| — +o0
of the potential kernel formally defined as

Ko(h) =) E[h(Z, — a)]
n=1

where h is some complex-valued function defined on R and (Z,),>1 a real transient random
process. The above kernel K,(.) is not well-defined for recurrent process (Z,)n>1, in that case,
we would rather study the kernel

n
Gra(h) = > {EI(Z)] - Elh(Z - o))}
k=1
for n and |a| large. In the classical case when Z,, is the sum of n non-centered independent and
identically distributed real random variables, renewal theorems were proved by Erdos, Feller and
Pollard [11], Blackwell [1, 2], Breiman [6]. Extensions to multi-dimensional real random walks or
additive functionals of Markov chains were also obtained (see [13] for statements and references).

In the particular case where the process (Z,),>1 takes its values in Z and h is the Dirac
function at 0, the study of the corresponding kernels

Ko(00) =Y _P[Z, =
n=1

and
n

Cralo) = {IP’[Zk — 0] - P[Z; = a]}
k=1
have a long history (see [19]). In the case of aperiodic recurrent random walks on Z with finite
variance, the potential kernel is known to behave asymptotically as |a| when |a| goes to infinity
and, for some particular random walks as the simple random walk, an explicit formula can be
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given (see Chapter VII in [19)]).

In this paper we are interested in renewal theorems for random walk in random scenery (RWRS).
Random walk in random scenery is a simple model of process in disordered media with long-range
correlations. They have been used in a wide variety of models in physics to study anomalous
dispersion in layered random flows [17], diffusion with random sources, or spin depolarization
in random fields (we refer the reader to Le Doussal’s review paper [15] for a discussion of these
models). On the mathematical side, motivated by the construction of new self-similar processes
with stationary increments, Kesten and Spitzer [14] and Borodin [4, 5] introduced RWRS in
dimension one and proved functional limit theorems. This study has been completed in many
works, in particular in [3] and [9]. These processes are defined as follows. We consider two
independent sequences (X, k > 1) and (§,,y € Z) of independent identically distributed random
variables with values in Z and R respectively. We define

Yn>1, S, := ZXk and Sp:=0.
k=1

The random walk in random scenery Z is then defined for all n > 1 by

n
Zn =Y &,
k=1

The symbol # stands for the cardinality of a finite set. Denoting by N, (y) the local time of the
random walk S’ :
Np(y) = #{k =1,...n : S, = y}

the random variable Z,, can be rewritten as

Zn =Y &Naly)- (1)

YEZ

The distribution of &j is assumed to belong to the normal domain of attraction of a strictly stable
distribution Sg of index € (0, 2], with characteristic function ¢ given by

é(u) = o lul? (Ar+idy sen(w)) 4 € R, (2)

where 0 < A; < oo and |A]'As| < [tan(73/2)|. When 8 = 1, Ay is null. We will denote by ¢¢
the characteristic function of the random variables {,. When [ > 1, this implies that E[{] = 0.
Under these conditions, we have, for g € (0, 2],

c(p)

Vt>O,PH§0]Zt]§t—B. (3)

Concerning the random walk (S),),>1, the distribution of X is assumed to belong to the normal
domain of attraction of a strictly stable distribution S/, of index «. Since, when « < 1, the
behaviour of (Z,,), is very similar to the behaviour of the sum of the &’s, k = 1,...,n, we
restrict ourselves to the study of the case when « € [1,2]. Under the previous assumptions, the
following weak convergences hold in the space of cadlag real-valued functions defined on [0, c0)
and on R respectively, endowed with the Skorohod topology :

(Tfésmto £, (U)o

>0 n—00
na
1 c
and n s ka el Y(2)) 50>
k=0 ) .

where U and Y are two independent Lévy processes such that U(0) = 0, Y(0) = 0, U(1) has
distribution S), and Y (1) has distribution Sg. For a € ]1,2], we will denote by (L¢(z))zer >0 a
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continuous version with compact support of the local time of the process (U(t));>0 and by |L|g
/8
the random variable < Jz Lf () dx) . Next let us define

1 1 1.1
(5::1—54-@:1"‘&(5_1)' (4)

In [14], Kesten and Spitzer proved the convergence in distribution of ((n7°Z,;)1>0)n, when a > 1,
to a process (A¢)¢>o defined as

At:/RLt(x)dY(x),

by considering a process (Y (—z));>0 with the same distribution as (Y (x));>0 and independent
of U and (Y (x))z>0.

In [9], Deligiannidis and Utev considered the case when o = 1 and f = 2 and proved the
convergence in distribution of ((Z,:/+/nlog(n))i>0)n to a Brownian motion. This result is got
by an adaptation of the proof of the same result by Bothausen in [3] in the case when § = 2 and
for a square integrable two-dimensional random walk (S, ).

In [8], Castell, Guillotin-Plantard and Péne completed the study of the case a = 1 by proving
1 1 1
the convergence of (n_E(log(n))E_lZnt)tzo)n to ¢? (Y (t))ier, with

c:= (ﬂao)l_ﬁr(ﬂ +1), (5)
where ag is such that t — e~ is the characteristic function of the limit of (n=15,,),.

Let us indicate that, when « > 1, the process (Z,)y, is transient (resp. recurrent) if 5 < 1 (resp.
B >1) (see [7, 18]).

We recall the definition of the Fourier transform h as follows. For every h : R — C (resp.
h : Z — C) integrable with respect to the Lebesgue measure on R (resp. with respect to the
counting measure on Z), we denote by I[h] the integral of h and by h : Z — C its Fourier
transform defined by

Ve eI, h(x):=I[h(-)e®], withZ=R (resp. T = [—m;7]).

1.1. Recurrent case : ( € [1,2]. We consider two distinct cases:

e Lattice case: The random variables ({;)yez are assumed to be Z-valued and non-
arithmetic i.e. {u;|pe(u)| =1} = 2nZ.
The distribution of £y belongs to the normal domain of attraction of Sg with characteristic
function ¢ given by (2).
e Strongly non-lattice case: The random variables (£;)zez are assumed to be strongly
non-lattice i.e.
lim sup |e (u)| < 1.
|u|——+o00
The distribution of §y belongs to the normal domain of attraction of Sg with characteristic
function ¢ given by (2).

