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Introduction

Renewal theorems in probability theory deal with the asymptotic behaviour when |a| → +∞ of the potential kernel formally defined as

K a (h) := ∞ n=1 E[h(Z n -a)]
where h is some complex-valued function defined on R and (Z n ) n≥1 a real transient random process. The above kernel K a (.) is not well-defined for recurrent process (Z n ) n≥1 , in that case, we would rather study the kernel

G n,a (h) := n k=1 E[h(Z k )] -E[h(Z k -a)]
for n and |a| large. In the classical case when Z n is the sum of n non-centered independent and identically distributed real random variables, renewal theorems were proved by Erdös, Feller and Pollard [START_REF] Erdös | A property of power series with positive coefficients[END_REF], Blackwell [START_REF] Blackwell | A renewal theorem[END_REF][START_REF] Blackwell | Extension of a renewal theorem[END_REF], Breiman [START_REF] Breiman | Probability Classic in Applied Mathematics[END_REF]. Extensions to multi-dimensional real random walks or additive functionals of Markov chains were also obtained (see [START_REF] Guibourg | Théorèmes de renouvellement pour des fonctionnelles additives associées à des chaînes de Markov fortement ergodiques[END_REF] for statements and references).

In the particular case where the process (Z n ) n≥1 takes its values in Z and h is the Dirac function at 0, the study of the corresponding kernels

K a (δ 0 ) = ∞ n=1 P[Z n = a] and G n,a (δ 0 ) = n k=1 P[Z k = 0] -P[Z k = a]
have a long history (see [START_REF] Spitzer | Principles of random walks[END_REF]). In the case of aperiodic recurrent random walks on Z with finite variance, the potential kernel is known to behave asymptotically as |a| when |a| goes to infinity and, for some particular random walks as the simple random walk, an explicit formula can be given (see Chapter VII in [START_REF] Spitzer | Principles of random walks[END_REF]). In this paper we are interested in renewal theorems for random walk in random scenery (RWRS). Random walk in random scenery is a simple model of process in disordered media with long-range correlations. They have been used in a wide variety of models in physics to study anomalous dispersion in layered random flows [START_REF] Matheron | Is transport in porous media always diffusive? A counterxample[END_REF], diffusion with random sources, or spin depolarization in random fields (we refer the reader to Le Doussal's review paper [START_REF] Doussal | Diffusion in layered random flows, polymers, electrons in random potentials, and spin depolarization in random fields[END_REF] for a discussion of these models). On the mathematical side, motivated by the construction of new self-similar processes with stationary increments, Kesten and Spitzer [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF] and Borodin [START_REF] Borodin | A limit theorem for sums of independent random variables defined on a recurrent random walk. (Russian)[END_REF][START_REF] Borodin | Limit theorems for sums of independent random variables defined on a transient random walk. Investigations in the theory of probability distributions[END_REF] introduced RWRS in dimension one and proved functional limit theorems. This study has been completed in many works, in particular in [START_REF] Bolthausen | A central limit theorem for two-dimensional random walks in random sceneries[END_REF] and [START_REF] Deligiannidis | An asymptotic variance of the self-intersections of random walks[END_REF]. These processes are defined as follows. We consider two independent sequences (X k , k ≥ 1) and (ξ y , y ∈ Z) of independent identically distributed random variables with values in Z and R respectively. We define ∀n ≥ 1, S n := n k=1

X k and S 0 := 0.

The random walk in random scenery Z is then defined for all n ≥ 1 by

Z n := n k=1 ξ S k .
The symbol # stands for the cardinality of a finite set. Denoting by N n (y) the local time of the random walk S :

N n (y) = # k = 1, ..., n : S k = y the random variable Z n can be rewritten as

Z n = y∈Z Z ξ y N n (y). (1) 
The distribution of ξ 0 is assumed to belong to the normal domain of attraction of a strictly stable distribution S β of index β ∈ (0, 2], with characteristic function φ given by φ(u) = e -|u| β (A 1 +iA 2 sgn(u)) , u ∈ R,

where 0 < A 1 < ∞ and |A -1 1 A 2 | ≤ | tan(πβ/2)|. When β = 1, A 2 is null. We will denote by ϕ ξ the characteristic function of the random variables ξ x . When β > 1, this implies that E[ξ 0 ] = 0. Under these conditions, we have, for β ∈ (0, 2],

∀t > 0 , P [|ξ 0 | ≥ t] ≤ C(β) t β . (3) 
Concerning the random walk (S n ) n≥1 , the distribution of X 1 is assumed to belong to the normal domain of attraction of a strictly stable distribution S ′ α of index α. Since, when α < 1, the behaviour of (Z n ) n is very similar to the behaviour of the sum of the ξ k 's, k = 1, . . . , n, we restrict ourselves to the study of the case when α ∈ [START_REF] Blackwell | A renewal theorem[END_REF][START_REF] Blackwell | Extension of a renewal theorem[END_REF]. Under the previous assumptions, the following weak convergences hold in the space of càdlàg real-valued functions defined on [0, ∞) and on R respectively, endowed with the Skorohod topology :

n -1 α S ⌊nt⌋ t≥0 L =⇒ n→∞ (U (t)) t≥0 and   n -1 β ⌊nx⌋ k=0 ξ k   x≥0 L =⇒ n→∞ (Y (x)) x≥0 ,
where U and Y are two independent Lévy processes such that . Next let us define

U (0) = 0, Y (0) = 0, U ( 
δ := 1 - 1 α + 1 αβ = 1 + 1 α ( 1 β -1). (4) 
In [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF], Kesten and Spitzer proved the convergence in distribution of ((n -δ Z nt ) t≥0 ) n , when α > 1, to a process (∆ t ) t≥0 defined as

∆ t = R L t (x) dY (x),
by considering a process (Y (-x)) x≥0 with the same distribution as (Y (x)) x≥0 and independent of U and (Y (x)) x≥0 .

In [START_REF] Deligiannidis | An asymptotic variance of the self-intersections of random walks[END_REF], Deligiannidis and Utev considered the case when α = 1 and β = 2 and proved the convergence in distribution of ((Z nt / n log(n)) t≥0 ) n to a Brownian motion. This result is got by an adaptation of the proof of the same result by Bothausen in [START_REF] Bolthausen | A central limit theorem for two-dimensional random walks in random sceneries[END_REF] in the case when β = 2 and for a square integrable two-dimensional random walk (S n ) n .

In [START_REF] Castell | Limit theorems for one and two-dimensional random walks in random scenery[END_REF], Castell, Guillotin-Plantard and Pène completed the study of the case α = 1 by proving the convergence of (n

-1 β (log(n)) 1 β -1 Z nt ) t≥0 ) n to c 1 β (Y (t)) t∈R , with c := (πa 0 ) 1-β Γ(β + 1), (5) 
where a 0 is such that t → e -a 0 |t| is the characteristic function of the limit of (n

-1 S n ) n .
Let us indicate that, when α ≥ 1, the process

(Z n ) n is transient (resp. recurrent) if β < 1 (resp. β > 1)
(see [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF][START_REF] Schmidt | On recurrence[END_REF]).