For any a € R (resp. a € Z), we consider the kernel K, , defined as follows : for any h: R — C
(resp. h : Z — C) in the strongly non-lattice (resp. in the lattice) case, we write

Kna(h) = > {EI(Z0)] ~ Eln(Z), — )]}

k=1
when it is well-defined.
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Theorem 1. The following assertions hold for every integrable function h on R with Fourier
transform integrable on R in the strongly non-lattice case and for every integrable function h on
Z in the lattice case.

e when a>1 and B > 1,
lim a5 lim K,q(h) = CiI[h),

a—+00 n—-+o0o

—1/6
N(ETE-HE[LE] /177 1 A
= 5 nijzes S5l 5 — arctan <—> .
mB(1 — §)(A? + A2)Y/ o\2 p Ay
e when a > 1 and f =1,
lim (loga)™" lim K, .(h) = CaI[h],

a——+00 n—-+o0o
with Cy := (mA;)~L.
e when a=1 and B € (1,2),

with

. - -1
aEI-iI-loo <a 1 log(aﬁ)) ngr—ir—loo Kn’a(h) - Dll[h]’

with
D1 =

F(2 — 5) sin ﬁ — arctan <&>
me(B — 1)(A2 + A3)1/2 2 A/ )
e when a = 1 and § = 2, assume that h is even and that the distribution of the &.s is
symmetric, then

. 1 2 . o
lim (a™'log(a”)) nEI-iI-loo K o(h) = DoI[h],

a——+00

with Do := (2A1¢)7 1.

Remarks: 1- It is worth noticing that since |As/A;| < |tan(w3/2)|, the constants C; and D;
are strictly positive.

2- The limit as a goes to —oco is not considered in Theorem 1 and Theorem 2 since it can be
easily obtained from the limit as a goes to infinity. Indeed, the problem is then equivalent to
study the limit as a goes to infinity with the random variables (&;), replaced by (—¢;), and the
function h by x — h(—x). The limits can easily be deduced from the above limit constants by
changing As to —As.

1.2. Transient case : € (0,1). Let H; denote the set of all the complex-valued Lebesgue-
integrable functions A such that its Fourier transform A is continuously differentiable on R, with
in addition h and (h)" Lebesgue-integrable.

Theorem 2. Assume that o € (1,2] and that the characteristic function of the random variable
&o is equal to ¢ given by (2).
Then, for all h € Hi, we have

lim a3 S E[h(Z, — )] = Co I[h]

a—+00
n>1

D(ETE-HE[LE] /17 1 Ay
Cy = B0 = 1)(14% n A%)l/%ﬁ sin <5 <§ — garctan <A_1>>> .

with
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1.3. Preliminaries to the proofs. In our proofs, we will use Fourier transforms for some
h:R — Cor h:Z — C and, more precisely, the following fact

B [h(Z — a)] = /

T

A~

h(t)E[e%n]e "t qt.

This will lead us to the study of Y, <, E[e?“Zn]. Therefore it will be crucial to observe that we
have N

VteR, Vn>1, B[] =E H M) | — | H @e(tNu(y)) | 5
yEL YEL

since, taken (Si)k<n, (&)y is a sequence of iid random variables with characteristic function
¢ Let us notice that, in the particular case when &y has the stable distribution given by
characteristic function (2), the quantity Y, -, E[e??"] is equal to

¢(t) = Z E |: H e|t*BNn(y)B(A1+iAzsgn(t)):| .

n>1 YEL

Section 2 is devoted to the study of this series thanks to which, we prove Theorem 1 in Section
3 and Theorem 2 in Section 4.

2. STUDY OF THE SERIES U

Let us notice that we have, for every real number ¢ # 0,
(1) = Y Elem Vi), (6)
n>1

) <

with Vi, == 3" 7 Ny, (y)P. Let us observe that N"n(y) < (N"n(y))ﬁ < Nzéy) if 5 <1, and N"éy

n

(Me®))8 < N"n(y) if 8> 1. Combining this with the fact that 3> ; Nn(y) = n, we obtain:

B<1 = n<V,<n (7a)
B>1 = n<V,<nP (7b)

Proposition 3. When g € (0,2], for every r € (0,4+00), the function 1 is bounded on the set
{teR:|t| >r}.

When B € (0,1), the function 1 is differentiable on R\ {0}, and for every r € (0,+00), its
derivative ¢ is bounded on the set {t € R: |t| > r}.

Proof. Let r > 0. Then: [t| > 7 = |[¢(t)] <>,5 e=A1r"n'"? oo the first assertion is proved.
Next, when 3 € (0,1), since ) -, ne A1)’ < 00, it easily follows from Lebesgue’s theorem

that 1 is differentiable on {t € R : |t| > r}, with |[¢/(t)] < BrP~1(A; + |A2|)Zn21n6_‘41(7"")ﬂ
when |[t| > 7. O

In the particular case when 8 = 1, we have Ay = 0 and

1 . . —14—1
¢(t)=m~tﬁm(t), with ~(¢) := A, e~

When g # 1, the expression of ¥(t) is not so simple. We will need some estimates to prove our

results. Recall that the constant c is defined in (5) if @ =1 and set
1 ~1/6

—)E[|L .
S Bl )

C = iF( s

op
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Proposition 4. When o > 1,3 # 1, we have

i ! (®)
" ()
(t

M = ©)

where v is the function defined by
y(t) := Clt|7V/5(A; + iAg sgn(t)) /08,

When oo =1 and 8 > 1, we have
t
lim m =1, (10)
t—0 y(t)

where 7y is the function defined by

_ (log(jt")*"
()= c|t|B(Ay +iAgsgn(t))

To prove Proposition 4, we need some preliminaries lemmas. Let us define
1 1
by:=n’ifa>1 and b, :=n?(log(n))' 7 ifa=1. (11)

We first recall some facts on the behaviour of the sequence (b; ly./8 > .

n

Lemma 5 (Lemma 6 in [14|, Lemma 5 in [8]). When o > 1, the sequence of random variables

1/
<b;1Vn1/ﬁ> converges in distribution to |L|g = (f]R Lf(m) dx) .

1
When o = 1, the sequence of random variables <b;1an/B) converges almost surely to ¢B.
n

n

Lemma 6 (Lemma 11 in [7], Lemma 16 in [8]). If > 1, then

B/(B-1)
supE oo < 400
! Ve

b p
(VW>

The idea will be that Vj, is of order bj. Therefore the study of Yo e~ ltbn? (Ar+id2 sgn(®) ]l
be useful in the study of ¢(¢t). For any function g : Ry — R, we denote by L(g) the Laplace
transform of g given, for every z € C with Re(z) > 0, by

+oo
£(o)(z) = /0 e~tg(t)dt,

If B < 1, then for every p > 1,

suplE < 4o00.
n

when it is well defined.