We recall the definition of the Fourier transform ĥ as follows. For every h : R → C (resp. h : Z → C) integrable with respect to the Lebesgue measure on R (resp. with respect to the counting measure on Z), we denote by I[h] the integral of h and by ĥ : I → C its Fourier transform defined by ∀x ∈ I, ĥ(x) := I[h(•)e ix• ], with I = R (resp. I = [-π; π]).

1.1. Recurrent case : β ∈ [START_REF] Blackwell | A renewal theorem[END_REF][START_REF] Blackwell | Extension of a renewal theorem[END_REF]. We consider two distinct cases:

• Lattice case: The random variables (ξ x ) x∈Z are assumed to be Z-valued and nonarithmetic i.e. {u; |ϕ ξ (u)| = 1} = 2πZ. The distribution of ξ 0 belongs to the normal domain of attraction of S β with characteristic function φ given by (2). • Strongly non-lattice case: The random variables (ξ x ) x∈Z are assumed to be strongly non-lattice i.e. lim sup

|u|→+∞ |ϕ ξ (u)| < 1.
The distribution of ξ 0 belongs to the normal domain of attraction of S β with characteristic function φ given by (2).

For any a ∈ R (resp. a ∈ Z), we consider the kernel K n,a defined as follows : for any h : R → C (resp. h : Z → C) in the strongly non-lattice (resp. in the lattice) case, we write

K n,a (h) := n k=1 E[h(Z k )] -E[h(Z k -a)]
when it is well-defined.

Theorem 1. The following assertions hold for every integrable function h on R with Fourier transform integrable on R in the strongly non-lattice case and for every integrable function h on Z in the lattice case.

• when α > 1 and β > 1,

lim a→+∞ a 1-1 δ lim n→+∞ K n,a (h) = C 1 I[h],
with

C 1 := Γ( 1 δβ )Γ(2 -1 δ )E |L| -1/δ β πβ(1 -δ)(A 2 1 + A 2 2 ) 1/2δβ sin 1 δ π 2 - 1 β arctan A 2 A 1 .
• when α ≥ 1 and

β = 1, lim a→+∞ (log a) -1 lim n→+∞ K n,a (h) = C 2 I[h],
with

C 2 := (πA 1 ) -1 . • when α = 1 and β ∈ (1, 2), lim a→+∞ a -1 log(a β ) β-1 lim n→+∞ K n,a (h) = D 1 I[h],
with

D 1 := Γ(2 -β) πc(β -1)(A 2 1 + A 2 2 ) 1/2 sin πβ 2 -arctan A 2 A 1 .
• when α = 1 and β = 2, assume that h is even and that the distribution of the ξ ′ x s is symmetric, then

lim a→+∞ a -1 log(a 2 ) lim n→+∞ K n,a (h) = D 2 I[h],
with D 2 := (2A 1 c) -1 .

Remarks: 1-It is worth noticing that since |A 2 /A 1 | ≤ | tan(πβ/2)|, the constants C 1 and D 1 are strictly positive. 2-The limit as a goes to -∞ is not considered in Theorem 1 and Theorem 2 since it can be easily obtained from the limit as a goes to infinity. Indeed, the problem is then equivalent to study the limit as a goes to infinity with the random variables (ξ x ) x replaced by (-ξ x ) x and the function h by x → h(-x). The limits can easily be deduced from the above limit constants by changing A 2 to -A 2 .

1.2. Transient case : β ∈ (0, 1). Let H 1 denote the set of all the complex-valued Lebesgueintegrable functions h such that its Fourier transform ĥ is continuously differentiable on R, with in addition ĥ and ( ĥ) ′ Lebesgue-integrable.

Theorem 2. Assume that α ∈ (1, 2] and that the characteristic function of the random variable ξ 0 is equal to φ given by (2). Then, for all h ∈ H 1 , we have

lim a→+∞ a 1-1 δ n≥1 E[h(Z n -a)] = C 0 I[h] with C 0 := Γ( 1 δβ )Γ(2 -1 δ )E |L| -1/δ β πβ(δ -1)(A 2 1 + A 2 2 ) 1/2δβ sin 1 δ π 2 - 1 β arctan A 2 A 1 .
1.3. Preliminaries to the proofs. In our proofs, we will use Fourier transforms for some h : R → C or h : Z → C and, more precisely, the following fact

2πE[h(Z n -a)] = I ĥ(t)E[e itZn ]e -iat dt.
This will lead us to the study of n≥1 E[e itZn ]. Therefore it will be crucial to observe that we have

∀t ∈ R, ∀n ≥ 1, E[e itZn ] = E   y∈Z e itξy Nn(y)   = E   y∈Z ϕ ξ (tN n (y))   ,
since, taken (S k ) k≤n , (ξ y ) y is a sequence of iid random variables with characteristic function ϕ ξ . Let us notice that, in the particular case when ξ 0 has the stable distribution given by characteristic function [START_REF] Blackwell | Extension of a renewal theorem[END_REF], the quantity n≥1 E[e itZn ] is equal to

ψ(t) := n≥1 E y∈Z e -|t| β Nn(y) β (A 1 +iA 2 sgn(t)) .
Section 2 is devoted to the study of this series thanks to which, we prove Theorem 1 in Section 3 and Theorem 2 in Section 4.

Study of the series Ψ

Let us notice that we have, for every real number t = 0,

ψ(t) = n≥1 E[e -|t| β Vn(A 1 +iA 2 sgn(t)) ], (6) 
with

V n := y∈Z N n (y) β . Let us observe that Nn(y) n ≤ ( Nn(y) n ) β ≤ Nn(y) n β if β ≤ 1, and Nn(y) n β ≤ ( Nn(y) n ) β ≤ Nn(y) n if β > 1.
Combining this with the fact that y∈Z N n (y) = n, we obtain:

β ≤ 1 ⇒ n β ≤ V n ≤ n (7a) β ≥ 1 ⇒ n ≤ V n ≤ n β . ( 7b 
)
Proposition 3. When β ∈ (0, 2], for every r ∈ (0, +∞), the function ψ is bounded on the set {t ∈ R : |t| ≥ r}. When β ∈ (0, 1), the function ψ is differentiable on R \ {0}, and for every r ∈ (0, +∞), its derivative ψ ′ is bounded on the set {t ∈ R : |t| ≥ r}.

Proof. Let r > 0. Then: |t| ≥ r ⇒ |ψ(t)| ≤ n≥1 e -A 1 r β n 1∧β , so the first assertion is proved. Next, when β ∈ (0, 1), since n≥1 n e -A 1 (rn) β < ∞, it easily follows from Lebesgue's theorem that ψ is differentiable on {t ∈ R : |t| ≥ r}, with |ψ ′ (t)| ≤ βr β-1 (A 1 + |A 2 |) n≥1 n e -A 1 (rn) β when |t| ≥ r.
In the particular case when β = 1, we have A 2 = 0 and

ψ(t) = 1 e A 1 |t| -1 ∼ t→0 γ(t), with γ(t) := A 1 -1 |t| -1 .
When β = 1, the expression of ψ(t) is not so simple. We will need some estimates to prove our results. Recall that the constant c is defined in (5) if α = 1 and set

C := 1 δβ Γ( 1 δβ )E[|L| -1/δ β ]. Proposition 4. When α > 1, β = 1, we have lim t→0 ψ(t) γ(t) = 1 (8) 
and

lim t→0 ψ ′ (t) γ ′ (t) = 1, ( 9 
)
where γ is the function defined by

γ(t) := C|t| -1/δ (A 1 + iA 2 sgn(t)) -1/(δβ) .
When α = 1 and β > 1, we have

lim t→0 ψ(t) γ(t) = 1, ( 10 
)
where γ is the function defined by

γ(t) := (-log(|t| β )) 1-β c|t| β (A 1 + iA 2 sgn(t))
.

To prove Proposition 4, we need some preliminaries lemmas. Let us define

b n := n δ if α > 1 and b n := n 1 β (log(n)) 1-1 β if α = 1. (11) 
We first recall some facts on the behaviour of the sequence b

-1 n V 1/β n n
.

Lemma 5 (Lemma 6 in [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF], Lemma 5 in [START_REF] Castell | Limit theorems for one and two-dimensional random walks in random scenery[END_REF]). When α > 1, the sequence of random variables

b -1 n V 1/β n n converges in distribution to |L| β = R L β 1 (x) dx 1/β . When α = 1, the sequence of random variables b -1 n V 1/β n n converges almost surely to c 1 β .
Lemma 6 (Lemma 11 in [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF], Lemma 16 in [START_REF] Castell | Limit theorems for one and two-dimensional random walks in random scenery[END_REF]).

If β > 1, then sup n E   b n V 1/β n β/(β-1)   < +∞. If β ≤ 1, then for every p ≥ 1, sup n E b n V 1/β n p < +∞.
The idea will be that V n is of order b β n . Therefore the study of n≥1 e -|tbn| β (A 1 +iA 2 sgn(t)) will be useful in the study of ψ(t). For any function g : R + → R, we denote by L(g) the Laplace transform of g given, for every z ∈ C with Re(z) > 0, by

L(g)(z) = +∞ 0 e -zt g(t)dt,
when it is well defined. Lemma 7. When α > 1, for every complex number z such that Re(z) > 0 and every p ≥ 0, we have

K p,α (z) := sup u>0 n≥1 e -zu δβ b β n (u δβ b β n ) p - 1 uδβ Γ(p + 1 δβ )z -(p+ 1 δβ ) < +∞.
When α = 1, for every complex number z such that Re(z) > 0 and every p ≥ 0, we have

K p,1 (z) := sup u>0 n≥1 e -zub β n (ub β n ) p -u p L( wp )(zu) < +∞,
where wp (t) := w0 (t)t p with

w0 (t) := (β -1) 1-β w t 1 β-1 β-1 2-β 1 + w t 1 β-1 β-1 if β > 1 and w0 (t) := 1 [(e/(1-β)) 1-β ;+∞) (t) ∆((1 -β)t 1 1-β ) 2-β (1 -β) 1-β ∆((1 -β)t 1 1-β ) -1 if β < 1.
Here w is the Lambert function defined on [0; +∞) as the inverse function of y → ye y (defined on [0; +∞)) and ∆ is the function defined on [e; +∞) as the inverse function of y → e y /y defined on [1; +∞).

Proof. First, we consider the case when α > 1. With the change of variable y = (ux) δβ , we get

+∞ 0 e -(ux) δβ z (ux) pδβ dx = 1 uδβ ∞ 0 e -yz y 1 δβ +p-1 dy = 1 uδβ Γ p + 1 δβ z -(p+ 1 δβ ) .
Let ⌊x⌋ denote the integer part of x. Observe that n≥1 e -(un) δβ z (un

) pδβ = +∞ 1 e -(u⌊x⌋) δβ z (u⌊x⌋) pδβ dx.
Let us write

E p (u, x) = e -(u⌊x⌋) δβ z (u⌊x⌋) pδβ -e -(ux) δβ z (ux) pδβ .
By applying Taylor's inequality to the function v → e -vz v p on the interval [(u ⌊x⌋) δβ , (ux) δβ ], we obtain for every x > 2 (use ⌊x⌋ ≥ x/2)

E p (u, x) ≤ (1 + |z|)(1 + p)(1 + (ux) pδβ )e -(ux/2) δβ Re(z) u δβ x δβ -⌊x⌋ δβ .
Next, by applying Taylor's inequality to the function t → t δβ according that δβ > 1 or δβ < 1 (again use ⌊x⌋ ≥ x/2 in the last case), we have

E p (u, x) ≤ (1 + |z|)(1 + p)(1 + (ux) pδβ ) max 1, 2 1-δβ δβ u δβ e -(ux/2) δβ Re(z) x δβ-1 .
Therefore, with the change of variable t = (ux/2) δβ , we get

+∞ 2 E p (u, x) dx ≤ (1 + |z|)(1 + p) max 2 δβ , 2 +∞ 0 (1 + 2 pδβ t p )e -Re(z)t dt.
Now, we suppose that α = 1 and follow the same scheme. We observe that δβ = 1. With the change of variable t = x(log x) β-1 , we get

+∞ 1 e -zux(log x) β-1 (ux(log x) β-1 ) p dx = u p L( wp )(zu). Indeed, if β > 1, we have t = [(β -1)x 1 β-1 (log(x 1 β-1 ))] β-1 and so x = exp w t 1 β-1 β-1 β-1
which gives dx = w0 (t) dt (since w ′ (y) = w(y) y(1+w(y)) and since e w(x) = x w(x) ). Moreover, if β < 1, we have

t = x 1 1-β (1 -β) log(x 1 1-β ) 1-β and so x = exp (1 -β)∆ (1 -β)t 1 1-β , which gives dx = w0 (t) dt (since ∆ ′ (y) = ∆(y)
y(∆(y)-1) and since e ∆(y) = y∆(y)). Let x 0 := max(4, e 2(1-β) ). We have

n≥1 e -zun(log n) β-1 (un(log n) β-1 ) p -u p L( wp )(zu) ≤ 2x 0 sup y (e -Re(z)y y p ) + +∞ x 0 E p (u, x) dx,
where

E p (u, x) := e -(zu⌊x⌋)(log⌊x⌋) β-1 (u ⌊x⌋ (log ⌊x⌋) β-1 ) p -e -zux(log x) β-1 (ux(log x) β-1 ) p .
Applying Taylor's inequality, we get

E p (u, x) ≤ (1 + |z|)(1 + p)e -Re(z)ux 4 (log x) β-1 2 p (1 + (2ux(log x) β-1 ) p )8u(β -1 + log(x))(log x) β-2
(using the fact that ⌊x⌋ ≥ x/2 and log(x) ≥ log ⌊x⌋ ≥ (log x)/2 ≥ 1β if x ≥ x 0 ). Hence there exists some c depending only on p and |z| such that

+∞ x 0 E p (u, x) dx is less than c +∞ x 0 (1 + (2ux(log x) β-1 ) p )e -Re(z)ux 4 (log x) β-1 u(β -1 + log(x))(log x) β-2 dx.
With the change of variable t = ux(log x) β-1 , for which we have dt = u(β-1+log x)(log x) β-2 dx, we get

+∞ x 0 E p (u, x) dx ≤ c +∞ 0 (1 + (2t) p )e -Re(z)t 4 dt.
The last integral is finite. Lemma 8. For every complex number z such that Re(z) > 0 and every p ≥ 0, we have

lim u→0 + [(zu) p+1 L( wp )(zu) -Γ(p + 1)(-log |u|) 1-β ] = 0 and for every u 0 > 0, sup 0<u<u 0 u p+1 L( wp )(u) Γ(p + 1)(-log |u|) 1-β < ∞.
Hence, if α = 1, for every z such that Re(z) > 0, we have

n≥1 e -zu β b β n u β b β n p ∼ u→0+ Γ(p + 1) u -β (-log(|u| β )) 1-β z p+1 .
Proof. We know that w(x) ∼ +∞ log x and ∆(x) ∼ +∞ log x. Hence, for every p ≥ 0, we have

wp (t) ∼ t→+∞ t p (log t) 1-β .
Now, we apply Tauberian theorems (Theorems p. 443-446 in [START_REF] Feller | An introduction to probability theory and its applications[END_REF]) to Laplace transforms L(.) defined for complex numbers such that Re(z) > 0. The lemma follows.