Lemma 7. When o > 1, for every complex number z such that Re(z) > 0 and every p > 0, we
have
1 | S
K, ,(z) :=su E e*wwbg uPpPyY — —T(p+ —)z (r+35)| < +00.
p,CV( ) u>1(:)) = ( n) U(SB (p 6,8)
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When a = 1, for every complex number z such that Re(z) > 0 and every p > 0, we have

K, 1(z) :=sup Z P (ubl)P — uP L (1) (2u)| < 400,
u>0 n>1

where Wy (t) = wo(t)tP with

and

A((L=BtT7*P(1 = B
A((1 - p)tT) — 1

Here w is the Lambert function defined on [0;+00) as the inverse function of y — ye¥ (defined

on [0;+00)) and A is the function defined on [e;+00) as the inverse function of y — €Y /y defined
on [1;4+00).

Wo(t) := e/ (1-p))1—F+00) (1) if B<1.

Proof. First, we consider the case when o > 1. With the change of variable y = (ux)®?, we get

+00 o)
—(ux)%8z péB de — 1 —yz ﬁer,ld _ 1 r i *(er%)
/0 e (ux)P°? dx w5 /. e Yy Y= 58 p+6ﬁ z .

Let |z] denote the integer part of x. Observe that

+o0
> e_(“")wz(un)pw:/ e~ @lz)?2 (y | 2| PP da.
1

n>1

Let us write

E

—(ulz)¥B —(uz)%P z
p(u7x):‘e @l2)*2 (4| | PO8 _ o (ua) (ux)péﬁ‘_

By applying Taylor’s inequality to the function v — e~"*vP on the interval [(u |z])%?, (uz)%],
we obtain for every x > 2 (use |z] > x/2)

Ep(u,2) < (14 [2)(1+ p) (1 + (uz)??)e (/0 Re) 35 (005 — | )7,

Next, by applying Taylor’s inequality to the function ¢ — t°? according that 68 > 1 or 63 < 1
(again use |z| > /2 in the last case), we have

Ey(u,z) < (14 |2[)(1 + p)(1 4 (uz)P*?) max (1, 21755) 58 uP e~ (uw/2)PRe(z) 5081

Therefore, with the change of variable t = (uz/2)%%, we get

+00 too
Ep(u,z)dz < (1+|2])(1 + p) max (2°7,2) / (1 + 2796 P)e~Re(@)t gy
2 0

Now, we suppose that & = 1 and follow the same scheme. We observe that 08 = 1. With the

change of variable ¢t = z(log m)ﬁfl, we get

+oo
/ e=7u2(1082) ™ (4 (log )P~V dor = uP L(1p) (2u).
1
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1 -1
Indeed, if 5 > 1, we have t = [(8 — 1)xﬁ(log(:cﬁ))]ﬁ_l and so z = [exp (w (%))]

which gives dx = wg(t) dt (since w'(y) = % and since e*(®) = wzﬁm))' Moreover, if 5 < 1,
we have
= o
- 1
t= [ ‘ — ] and so = [exp ((1—5)A ((1—ﬁ)t1— >>],
(1 =) log(z™=7)
Ay)

which gives dz = wg(t) dt (since A'(y) 7 and since AW = yA(y)).

~ yA-1
Let o := max(4, e>(1=%)). We have

400
Z —=un(logn)?~! (un(log n)P 1P — uP L(w,)(zu)| < 2xq sup(e TeEvyP) 4 E,(u,z) dz,
n>1 Yy o

where

Ey(u, @) i= e~ oD 0ele)”™ (] (log |2]) 1) = 725096 (s (log ) )e

Applying Taylor’s inequality, we get

_ Re(»)uz

By(u,2) < (14 [2)(1+ple 5089 22(1 4+ (2ua(log )~ )?)8u(B — 1+ log(x))(log )"~

(using the fact that |z] > 2/2 and log(xz) > log |z] > (logx)/2 > 1 — 3 if & > (). Hence there
exists some ¢ depending only on p and |z| such that f;ooo E,(u,z)dz is less than

+m e(z)uxr -
c/ (14 (2ux(log x)ﬁ_l)p)e_R G log 2)? 1u(ﬂ — 1+ log(x))(log )% da.
o
With the change of variable ¢ = ux(log #)?~!, for which we have dt = u(8—1+log x)(log z)*~? dx,
we get

+oo Re(z)t

E,(u,z)dx < c/o+oo(1 + (2t)P)e” dt.

o
The last integral is finite. U
Lemma 8. For every complex number z such that Re(z) > 0 and every p > 0, we have

Jim () £(3,) () = D(p +1)(~ log ul) =] = 0

and for every ug > 0,

uPHL(w,) (u
" AN
O0<u<ug F(p + 1)(_ log |u|)
Hence, if a =1, for every z such that Re(z) > 0, we have

—B(— BY\1-8
e . u=? (= log(Jul?))
5 () i) LN
n>1

< 00.

Proof. We know that w(x) ~s logz and A(z) ~1 logz. Hence, for every p > 0, we have

Wy () ~is 4o tP(logt)' 7.

Now, we apply Tauberian theorems (Theorems p. 443-446 in [12]) to Laplace transforms £(.)
defined for complex numbers such that Re(z) > 0. The lemma follows. O
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Lemma 9. There exist a sequence of random variables (a,)n, and a random variable A defined

on (0,1) endowed with the Lebesque measure A such that, for every n > 1, a, and (annig)%
have the same distribution, such that Ex[sup,>, a,] < 400 and such that (a,), converges almost
surely and in L' to the random variable A.

1

1
Proof. Lemmas 5 and 6 insure in particular the uniform integrability of ((ann 7)s and the

n
existence of a sequence of random variables (a;), and of a random variable A defined on (0, 1)
1

endowed with the Lebesgue measure A such that, for every n > 1, a, and (ann_E)% have the
same distribution, such that A has the same distribution as ]L\;l/ ®if o > 1 and is equal to ¢!

if @ = 1, such that Ey[sup, > a,] < +00 and (ay), converges almost surely to A and so in L'.
Indeed, following the the Skorohod representation theorem, we define

_1
ap(z) := inf {u >0:P <(ann B)% < u) > :U}
and A as follows :
Alz):=ct ifa=1
and
A(z) := inf {u >0 : P <\L]g1/6 < u) > x} if > 1.