Lemma 9. There exist a sequence of random variables (a n ) n and a random variable A defined on (0, 1) endowed with the Lebesgue measure λ such that, for every n ≥ 1, a n and (b n V

-1 β n ) 1 δ
have the same distribution, such that E λ [sup n≥1 a n ] < +∞ and such that (a n ) n converges almost surely and in L 1 to the random variable A.

Proof. Lemmas 5 and 6 insure in particular the uniform integrability of (b n V

-1 β n ) 1 δ
n and the existence of a sequence of random variables (a n ) n and of a random variable A defined on (0, 1) endowed with the Lebesgue measure λ such that, for every n ≥ 1, a n and (b n V

-1 β n ) 1
δ have the same distribution, such that A has the same distribution as and(a n ) n converges almost surely to A and so in L 1 . Indeed, following the the Skorohod representation theorem, we define

|L| -1/δ β if α > 1 and is equal to c -1 if α = 1, such that E λ [sup n≥1 a n ] < +∞
a n (x) := inf u > 0 : P (b n V -1 β n ) 1 δ ≤ u ≥ x
and A as follows :

A(x) := c -1 if α = 1 and A(x) := inf u > 0 : P |L| -1/δ β ≤ u ≥ x if α > 1.
The sequence (a n ) n converges almost surely to the random variable A as n goes to infinity. Moreover, from the formula

E λ [sup n≥1 a n ] = +∞ 0
λ(sup n a n > t) dt and the fact that

sup n a n (x) > t ⇔ inf n P (b n V -1 β n ) 1 δ ≤ t < x, we get λ(sup n a n > t) = sup n P (b n V -1 β n ) 1 δ > t ≤ t -γ sup n E b γ δ n V -γ δβ n ,
with γ := 2 when β ≤ 1 ; γ := δβ/(β -1) when α > 1 and β > 1 or when α = 1 and β ∈ (1, 2).

In each of this case, this gives E λ [sup n≥1 a n ] < +∞ from Lemma 6. If α = 1 and β = 2, we take γ = 2 and use the fact that

sup n E b γ δ n V -γ δβ n = sup n E n log n V n 2 ≤ sup n (log n) 2 n 2 E[R 2 n ] < ∞,
with R n := #{y ∈ Z : N n (y) > 0} (according to inequality (3b) in [START_REF] Gall | The range of stable random walks[END_REF]) and we conclude analogously.

Therefore, using the previous lemma, the series ψ can be rewritten, for every real number t = 0, as

ψ(t) = E λ   n≥1 e -|t| β b β n a -δβ n (A 1 +iA 2 sgn(t))   . ( 12 
)
Lemma 10. There exists t 0 > 0 such that when α > 1 or (α = 1, β > 1), the family of random variables

  1 γ(t) n≥1 e -|t| β b β n a -δβ n (A 1 +iA 2 sgn(t))   0<|t|<t 0
is uniformly integrable and such that, if α > 1, the family

  |t| β γ(t) n≥1 b β n a -δβ n e -|t| β (a -1 n n) δβ (A 1 +iA 2 sgn(t))   0<|t|<t 0
is also uniformly integrable.

Proof. If α > 1, thanks to lemma 7, we know that, for every real number t ∈ (0, 1) and every complex number z such that Re(z) > 0, we have

n≥1 e -|t| β (a -1 n n) δβ z ≤ |t| -1 δ sup n a n δβ Γ 1 δβ |z| -1 δβ + K 0,α (z), (13) 
and,

|t| β n≥1 (a -1 n n) δβ e -|t| β (a -1 n n) δβ z ≤ |t| -1 δ sup n a n δβ Γ 1 + 1 δβ |z| -(1+ 1 
δβ ) + K 1,α (z), (14) 
from which we conclude. Now, let us consider the case α = 1 and β > 1. According to lemmas 7 and 8, since

0 < A 1 |t| β (1 + sup n a n ) -1 ≤ A 1 , we have n≥1 e -|t| β b β n a -1 n (A 1 +iA 2 sgn(t)) ≤ K 0,1 (A 1 ) + L( w0 ) A 1 |t| β (1 + sup n a n ) -1 ≤ K 0,1 (A 1 ) + c 0 |t| -β (1 + sup n a n ) -log A 1 |t| β (1 + sup n a n ) -1 1-β
for some positive constant c 0 > 0. Hence, there exists t 1 ∈ (0, 1) such that for every 0 < |t| < t 1 ,

1 |γ(t)| n≥1 e -|t| β b β n a -1 n (A 1 +iA 2 sgn(t)) ≤ c 1    1 + (1 + sup n a n )   -log A 1 |t| β (1 + sup n a n ) -1 -log A 1 |t| β c   1-β    for some positive constant c 1 > 0. If β > 1, since c(1 + sup n (a n )) ≥ 1 a.s.
, the right-hand side of the above inequality is almost surely less than c 1 (2 + sup n a n ) for every |t| < (cA 1 )

-1
β . Then, we can choose t 0 as the infimum of (cA 1 ) -1 β and t 1 . The uniform integrability then follows from Lemma 9.

Lemma 11. If (α > 1, β = 1) or (α = 1, β > 1), we have lim t→0 1 γ(t) n≥1 e -|t| β (a -δβ n b β n )(A 1 +iA 2 sgn(t)) -e -|t| β (A -δβ b β n )(A 1 +iA 2 sgn(t)) = 0 a.s..
Moreover, when α > 1 and β < 1 , we have

lim t→0 |t| β γ(t) n≥1 (a -δβ n b β n ) e -|t| β (a -δβ n b β n )(A 1 +iA 2 sgn(t)) -(A -δβ b β n )e -|t| β (A -δβ b β n )(A 1 +iA 2 sgn(t)) = 0 a.s..
Proof. We only prove the first assertion, the proof of the second one following the same scheme. Let β = 1 and α ≥ 1. Let ε ∈ (0, 1/δ),

⌊|t| ε-1/δ ⌋ n=1 e -|t| β a -δβ n b β n (A 1 +iA 2 sgn(t)) -e -|t| β A -δβ b β n (A 1 +iA 2 sgn(t)) = O(|t| ε-1/δ ) = o(γ(t)).
Now it remains to prove the almost sure convergence to 0 as t goes to 0 of the following quantity :

ε t := 1 γ(t) n>[|t| ε-1/δ ] e -|t| β a -δβ n b β n (A 1 +iA 2 sgn(t)) -e -|t| β A -δβ b β n (A 1 +iA 2 sgn(t))
.

By applying Taylor's inequality to the function v → e -|t| β |v| δβ b β n (A 1 +iA 2 sgn(t)) , we have

|ε t | ≤ δβ(A 1 + |A 2 |) |t| β γ(t) n>[|t| ε-1/δ ] ( inf n>[|t| ε-1/δ ] a n ) -δβ b β n e -A 1 |t| β (sup n>[|t| ε-1/δ ] an) -δβ b β n × × a -1 n -A -1 (sup n>[|t| ε-1/δ ] a n ) -1
= o(1) a.s., using lemmas 7 and 8 and according to the fact that (a n ) n converges almost surely to A.

Proof of Proposition 4. First consider the case α > 1 and β = 1. Thanks to lemmas 7 and 11, we get that

1 γ(t)   n≥1 e -|t| β a -δβ n b β n (A 1 +iA 2 sgn(t)) - A δβ Γ( 1 δβ )(A 1 + iA 2 sgn(t)) -1/δβ |t| -1/δ   → 0 a.s.
as t goes to 0. Therefore, thanks to [START_REF] Feller | An introduction to probability theory and its applications[END_REF] and to the uniform integrability (Lemma 10), we deduce [START_REF] Castell | Limit theorems for one and two-dimensional random walks in random scenery[END_REF]. The proof of (10) is similar (using Lemma 8) and is omitted. Again, to prove (9), we use [START_REF] Feller | An introduction to probability theory and its applications[END_REF]. Since for t = 0,

ψ ′ (t) = -βsgn(t)(A 1 + iA 2 sgn(t))|t| β-1 n≥1 E a -δβ n b β n e -|t| β (a -δβ n b β n (A 1 +iA 2 sgn(t)) , and 
γ ′ (t) = - C δ (A 1 + iA 2 sgn(t)) -1/δβ |t| -1/δ-1 , we decompose C δβ (A 1 + iA 2 sgn(t)) -(1+1/δβ) ψ ′ (t) γ ′ (t) -1
as the sum of

|t| 1/δ E   n≥1 e -|t| β (a -δβ n b β n (A 1 +iA 2 sgn(t)) (|t| 1/δ a -1 n ) δβ b β n -e -|t| β A -δβ b β n (A 1 +iA 2 sgn(t)) (|t| 1/δ A -1 ) δβ b β n   and |t| 1/δ E   n≥1 e -|t| β A -δβ b β n (A 1 +iA 2 sgn(t)) (|t| 1/δ A -1 ) δβ b β n - A |t| 1/δ δβ Γ(1 + 1 δβ )(A 1 + iA 2 sgn(t)) -(1+1/δβ)  
The second assertion in Lemma 11 and the uniform integrability in Lemma 10 implies that the first sum goes to 0 as t goes to 0. From Lemma 7, we get that the second one goes to 0 as t goes to 0.

Proof of Theorem 1

We first begin to prove that for every a ∈ R, the sequence of

K n,a (h) = n k=1 {E[h(Z k )] -E[h(Z k -a)]}
converges as n tends to infinity. Indeed, for every a ∈ R, we have

K n,a (h) = 1 2π I ĥ(t) n k=1 E[e itZ k ] 1 -e -ita dt. ( 15 
) Proposition 12. i)-The series n≥1 |E[e itZn ]|
is bounded on any set [r, +∞[ with r > 0 and so the series

ψ(t) := n≥1 E[e itZn ]
is well defined for every t = 0. ii)-We have

lim t→0 1 γ(t) n≥1
E[e itZn ] -E e -|t| β Vn(A 1 +iA 2 sgn(t)) = 0, and so lim

t→0 1 γ(t) [ ψ(t) -ψ(t)] = 0,
Proof. In order to prove ii), we show that

lim t→0 1 γ(t) n≥1 E   y∈Z ϕ ξ (tN n (y))   -E e -|t| β Vn(A 1 +iA 2 sgn(t)) = 0.
From Lemma 6 in [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] and Lemma 12 in [START_REF] Castell | Limit theorems for one and two-dimensional random walks in random scenery[END_REF], for every η > 0 and every n ≥ 1, there exists a subset Ω n such that for every p > 1, P(Ω n ) = 1o(n -p ) and such that, on Ω n , we have

N * n = sup x N n (x) ≤ n 1-1 α +η and V n ≥ n δβ-η ′ , with η ′ = ηβ 2 if α > 1, β > 1 ; η ′ = η(1 -β) if α > 1, β ≤ 1 and η ′ = η(1 -β) + if α = 1. Hence, it is enough to prove that n≥1 |E [E n (t)1 Ωn ]| = o(γ(t)) as t → 0, with E n (t) := y∈Z ϕ ξ (tN n (y)) -e -|t| β Vn(A 1 +iA 2 sgn(t)) .
In [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF][START_REF] Castell | Limit theorems for one and two-dimensional random walks in random scenery[END_REF], we also define some η ≤ η max(1, β -1 ) and we take some η such that η + η < 1 αβ . Hence, for every ε 0 > 0, there exists n 1 such that for every n ≥ n 1 , we have n

η+η-1 αβ ≤ ε 0 .
In the proofs of propositions 8, 9 and 10 of [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] (and propositions 14, 15 of [START_REF] Castell | Limit theorems for one and two-dimensional random walks in random scenery[END_REF]) or using the strong lattice property, we prove that there exist c > 0, θ > 0 and n 0 such that for every t and every integer n ≥ n 0 and such that |t| > n -δ+η , we have, on Ω n , y∈Z |ϕ ξ (tN n (y))| ≤ e -cn θ and y∈Z |φ(tN n (y))| ≤ e -cn θ . Now, let t and n ≥ n 1 be such that |t| ≤ n -δ+η . Recall that we have

ϕ ξ (u) -φ(u) ≤ |u| β h(|u|),
with h a continuous and monotone function on [0; +∞) vanishing in 0. Therefore there exist ε 0 > 0 and σ > 0 such that, for every u ∈ [-ε 0 ; ε 0 ], we have αβ ≤ ε 0 , we get

max(|φ(u)|, |ϕ ξ (u)|) ≤ exp(-σ|u| β ).
|E n (t)| ≤ y h(n η+η-1 αβ )|t| β N n (y) β exp(-σ|t| β V n ) exp(σε β 0 ) ≤ h(n η+η- αβ )|t| β V n exp(-σ|t| β V n ) exp(σε β 0 ).
Now, we fix some t = 0. Let us write

N 1 (t) := {n ≥ 1 : n ≥ n 0 , |t| > n -δ+η } and N 2 (t) := {n ≥ 1 : n ≥ n 1 , |t| ≤ n -δ+η , n > |t| -1 2δ }. We have n≤max(n 0 ,n 1 ) |E n (t)| ≤ 2 max(n 0 , n 1 ), n≤|t| -1 2δ |E n (t)| ≤ 2|t| -1 2δ = o(γ(t)), as t → 0, n∈N 1 (t) |E n (t)| ≤ 2 n≥1 e -cn θ and n∈N 2 (t) E[|E n (t)|1 Ωn ] ≤ exp(σε β 0 )h t -1 2δ η+η-1 αβ |t| β E n≥1 V n exp(-σ|t| β V n ) = o(γ(t)),
as t → 0, using Proposition 4 and the continuity of the function h at 0 (and the fact that

|t| β V n exp(-σ|t| β V n ) ≤ k 0 exp(-1 2 σ|t| β V n ) for some k 0 > 0)
. Then, ii)-is proved and i)-can easily be deduced from the above arguments.