The sequence (ay), converges almost surely to the random variable A as n goes to infinity.
Moreover, from the formula Ex[sup,,> an] = fOJrOO A(sup,, a, > t)dt and the fact that

_1
supan(x) >t < infP <(ann B)% < t) <uw,

n

we get
_1 ¥y
A(sup a,, >t) =supP ((ann 6)% > t> <t 7supE [bﬁ Vn 66} ,
n n n

with v:=2 when <1 ;~v:=§5/(8—1) when a« > 1 and § > 1 or when « =1 and g € (1,2).
In each of this case, this gives Ej[sup,,>1 a,] < +o0o from Lemma 6. If o = 1 and 3 = 2, we take
~v = 2 and use the fact that

4 _a 1 2 1 2
supE [b,%Vn w] =suplE [(n ‘(;gn) ] < SUP(Ogn) E[Ri] < 00,

n n’
with R, == #{y € Z : N,(y) > 0} (according to inequality (3b) in [16]) and we conclude
analogously. O

Therefore, using the previous lemma, the series 1 can be rewritten, for every real number

t#0, as
¥(t) = E, Z o 1t17bRan P (Ar+idssgn(e)) | (12)
n>1

Lemma 10. There ezists tg > 0 such that when o > 1 or (o = 1,58 > 1), the family of random
variables

1 Ze—|t\*3b§a;56(A1+iAgsgn(t))
(8 &

0<|t|<to
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is uniformly integrable and such that, if o > 1, the family

[t " bt P (i
271 b e an - M 1+iAzsgn(t))
v(t)

nan

nzl 0<t|<to

is also uniformly integrable.

Proof. If @ > 1, thanks to lemma 7, we know that, for every real number ¢ € (0,1) and every
complex number z such that Re(z) > 0, we have

St e < pd St () e o Ko(a), (13)
= op op
and,
_ . 1 4l
P [ty < e (1 ) 4, 0

n>1

from which we conclude.

Now, let us consider the case « = 1 and g > 1. According to lemmas 7 and 8, since 0 <
A1[t|P(1 + sup,, an) " < Ay, we have

S e e CAiAsenO) | < gy (Ay) + £(i0) (A1It|5<1+supan>1>
n>1 n

1-8
< Kou(A1) + colt| ™ (1 +supay) <—log (Al + Supan)1>>

for some positive constant ¢y > 0. Hence, there exists ¢; € (0, 1) such that for every 0 < || < tq,

1-5

o ~log (Alytyﬁu + sup an)*l)
o1 el bnan (Aridssen®)| < ¢ |14 (14 supay) o

for some positive constant ¢; > 0.
If g > 1, since ¢(1 4 sup,,(a,)) > 1 a.s., the right-hand side of the above inequality is almost

1
surely less than ¢;(2 + sup,, a,,) for every |t| < (cA;) 2. Then, we can choose ty as the infimum

of (cA1)7% and ¢;. The uniform integrability then follows from Lemma 9. U

Lemma 11. If (o > 1,0#1) or (a = 1,5 > 1), we have

lim —— 3 (eI @t A tidaog(t) _ o= (406 vt idaeni®)) _ g 5.

t—0 y(t) =

Moreover, when a > 1 and f < 1 , we have

lim 147 Z ((aféﬁbﬁ) o 1817 (an P UR) (Ar+idzsgn(t)) _ (Aféﬁbﬁ)eflt\‘a(A“wbﬁ)(AlJriAzsgn(t))> =0 a.s..
w0 () 2 L "
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Proof. We only prove the first assertion, the proof of the second one following the same scheme.
Let B # 1 and a > 1. Let € € (0,1/9),

Utls—l/éJ
3 ‘ (ef|t\ﬁa;wb2<m+m2sgn<t>> _ e*|t\ﬂA*5ﬁb£<A1+zAzsgn(t>>) ‘ = O([t|F7%) = o(~(1)).

n=1

Now it remains to prove the almost sure convergence to 0 as t goes to 0 of the following quantity :

. 1 3 o117 azPPbE (A +idasen(t)) _ 6—|t\ﬂA—5ﬂb§(A1+iA25gn(t))) ‘

10 g

1810|3852 (A1 +iAgsgn(t)

By applying Taylor’s inequality to the function v — e~ ), we have

18 -~ 8 5815
e < 88+ ST (i g, 088 AR )T

t e—1/
V) e w0
y a;l o Afl
(SUPn>Ht|s—1/6] an) "t
= o(1) as.,
using lemmas 7 and 8 and according to the fact that (a,), converges almost surely to A. O

Proof of Proposition 4. First consider the case a > 1 and § # 1. Thanks to lemmas 7 and 11,
we get that

1 18, —0B8 : A 1 . _ -~
- [t|P an " bn (A1+iA2sgn(t)) TV A A 1/68 1/6 S
0 nE>1e 55 (5ﬁ)( 1+ iAssgn(t)) |t] —0as

as t goes to 0. Therefore, thanks to (12) and to the uniform integrability (Lemma 10), we deduce
(8). The proof of (10) is similar (using Lemma 8) and is omitted.
Again, to prove (9), we use (12). Since for t # 0,
W (t) = —Bsgn(t)(Ar + idgsgn(t)[t)~1 Y E [a;wbgg\tlﬁ<a;55b§<m+m2sgn<t>>] ,
n>1
and o
v (t) = _E(Al + iAgsgn(t)) /08|10

we decompose

<%(A1 + z’Azsgn(t))—(1+1/55)> [M — 1}

as the sum of

\t\l/‘SE Z <e—\t|5(a;wbﬁ(AlHAngn(t))(’t’1/5a;1)55b5 _ e—|t\ﬁA*5ﬁb§(A1+iAgsgn(t))(‘t‘l/éA—l)éﬁbg)
n>1

and

_ A A 1
m —[t]5 A=0Pb) (A1 +iAasgn(t)) (|4(1/5 4—1108pB _ D1+ — (A +iA )~ (1+1/38)

The second assertion in Lemma 11 and the uniform integrability in Lemma 10 implies that the
first sum goes to 0 as t goes to 0. From Lemma 7, we get that the second one goes to 0 as ¢ goes
to 0. O
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3. PROOF OF THEOREM 1

We first begin to prove that for every a € R, the sequence of
h) =Y {E[h(Zy)] - E[h(Zy — a)]}
k=1

converges as n tends to infinity. Indeed, for every a € R, we have

Kpa(h) = % /I h(t) (;E[ei%]) (1 —e ™) dt. (15)

Proposition 12. i)- The series
> [E[e")
n>1
is bounded on any set [r,+oo[ with r > 0 and so the series
— Z E[eitzn]
n>1

s well defined for every t # 0.

ii)- We have
%1_{% e Z ‘E itZn] _ [ 1P Vi (A +iAasgn(t) } ‘ _o,
and so
fim S 5(0) ~ v(0)] = 0.
Proof. In order to prove i), we show that
}E,% fy_ Z H e (tN,( _E e—\t|3Vn(A1+iAgsgn(t))] —o.

n>1 YEL

From Lemma 6 in |7] and Lemma 12 in [8], for every > 0 and every n > 1, there exists a subset
Q,, such that for every p > 1, P(2,,) = 1 — o(n™P) and such that, on ,,, we have

N} =sup Ny, (z) < et and V, > n®f=,
T

Withn':@ifoz>1,ﬂ>1;n':n(l—ﬁ) ifa>1,<1andn =n(l—-p3); if « =1. Hence,
it is enough to prove that

Z |E[E,(t)1q,]]| = o(y(t)) as t — 0,

n>1
with By (t) == [[,ez ¢e(tNa(y)) — e 117 ValAr+idzsgn(@),
In [7, 8], we also define some 77 < pmax(1,37!) and we take some 7 such that 77+77 < z5. Hence,
for every gg > 0, there exists ny such that for every n > ny, we have nTt aﬁ < gyp.

In the proofs of propositions 8, 9 and 10 of [7| (and propositions 14, 15 of [8]) or using the strong
lattice property, we prove that there exist ¢ > 0, § > 0 and ng such that for every ¢ and every
integer n > ng and such that [t| > n =% we have, on Q,,

[T lee@Na@) < e and [ 16(tNa(y))] < e~

YEL YEL

nf
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Now, let t and n > n; be such that [t| < n=9t7. Recall that we have

pe(u) = d(u)| < |ul”h(lul),

with h a continuous and monotone function on [0;+00) vanishing in 0. Therefore there exist
g0 > 0 and o > 0 such that, for every u € [—eq; g¢], we have

max(|¢(w)], e (u)]) < exp(—olul®).
We have
AGIESS (H Is%(th(Z))l) lpe(tNn(y)) — ¢(tNR(y))] (H |¢(th(Z))|) -

z<y z>Yy
_ oL
Now, since |t| < n=0t7, on Q,, for every y € Z, we have |t|N,(y) < n""7 55 < gy, we get

a0 < S A"t N, (y)? exp(—olt)*V,) exp(och)
Y

h(n™ ) 1PV, exp(—ot]*V,) exp(oeh).

IN

Now, we fix some t # 0. Let us write

M@ :={n>1: n>ng, [t|>n"0"}

and
= 1
No(t):={n>1: n>ny, [t|<nF n>|t| 2}
We have
> |Ea(t)] < 2max(ng, ny),
n<max(ng,n1)
S 1Bt <2073 = o(y(t), as t—0,
n<l|t| 3
> B0 <23 e
neNi(t) n>1
and

> BBl < el (e H 0TI )R] S vhexn-olt )] = or(0),

neNa(t) n>1

as t — 0, using Proposition 4 and the continuity of the function h at 0 (and the fact that
t1PV,, exp(—ot|®V,,) < koexp(—ico[t|?V;) for some ko > 0). Then, ii)- is proved and i)- can
easily be deduced from the above arguments. O

The integrand in (15) is bounded by ©(t) := |h(t)||1 — e~ D>t |E[eitZn]).

Let r > 0, on the set {¢;|t| > r}, by i)- from Proposition 12, since h is integrable, © is
integrable. From Propositions 4 and 12 (item ii)-) and from the fact that h is continuous at
0, ©(t) is in O (|t|y(t)) (at t = 0), which is integrable in the neighborhood of 0 in all cases
considered in Theorem 1 except (a, ) = (1,2). From the dominated convergence theorem, we
deduce that

lim K, q(h) = i/Ih(t)zﬁ(t) (1—e ") dt. (16)

n——+o00 27
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In the case (o, 8) = (1,2), by assumption, for every integer n > 1, the function t — h(t) S.7_, E[e/%*]
being even, we have

Koa(h) = % /I h(t) (; E[eitzk]> (1 — cos(ta)) dt. (17)

The integrand in (17) is uniformly bounded in n by a function in O (log(1/]t))™!) (at t = 0),
which is integrable in the neighborhood of 0. From the dominated convergence theorem, we
deduce that

1
lim K, q(h)

n—-+o0o - %

/I h(t))(t) (1 — cos(ta)) dt. (18)

In the rest of the proof we only consider the strongly non-lattice case, the lattice case can be
handled in the same way.

Let us first consider the case a > 1,5 € (1,2]. We recall that, in this case, we have set

C= <6ﬁ>1r<$>E[|L|B i,

Since the function ¢ — h(t)i(t) is integrable on Z \ [—m, 7] (note that h is integrable and 1 is
bounded on Z \ [, 7| by Proposition 12), we have

q1-1/6
lim /
aztoo 2 Jiji>ny
We define the functions
g(t) == (1 — e )|t 7V9(Ay +iAgsgn(t) "8, ga(t) := ag(at) (19)
and f(t) := 1z () h(t) [t (t) (A1 + iAgsgn(t))/%P . We have:

dt = 0.

h(t)(t) (1 — e )

a1/ o a1 . *
2m /{|t§7r} My (1= e dt = o /Rf(t) ga(t)dt = 5 (£ % a) (0).