The integrand in ( 15) is bounded by Θ(t) := | ĥ(t)||1e -ita | n≥1 |E[e itZn ]|. Let r > 0, on the set {t; |t| ≥ r}, by i)-from Proposition 12, since ĥ is integrable, Θ is integrable. From Propositions 4 and 12 (item ii)-) and from the fact that ĥ is continuous at 0, Θ(t) is in O (|t|γ(t)) (at t = 0), which is integrable in the neighborhood of 0 in all cases considered in Theorem 1 except (α, β) = (1, 2). From the dominated convergence theorem, we deduce that

lim n→+∞ K n,a (h) = 1 2π I ĥ(t) ψ(t) 1 -e -ita dt. ( 16 
)
In the case (α, β) = (1, 2), by assumption, for every integer n ≥ 1, the function t → ĥ(t) n k=1 E[e itZ k ] being even, we have

K n,a (h) = 1 2π I ĥ(t) n k=1 E[e itZ k ] (1 -cos(ta)) dt. ( 17 
)
The integrand in ( 17) is uniformly bounded in n by a function in O log(1/|t|) -1 (at t = 0), which is integrable in the neighborhood of 0. From the dominated convergence theorem, we deduce that

lim n→+∞ K n,a (h) = 1 2π I ĥ(t) ψ(t) (1 -cos(ta)) dt. ( 18 
)
In the rest of the proof we only consider the strongly non-lattice case, the lattice case can be handled in the same way.

Let us first consider the case α > 1, β ∈ (1, 2]. We recall that, in case, we have set

C = (δβ) -1 Γ( 1 δβ )E[|L| -1 δ β ].
Since the function t → ĥ(t) ψ(t) is integrable on I \ [-π, π] (note that ĥ is integrable and ψ is bounded on I \ [-π, π] by Proposition 12), we have

lim a→+∞ a 1-1/δ 2π {|t|≥π} ĥ(t) ψ(t) 1 -e -ita dt = 0.
We define the functions

g(t) := (1 -e -it )|t| -1/δ (A 1 + iA 2 sgn(t)) -1/δβ , g a (t) := ag(at) (19) 
and

f (t) := 1 [-π,π] (t) ĥ(t)|t| 1/δ ψ(t)(A 1 + iA 2 sgn(t)) 1/δβ .
We have:

a 1-1/δ 2π {|t|≤π} ĥ(t) ψ(t) 1 -e -ita dt = 1 2π R f (t) g a (t)dt = 1 2π f * g a (0).
Since g is integrable on R and f is bounded on R and continuous at t = 0 with f (0) = C ĥ(0) (by Propositions 4 and 12), it follows from classical arguments of approximate identity that

lim a→+∞ (f * g a (0) = C ĥ(0) R g(t)dt. Let us observe that R g(t)dt = 2Re (A 1 + iA 2 ) -1 δβ ∞ 0 1 -e -it t 1/δ dt .
By applying the residue theorem to the function z → z -1/δ (1e -iz ) with the contour in the complexe plane defined as follows : the line segment from -ir to -iR (r < R), the circular arc connecting -iR to R, the line segment from R to r and the circular arc from r to -ir and letting r → 0, R → +∞, we get that

∞ 0 1 -e -it t 1/δ dt = δ 1 -δ Γ 2 - 1 δ e i π 2δ (1-δ) .
From this formula we easily deduce the first statement of theorem 1 using the fact that

(A 1 + iA 2 ) -1 δβ = e -i θ δβ (A 2 1 + A 2 2 ) 1 2δβ , with θ = arctan A 2 A 1 . Now assume α ≥ 1, β = 1 or α = 1, β ∈ (1, 2). We have γ(t) = b t |t| -β (-log |t|) 1-β (with b t = A -1 1 if β = 1 and with b t = c -1 (A 1 + iA 2 sgn(t)) -1 if α = 1, β ∈ (1, 2)
). Moreover, by combining propositions 4 and 12, we have

lim t→0 (γ(t)) -1 ψ(t) -1 = 0.
Hence, for every ε ∈ (0, 1), there exists 0

< A ε < 1 such that ∀t, |t| ≤ ε ⇒ [ | ψ(t) -γ(t)| < εγ(t) and | ĥ(t) -ĥ(0)| < ε ]. ( 20 
)
Since ψ is bounded on [A ε , +∞[ and ĥ is integrable on I, we have

1 2π t∈I, |t|≥Aε ĥ(t) ψ(t)(1 -e -ita )dt ≤ C(ε).
Let a be such that a ≥ A -1/β ε . We have

1 2π {|t|<a -β } ĥ(t) ψ(t)(1 -e -ita )dt ≤ a π || ĥ|| ∞ a -β 0 t |γ(t)| dt,
that can be neglected as a goes to infinity since

a -β 0 |atγ(t)| dt = O a (β-1) 2 log(a) 1-β = o(a β-1 log(a) 1-β ) as a → ∞ if α = 1, β ∈ (1, 2)
as a goes to infinity and since

a -β 0 at|γ(t)| dt = O(1) = o(log(a)) as a → ∞ if β = 1.
It remains to estimate 1 2π {a -β ≤|t|≤Aε} ĥ(t) ψ(t)(1e -ita )dt that we decompose into two parts:

I 1 (a) := 1 2π {a -β ≤|t|<Aε}
[ ĥ(t) ψ(t) -ĥ(0)γ(t)](1e -ita )dt and I 2 (a) := ĥ(0)

2π {a -β ≤|t|<Aε} (1 -e -ita )γ(t)dt.
•We first estimate I 2 (a) for a large. Remark that by the change of variables u = at, I 2 (a) = ĥ(0)

2πa {a 1-β <|u|<aAε} (1 -e -iu )γ u a du.
We treat separately the cases β = 1 and α = 1, β ∈ (1, 2). If β = 1, we have

1 2πa {1<|u|<aAε} (1 -e -iu )γ u a du = 1 A 1 π {1<u<aAε} 1 -cos u u du ∼ 1 A 1 π log(a) since lim x→+∞ 1 log(x) x 1 1 -cos(u) u du = 1.
This comes from the fact that

x 1 cos(t) t dt
x is bounded.

If α = 1 and β ∈ (1, 2), we have

1 2πa {a 1-β <|u|<aAε} (1 -e -iu )γ u a du = = a β-1 β 1-β 2πc {a 1-β <|u|<aAε} (1 -e -iu )(A 1 + iA 2 sgn(u)) -1 |u| -β (log(a) -log |u|) 1-β du = a β-1 (log(a β )) 1-β 2πc R f a (u) du, with f a (u) := 1 [a 1-β ,aAε] (|u|)(1 -e -iu )(A 1 + iA 2 sgn(u)) -1 |u| -β 1 - log |u| log a 1-β .
We observe that

|f a (u)| ≤ F (u) := min(1, |u|)|A 1 + iA 2 | -1 |u| -β β 1-β (with F integrable on R since β ∈ (1, 2)
) and that we have

∀u = 0, lim a→+∞ f a (u) = (1 -e -iu )(A 1 + iA 2 sgn(u)) -1 |u| -β =: g(u).
So,

lim a→+∞ (log(a β )) β-1 2πa β {a 1-β <|u|<aAε} (1 -e -iu )γ(u/a) du = 1 2πc R g(u) du. We recall that R g(t)dt = 2Re (A 1 + iA 2 ) -1 ∞ 0 1 -e -it t β dt and that ∞ 0 1 -e -it t β dt = Γ(2 -β) β -1 e i 2 (β-1)π .
This gives

lim a→+∞ (log(a β )) β-1 a β-1 I 2 (a) = D 1 .
•Second, we estimate I 1 (a). From (20), we have The case (α, β) = (1, 2) can be handled in the same way as α = 1, β ∈ (1, 2) using the inequality 1cos(t) ≤ min(2, t 2 ). Details are omitted.

|I 1 (a)| ≤ ε(O(1) + | ĥ(0)|) π {a -β ≤|t|<Aε} |1 -e -ita ||γ(t)| dt ≤ C ε a {a 1-β <|u|<aAε} |1 -e -

Proof of Theorem 2 (transient case)

We suppose that α > 1 and β < 1. So δ > 1. We will again use the notation

C = (δβ) -1 Γ( 1 δβ )E[|L| -1 δ β ].
Let h : R → C be a Lebesgue-integrable function such that its Fourier transform ĥ is differentiable, with ĥ and ( ĥ) ′ Lebesgue-integrable. Then, using the Fourier inversion formula, we obtain for every n ≥ 1, 2πE[h(Z na)] = R ĥ(t)E[e itZn ]e -ita dt.

We get

2π n≥1 E[h(Z n -a)] = n≥1 R ĥ(t)E[e itZn ]e -ita dt.
Since here β < 1 (thus δ > the function t → ĥ(t) n≥1 E[e itZn ] is integrable (note that n≥1 E[e itZn ] corresponds to the case A 2 = 0, then use Proposition 3 and ( 8)). Therefore, from (6), we have

2π n≥1 E[h(Z n -a)] = R ĥ(t) ψ(t) e -ita dt.
Let S(R) denote the so-called Schwartz space. Let r ∈ (0, +∞) and let χ ∈ S(R) be such that |χ| ≤ 1 and ∀t ∈ [-r; r], χ(t) = 1.

(

We have 2π (1χ(t)) ĥ(t) ψ(t) e -ita dt.

The study of I 3 (a) is easy. Set g 3 (t) = (1χ(t)) ĥ(t)ψ(t). From (21), we have I 3 (a) = g 3 (a), and from Propositions 3 and 4, g 3 and g ′ 3 are Lebesgue-integrable on R. An integration by parts then gives

I 3 (a) = O(a -1 ) = o(a 1/δ-1 ) as a goes to ∞.
The next two subsections are devoted to the study of I 1 (a) and I 2 (a). 

|u| 1/δ (A 1 + iA 2 sgn(u)) 1 δβ du = R g(v) |v| 1-1 δ c + δ,β 1 R + (v) + c - δ,β 1 R -(v) dv, where c + δ,β := 2 Γ(1 -1 δ ) (A 2 1 + A 2 2 ) 1 2δβ sin 1 δ π 2 + 1 β arctan A 2 A 1 and c - δ,β := 2 Γ(1 -1 δ ) (A 2 1 + A 2 2 ) 1 2δβ sin 1 δ π 2 - 1 β arctan A 2 A 1 .
Note that, since δ > 1, the functions w → |w| -1/δ and w → |w| -(1-1 δ ) are Lebesgue-integrable on any neighborhood of w = 0, so that the two previous integrals are well defined.

Proof. For every u = 0, we have 

|u| -1 δ (A 1 + iA 2 sgn(u)) -1 δβ = +∞ 0 e -x|u| 1 δ (A 1 +iA 2 sgn(u)) 1 δβ dx.
= +∞ 0 R g(v)f x (v) dv dx.
Next, since we have:

∀x > 0, ∀v ∈ R, f x (v) = x -δ f 1 v
x δ , we obtain, from Fubini's theorem, with the change of variable y = |v|/x δ and finally by the dominated convergence theorem (since c ± δ,β are well defined, see below), that R ĝ(u) Let us compute c + δ,β . We have

|u| 1 δ (A 1 + iA 2 sgn(u)) 1 δβ du = lim A→0 R g(v) +∞ A x -δ f 1 v x δ dx dv = lim A→0 R g(v)|v| 1/δ-1 |v|A -δ 0 f 1 (sgn(v)y) δy 1/δ dy dv = R g(v) |v| 1-1/δ c + δ,β 1 R + (v) + c - δ,β 1 R -(v) dv,
c + δ,β = lim A→+∞ 1 δ A 0 f 1 (y) y -1/δ dy = lim A→+∞ 1 δ A 0 y -1/δ R e ixy e -|x| 1 δ (A 1 +iA 2 sgn(x)) 1 δβ dx dy = lim A→+∞ R |u| -1 δ e iu +∞ |u| A 1 δ v 1 δ -1 e -v 1 δ (A 1 +iA 2 sgn(u)) 1 δβ dv du = lim A→+∞ R |u| -1 δ e iu e -|u| 1 δ A -1 δ (A 1 +iA 2 sgn(u)) 1 δβ (A 1 + iA 2 sgn(u)) 1 δβ du = lim A→+∞ 2 Re   +∞ 0 u -1 δ e iu e -u 1 δ A -1 δ (A 1 +iA 2 ) 1 δβ (A 1 + iA 2 ) 1 δβ du   ,
using the change of variables (u, v) = (yx, x). Now applying the residue theorem to the function

z → z -1 δ e iz e -z 1 δ A -1 δ (A 1 +iA 2 )
1 δβ with the contour in the complexe plane defined as follows : the line segment from r to R (r < R), the circular arc connecting R to iR, the line segment from iR to ir and the circular arc from ir to r and letting r → 0, R → +∞, we get that

+∞ 0 u -1 δ e iu e -u 1 δ A -1 δ (A 1 +iA 2 ) 1 δβ du = e i( π 2 -π 2δ ) +∞ 0 t -1 δ e -t e -t 1 δ e iπ 2δ A -1 δ (A 1 +iA 2 ) 1 δβ dt.
Taking A → +∞, we get the expression of c + δ,β .