Since g is integrable on R and f is bounded on R and continuous at ¢ = 0 with f(0) = Ch(0)
(by Propositions 4 and 12), it follows from classical arguments of approximate identity that

lim (£ +9.)(0) = Ch(0) [ glt)at

a—+00

Let us observe that
1 [P ] — e
/g(t)dt = 2Re (A1 —i—iAg) 53/ —dt| .
R 0 t1/6

By applying the residue theorem to the function z +— 2_1/5(1 — e7%%) with the contour in the
complexe plane defined as follows : the line segment from —ir to —iR (r < R), the circular arc
connecting —iR to R, the line segment from R to r and the circular arc from r to —ir and letting
r— 0, R — +oo, we get that

11— 5 INE:
2T =2 o 1\ iE0-0)
/0 pis 1—5F<2 5)625 ‘

From this formula we easily deduce the first statement of theorem 1 using the fact that

6

1 G A
(A1 +iA,) % — 6—1, with 6 = arctan <—2> .
8+ ) =
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Now assume o > 1, =1or a = 1,8 € (1,2). We have v(t) = b|t| (= log[t|)!? (with b; =
ATV if B =1 and with by = ¢ 1 (A; +iAysgn(t))tif a = 1,8 € (1,2)). Moreover, by combining
propositions 4 and 12, we have

tim | (4(6) 19 (5) — 1| = 0.
t—0
Hence, for every € € (0, 1), there exists 0 < A. < 1 such that
Vi, Jt] < Ac = [[9() — (1) < ex(t) and |h(t) — h(0)] < & . (20)

Since 1 is bounded on [Ag, +oo[ and h is integrable on Z, we have

i 7 _ _—ita
- /I L HaEO0

Let a be such that a > A;l/ﬁ. We have

< C(e).

-8

1 a. -~ a
< il [ @)l
0

— h(t)P (1) (1 — ) dt
v o HOPO0 =

that can be neglected as a goes to infinity since
a P 5
/ laty(t)|dt = O <a(571) log(a)kﬁ) =o(a’tlog(a)'P)asa— oo if a=1, fe(1,2)
0

as a goes to infinity and since
a—h
/ at|y(t)| dt = O(1) = o(log(a)) asa— oo if f=1.
0

It remains to estimate 5- f{a_ﬁg‘ﬂSAE} h(t))(t)(1 — e~")dt that we decompose into two parts:

1 7 T 7 —ita
ha) = o /{ oo, FODO RO O] e

and
Ir(a) := @/ (1 — e~ )y (t)dt.
T J{a=P<[t|<Ac}

eWe first estimate I3(a) for a large. Remark that by the change of variables u = at,
h(0 ‘
Ir(a) = ho) / (1- e*w)'y(2> du.
2ma {al=F<|u|<aA:} a
We treat separately the cases f=1and a =1, € (1,2). If § =1, we have

1 . U 1 1 —cosu 1
— 1—e ")y = du:—/ ——du ~ —log(a
2ma {1<\u|<aAE}( ) (a> A Jiicucansy Aym (@)

:L' —
lim 1 / 1 — cos(u) du = 1.
1

z—+oo log(x) u

since

This comes from the fact that < 133 Coi(t) dt> is bounded.

If a« =1and g € (1,2), we have
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1 j u
- 1 _ pu _ d —
2ma /{a1ﬂ<u|<aAs}( ’ h(a) '
B—131-3 .
e (1= ¢ )(Ay + i Agsgn(w)~ul~* (log(a) — log [ul)!" du
2me {a'=B<|u|<aA.}
a’~! (log(a”))! 7
- 2me /Rfa(u) e
with

p ‘ L log [u|\ 17
fa(w) = 15 g (Jul) (1 — ™) (A1 + iAosgn(u) ™ ul (1 - 1§g|a|>

We observe that
[fa(u)] < F(u) := min(L, |u])| A1 + ids| " fu| 77517
(with F integrable on R since 8 € (1,2)) and that we have
Va0, lim fo(u) = (1—e ™) (A1 +idosgn(u) " ul ™ =: g(u).
So,

oelaB))A-1 .
lim M/ (1 —e")y(u/a)du = 1 g(u) du.
{a'=B<|ul<aA:}

a—+00 2mal 2me Jr

© 1 _ —it
/ g(t)dt = 2Re [(Al + z‘AQ)l/ ¢ dt]
R 0 th

/oo 1— e—itdt _ F(Q — ,8)6%(5,1)”‘
0 8 B—-1

We recall that

and that

This gives

- (log(a?))?~!
Jm g (e) =D

eSecond, we estimate I1(a). From (20), we have

S jr— o /{ —A<|tl< A} 11— eiim||7(t)| dt

o |1—67“‘|7< )du
{al=B<|u|<aA:}

[Ii(a)] <

IN

When g =1, |I1(a)|] < elog(a). When o = 1 and S € (1,2), from the above computations, we
also have

1 A1
lim %/ ‘1_ fzuh/ /’g \du
a—r+00 2ma {a'=F<|u|<ad.} 27TC
Therefore, we get |I1(a)| < Cea® '(loga)'~P.

The case («, 3) = (1,2) can be handled in the same way as a = 1, 8 € (1,2) using the inequality
1 — cos(t) < min(2,t?). Details are omitted.




RENEWAL THEOREMS FOR RANDOM WALKS IN RANDOM SCENERY 17

4. PROOF OF THEOREM 2 (TRANSIENT CASE)

We suppose that o > 1 and § < 1. So § > 1. We will again use the notation

1 _1
C = (68)"'T(=)E[L|;°].
(68) (5ﬁ) [(1L15°]
Let h: R — C be a Lebesgue-integrable function such that its Fourier transform h is differen-
tiable, with h and (h)" Lebesgue-integrable. Then, using the Fourier inversion formula, we obtain
for every n > 1,

A~

2nE[W(Z, — a)] = / h(t)E[etZn]e~ e qt.

R
We get

o> Eh(Z, —a)] = h(t)E[e?Zr]e~" 4.

Since here < 1 (thus 6 > 1), the function ¢ — h(t) Yot |E[e?#"]| is integrable (note that
anl !E[e“zn]‘ corresponds to the case As = 0, then use Proposition 3 and (8)). Therefore,
from (6), we have

2W§E[h(Zn —a)] = /R h(t) p(t) e~ dt.

Let S(R) denote the so-called Schwartz space. Let r € (0, +00) and let x € S(R) be such that

x| <1 and Vte[-rr], x(t) =1 (21)
We have
21 Y E[h(Z, — a)] = I1(a) + Ix(a) + I3(a),
n>1
with

(@) i= ChO) [ x(0) e (A +idusen() F e ar,
Iy(a) = /R x(t) {ﬁ(t)¢(t) — Ch(O)|t] "7 (A1 + z’AQSgn(t))ﬁ} et gt
I3(a) == / (1= x(8)) h(t) (t) e~ dt.

{lt|>r}

The study of I3(a) is easy. Set gs(t) = (1 — x(£))h(t)¥(t). From (21), we have I3(a) = g3(a),
and from Propositions 3 and 4, g3 and ¢4 are Lebesgue-integrable on R. An integration by parts
then gives

I(a) = O(a™) = 0(a*°™1) as a goes to co.

The next two subsections are devoted to the study of I;(a) and Iz(a).

4.1. Study of I;(a). Let us prove that:

lim a'/*~" Iy (a) = C'h(0) ¢ 4

a——+400

where cj ; is a constant defined in Lemma 13 below. The last property follows from Lemma 14
below. Before let us establish the following.
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Lemma 13. For every function g € S(R),

§(w) _ [ s ]
A /3¢ s I LT (Bl () 4 iyl () b

Ay + Ay sgn
where
= s (35 + Sarean (42))
(A2 4 A2)%5 2 B Ay
and

Note that, since § > 1, the functions w ~— |w|™"/® and w |w|7(17%) are Lebesgue-integrable
on any neighborhood of w = 0, so that the two previous integrals are well defined.

Proof. For every u # 0, we have

+oo 1 ) L
|~ (A1 + i Aosgn(u)) "5 =/ e~ alul® (Ar-+idzsgn(u)*? gy
0

1

1 A
For any z > 0, let us denote by f, the Fourier transform of the function u —» e~#/ul? (A1+iAzsgn(u)) 7

By Fubini’s theorem and Parseval’s identity, we have

g(u) T —alul® (Artidasgn(u) 3
- —du = g(u)e 1reAzse du | dx
R fufs (Ay + iAgsgn(u))?? 0 R

_ /0 - < /R () fa(v) dv> dz.

Next, since we have: Vaz > 0, Yo € R, f.(v) = 27°f (%), we obtain, from Fubini’s theorem,
with the change of variable y = |v|/2° and finally by the dominated convergence theorem (since
cgtﬁ are well defined, see below), that

g(u) . |: +o0 -5 v :|
du = lim 2N del d
/]R |u|7 (A; +Z'Azsgn(u))$ " A0 Rg(v) /A " f1 (xg) x| dv

—  lim g(v)|v|1/6_1 [/OleA fl(sgn(v)y) dy] dv

A—0 R 5y1/5

g\v _
/R\v\l(fl)/‘s <c;{61R+ (v) + s 1R (v)) dv,

with

T fi(y) T fi(~y)
+ 1Y - . 1Y
0576 = A 5y1/5 dy and 0575 = /O Wdy
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Let us compute C;B' We have

A—+o0

1
= lim l/ y—l/(S </ ei$ye—‘x‘%(A1+iAgsgn(x))56 dx) dy
A—+o0 0 R

0
1 o1y 1 , 55
lim ’u‘fgezu _UgflefmS (A1+iAzsgn(u)) dv | du
A—+oo R % (S

1 1 1
L ef|u\3A_3(A1+iAgsgn(u))55
E (

A+ iAgsgn(u))ﬁ

o1 _
s = ,Jim 5/0 Ay dy
A

du

= lim
A—+oo

1 1 L
+00 | omud AT (A1+iAg) P
= lim 2Re / u-se™ T du| ,
A—+o0 0 (A1 + Z‘Ag)ﬁ

using the change of variables (u,v) = (yz,x). Now applying the residue theorem to the function

. 11 TS
2y 2T el 2P AT (A+id2)™ Wit the contour in the complexe plane defined as follows : the

line segment from r to R (r < R), the circular arc connecting R to iR, the line segment from iR
to ér and the circular arc from ir to r and letting » — 0, R — 400, we get that

too 11 ) r o too 1im 1 L
/ ud et Ut AT (Aitid2) 8 g i(5-35) / tTre e tPeT AT (Atid2) 0P gy
0 0
Taking A — +00, we get the expression of c('{ﬁ. O

1 .
Lemma 14. We have: lim al_l/‘s/ X(t)]t]_%(Al + Ay sgn(t)) Be " dt = Cs.5-
R )

a——+400

Proof. Let v € S(R) such that 4 = x, and define: Vz € R, 7,(x) := ay(—az). From Lemma 13
and from the change of variable v = wa, we get

(/Xﬁﬂﬂ1”&h+4Aﬁ@K0)i%imdt::‘/7(13X0HIVNA1+%%%m@D$dt

R R
= /Rfy(v + a)\v\l/‘s_l(cgfﬁllg+ (v) + 5 51r_(v)) dv
= al/‘Sl/Raw(a(w—{—l))g(g(w)dw

= al/‘Sl/%(—l—w) gs(w) dw
R

= a'/?7 (g % gs) (—1),

where * denotes the convolution product on R and gs(v) := ]1)]1/5*1(05{[31]1{+ (v) + c5 51r_ (V).
Observe that we have

[ Aatwd = [ 2wy =30 = 1.

Now, from the fact that ¥ € S(R) (actually use sup,cg(1 + 22)[5(z)| < 00), that gs is contin-
uous at —1 and that the function w — w™2gs(w) is Lebesgue-integrable at infinity, it can be
easily deduced from classical arguments of approximate identity that we have (see Prop. 1.14 in
D. Guibourg’s thesis [13] for details): limg— o0 (a * g5)(—1) = g5(—1) = ¢5 5. O
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4.2. Study of I1(a). Let us prove that:
I(a) = o(a'/*1) as a goes to cc.

Set ®(t) := ¥(t) — C|t| =3 (A1 + iAssgn(t))” 3. We have

(@) = [ (O {000 ~ ChOI (41 + idasgn(v) H } e d = 1) + (o
with

Ji(a) == /Rx(t) {h(t) — B(O)} ¢(t)e—ita dt and Js(a):= H(O)/ X(t)(I)(t)e—ita dt.

R

Note that Ji(a) = gi(—a), with g1 := x(h — h(0))1. From Proposition 4 and since h is continu-
ously differentiable, we have ¥(t) = O(|t|=%/?) and (h(t) — h(0))¢’(t) = O(|t| /%) when t — 0.
Hence g; and ¢} are Lebesgue-integrable on R, so that we obtain by integration by parts:

Ji(a) = O(a™") = o(a'™1%) as a goes to oc.