Lemma 14. We have: lim

a→+∞ a 1-1/δ R χ(t)|t| -1 δ (A 1 + iA 2 sgn(t)) -1 δβ e -ita dt = c - δ,β .
Proof. Let γ ∈ S(R) such that γ = χ, and define: ∀x ∈ R, γa (x) := aγ(-ax). From Lemma 13 and from the change of variable v = wa, we get

R χ(t)|t| -1/δ (A 1 + iA 2 sgn(t)) -1 δβ e -ita dt = R γ(• + a)(t)|t| -1/δ (A 1 + iA 2 sgn(t)) -1 δβ dt = R γ(v + a)|v| 1/δ-1 (c + δ,β 1 R + (v) + c - δ,β 1 R -(v)) dv = a 1/δ-1 R a γ a w + 1 g δ (w) dw = a 1/δ-1 R γa (-1 -w) g δ (w) dw = a 1/δ-1 γa * g δ (-1),
where * denotes the convolution product on R and g δ (v

) := |v| 1/δ-1 (c + δ,β 1 R + (v) + c - δ,β 1 R -(v)). Observe that we have R γa (w)dw = R γ(y)dy = χ(0) = 1.
Now, from the fact that γ ∈ S(R) (actually use sup x∈R (1 + x 2 )|γ(x)| < ∞), that g δ is continuous at -1 and that the function w → w -2 g δ (w) is Lebesgue-integrable at infinity, it can be easily deduced from classical arguments of approximate identity that we have (see Prop. 1.14 in D. Guibourg's thesis [START_REF] Guibourg | Théorèmes de renouvellement pour des fonctionnelles additives associées à des chaînes de Markov fortement ergodiques[END_REF] for details): lim a→+∞ (γ a * g δ )(-1) = g δ (-1) = c - δ,β . Set Φ(t) := ψ(t) -C|t| -1 δ (A 1 + iA 2 sgn(t))

-1
δβ . We have I 2 (a) = R χ(t) ĥ(t)ψ(t) -C ĥ(0)|t| -1 δ (A 1 + iA 2 sgn(t))

-1 δβ e -ita dt = J 1 (a) + J 2 (a)

with J 1 (a) := R χ(t) ĥ(t) -ĥ(0) ψ(t)e -ita dt and J 2 (a) := ĥ(0) R χ(t)Φ(t)e -ita dt.

Note that J 1 (a) = g 1 (-a), with g 1 := χ( ĥĥ(0))ψ. From Proposition 4 and since ĥ is continuously differentiable, we have ψ(t) = O(|t| -1/δ ) and ( ĥ(t) -ĥ(0))ψ ′ (t) = O(|t| -1/δ ) when t → 0.

Hence g 1 and g ′ 1 are Lebesgue-integrable on R, so that we obtain by integration by parts: J 1 (a) = O(a -1 ) = o(a 1-1/δ ) as a goes to ∞.

To study J 2 (a), let us set G(t) := χ(t)Φ(t), and write J 2 (a) = ĥ(0) {|t|≤ 2π a } G(t) e -ita dt + ĥ(0) {|t|> 2π a } G(t) e -ita dt =: ĥ(0)J 2,1 (a) + ĥ(0)J 2,2 (a)

where J 2,1 (a) and J 2,2 (a) are above defined in an obvious way. From Proposition 4 we have Φ(t) = ϑ 0 (t)|t| -1 δ , with lim u→0 ϑ 0 (u) = 0. Since |χ| ≤ 1, we obtain:

J 2,1 (a) ≤ {|t|≤ 2π a } Φ(t) dt ≤ 2 1 -1 δ 2π a 1-1 δ sup |t|≤ 2π a |ϑ 0 (t)| = o(a 1 δ -1 ), (24) 
as a goes to infinity. Next we have J 

The last integral in (25) is o(a 1 δ -1 ) (use the second inequality in (24)). Next, by using Proposition 4, one can easily see that there exists ϑ 1 : R \ {0} → C such that Remark: The generalization of our proof to the more general context when the distribution of ξ 0 belongs to the normal domain of attraction of a stable distribution of index β is not as simple as in the recurrent case. Indeed we used precise estimation of the derivative of ψ that should require the existence of the derivative of ϕ ξ outside 0, which does not appear as a natural hypothesis when β < 1 since ξ 0 is not integrable.

G ′ (u) = |u| -1-

  We have |E n (t)| ≤ y z<y |ϕ ξ (tN n (z))| |ϕ ξ (tN n (y))φ(tN n (y))| z>y |φ(tN n (z))| . Now, since |t| ≤ n -δ+η , on Ω n , for every y ∈ Z, we have |t|N n (y) ≤ n η+η-1

iu |γ u a du. When β = 1 ,

 1 |I 1 (a)| ≤ ε log(a). When α = 1 and β ∈ (1, 2), from the above computations, we also have get |I 1 (a)| ≤ Cεa β-1 (log a) 1-β .

n≥1E 1 δβe

 1 [h(Z na)] = I 1 (a) + I 2 (a) + I 3 (a), with I 1 (a) := C ĥ(0) R χ(t) |t| -1 δ (A 1 + iA 2 sgn(t)) -1 δβ e -ita dt, I 2 (a) := R χ(t) ĥ(t)ψ(t) -C ĥ(0)|t| -1 δ (A 1 + iA 2 sgn(t))--ita dt, I 3 (a) := {|t|>r}

4. 1 .

 1 Study of I 1 (a). Let us prove that:lim a→+∞ a 1/δ-1 I 1 (a) = C ĥ(0) c - δ,βwhere c - δ,β is a constant defined in Lemma 13 below. The last property follows from Lemma 14 below. Before let us establish the following. Lemma 13. For every function g ∈ S(R), R ĝ(u)

For any x > 0 , 1 δ 1 δ

 011 let us denote by f x the Fourier transform of the function u → e -x|u| (A 1 +iA 2 sgn(u)) 1 δβ . By Fubini's theorem and Parseval's identity, we have R ĝ(u) |u| (A 1 + iA 2 sgn(u))

f 1 f 1 (

 11 (y) δy 1/δ dy and c - δ,β := +∞ 0 -y) δy 1/δ dy.

4. 2 .

 2 Study of I 2 (a). Let us prove that:I 2 (a) = o(a 1/δ-1) as a goes to ∞.

From ( 25 )

 25 (26) (27), it follows that we have when a is sufficiently large:J 2,2 (a) ≤ ε π a 1-1 δ .From this fact and from (23) (24), we have:J 2 (a) = o(a 1/δ-1 ) as a goes to ∞.The desired property for I 2 (a) is then established. This completes the proof of Theorem 2.

  1 δ ϑ 1 (u) with lim Let ε > 0, and let α = α(ε) > 0 be such that sup |s|<α |ϑ 1 (s)| ≤ ε 2δ . Note that Then, by applying Taylor's inequality to G, we obtain for all a such that a > 2πMoreover, since Φ and Φ ′ are bounded on R \ [-α 2 ; α 2 ] (by Proposition 3), and from χ ∈ S(R), there exists a positive constant D α such that: Thus, if a is large enough, namely if a is such that 4Dα α ( π a )

				∀x ∈ R \ -	α 2	;	α 2	, G ′ (x) ≤	D α x 2 .
												1 δ ≤ ε, then we have
	{|t|≥ α 2 }	G(t) -G t +	π a	sgn(t) dt ≤ 2D α	π a	+∞ α 2	t -2 dt ≤ ε	π a	1-1 δ	(27)
			a >	2π α	and |t| <	α 2		⇒ |t| ≤ t +	π a	sgn(t) < α.
												α
	{ π a <|t|< α 2 }	G(t) -G t +	π a	sgn(t) dt ≤	ε δ	π a	+∞ π a	t -1-1 δ dt ≤ ε	π a	1-1 δ .	(26)

u→0 ϑ 1 (u) = 0.
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