To study Ja(a), let us set G(t) := x(t)®(t), and write

ha) = h(O)/{t'S%ﬂ}G(t)e”dt+h(0)/{|t>%ﬁ}G(t)e”dt
= 1(0)Jz1(a) + h(0)J22(a) (23)

where Jy1(a) and Jy2(a) are above defined in an obvious way. From Proposition 4 we have
d(t) = ﬂo(t)\t\_%, with lim,_,o Jp(u) = 0. Since |x| < 1, we obtain:

1-1 .
| J21(a)] < /{|t<2—”} |®(t)| dt < E - (%) sup |9o(t)| = o(as 1), (24)

L=35 lt<2z

as a goes to infinity. Next we have Jy2(a) = — f{‘t|>z_ﬂ} G(t) e~ i(t=5sgn(®)a dt, hence

Joo(a) = % {/{|t>%”} G(t)e " dt — /{|t>§} G <t - gsgn(t)) e e dt} ,

from which we deduce:

| Joa(a)] < - [{|t>”} ‘G(t) e (t+ %&qn(t))‘ dt+/ G(1)] dt. (25)

-2 {z<i<2=}

The last integral in (25) is o(a%_l) (use the second inequality in (24)). Next, by using Proposi-
tion 4, one can easily see that there exists ¢; : R\ {0} — C such that

G'(u) = [u """ 9y (u) with  lim 9y (u) = 0.

u—0
Let € > 0, and let o = a(e) > 0 be such that sup, <, [U1(s)| < 55. Note that
2m o T
a>—and |t| < -| = [t|< ‘t—i— —sgn(t)‘ < a.
o 2 a

Then, by applying Taylor’s inequality to GG, we obtain for all a such that a > %’T

/{”<|t<"} 60 =G (t+ Zoon(t)| dr < 57 /foo S dt < e (Ql‘% . (26)

a a
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Moreover, since ® and ®’ are bounded on R\ [-%;§] (by Proposition 3), and from x € S(R),
there exists a positive constant D, such that:

a , D,
Thus, if a is large enough, namely if a is such that % (%)% < g, then we have
+o0 1—1
/ ‘G(t) —G<t+ Esgn(t))‘ dt < 2Daf/ 724t < e (I) ’ (27)
{l=5} ¢ @5 ¢

1
From (25) (26) (27), it follows that we have when a is sufficiently large: Joo(a) < ¢ (g)lf‘s.
From this fact and from (23) (24), we have:

Ja(a) = o(a'/?1) as a goes to co.
The desired property for Is(a) is then established. This completes the proof of Theorem 2. [

Remark: The generalization of our proof to the more general context when the distribution
of &y belongs to the normal domain of attraction of a stable distribution of index [ is not as
simple as in the recurrent case. Indeed we used precise estimation of the derivative of 1) that
should require the existence of the derivative of ¢¢ outside 0, which does not appear as a natural
hypothesis when 8 < 1 since &; is not integrable.

Acknowledgments:
The authors are deeply grateful to Loic Hervé for helpful and stimulating discussions.

REFERENCES

[1] Blackwell, A renewal theorem. Duke Math J. 15 (1948), 145-150.

[2] Blackwell, Extension of a renewal theorem. Pacific J. Math. 3 (1953), 315-320.

[3] Bolthausen, E. A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab.
17 (1989), no. 1, 108-115.

[4] Borodin, A. N. A limit theorem for sums of independent random variables defined on a recurrent random
walk. (Russian) Dokl. Akad. Nauk SSSR 246 (1979), no. 4, 786-787.

[6] Borodin, A. N. Limit theorems for sums of independent random variables defined on a transient random walk.
Investigations in the theory of probability distributions, IV. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst.
Steklov. (LOMI) 85 (1979), 17-29, 237, 244.

[6] Breiman, L. Probability Classic in Applied Mathematics, STAM, 1993.

[7] Castell, F.; Guillotin-Plantard, N.; Péne, F.; Schapira, Br. A local limit theorem for random walks in random
scenery and on randomly oriented lattices. Ann. Probab. 39 (2011), no. 6, 2079-2118.

[8] Castell, F.; Guillotin-Plantard, N.; Péne, F. Limit theorems for one and two-dimensional random walks in
random scenery. To appear in Ann. Inst. H. Poincaré Probab. Statist. (2011).

[9] Deligiannidis, G.; Utev, S., An asymptotic variance of the self-intersections of random walks, Sib. Math. J.
(2011), Vol 52, No 4, 639-650.

[10] Den Hollander, F.; Steif, J. E., Random walk in random scenery: a survey of some recent results, Dynamics
& stochastics, 53-65, IMS Lecture Notes Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, (2006).

[11] Erdds, P.; Feller, W.; Pollard H. A property of power series with positive coefficients. Bull. Amer. Math. Soc.
55, (1949), 201-204.

[12] Feller, W. An introduction to probability theory and its applications. Vol. II. Second edition John Wiley and
Sons, Inc., New York-London-Sydney, (1971), xxiv+669 pp.

[13] Guibourg, D. Théorémes de renouvellement pour des fonctionnelles additives associées a des chaines de
Markov fortement ergodiques. Phd Thesis (2011).

[14] Kesten, H.; Spitzer, F. A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw.
Gebiete 50 (1979), no. 1, 5-25.

[15] Le Doussal, P. Diffusion in layered random flows, polymers, electrons in random potentials, and spin depo-
larization in random fields. J. Statist. Phys. 69 (1992), no. 5-6, 917-954.

[16] Le Gall, J.F.; Rosen, J. The range of stable random walks. Ann. Probab. 19 (1991), 650-705.



RENEWAL THEOREMS FOR RANDOM WALKS IN RANDOM SCENERY 22

[17] Matheron, G.; de Marsily G. Is transport in porous media always diffusive? A counterzample. Water Resources
Res. 16 (1980), 901-907.

[18] Schmidt, K. On recurrence. Z. Wahrsch. Verw. Gebiete 68 (1984), 75-95.

[19] Spitzer, F. Principles of random walks. Van Nostrand, Princeton, N.J. (1964).

InsTiTUT CAMILLE JORDAN, CNRS UMR 5208, UNIVERSITE DE LyoN, UNIVERSITE LyoN 1, 43, BOULE-
VARD DU 11 NOVEMBRE 1918, 69622 VILLEURBANNE, FRANCE.

E-mail address: nadine.guillotin@univ-lyonl.fr
UNIVERSITE EUROPEENNE DE BRETAGNE, DEPARTEMENT DE MATHEMATIQUES, UMR CNRS 6205, 29238
BREST CEDEX, FRANCE

E-mail address: francoise.pene@univ-brest.fr



