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We show that the current bounds on the time variation of the Newton constant G can put severe

constraints on many interesting scalar-tensor theories which possess a shift symmetry and a nonminimal

matter-scalar coupling. This includes, in particular, Galileon-like models with a Vainshtein screening

mechanism. We underline that this mechanism, if efficient to hide the effects of the scalar field at short

distance and in the static approximation, can in general not alter the cosmological time evolution of the

scalar field. This results in a locally measured time variation of G which is too large when the matter-

scalar coupling is of order one.
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Many theories in which gravity is modified with respect
to general relativity (GR) contain, in addition to the metric,
a scalar field which is coupled directly to matter. Such
scalar-tensor theories appear naturally in low energy limits
of string theory and are also obtained from phenomeno-
logical brane-world constructions (such as the DGP model
[1]). Some are also of current interest as able to produce an
interesting cosmology via a large distance modification of
gravity. In such theories, in contrast to GR, matter not only
interacts via the helicity-2 graviton, but also via the ex-
change of the scalar field. In general, one faces the follow-
ing dilemma: Either this field is coupled to matter with
gravitational strength, as required to produce order one
deviations from GR, but then the theory cannot pass local
tests of gravity, or the coupling is very small, but then there
are no significant effects of the scalar. A canonical example
is the Brans-Dicke theory [2,3] and its extensions [4]
whose parameters are tightly constrained by the local tests
of gravity and observations of binary pulsars (see for
instance [5]).

Away out of this dilemma is provided by the Vainshtein
mechanism, first proposed in the context of massive gravity
[6,7] (a proof was recently provided in [8]). Indeed, close
to localized bodies, this allows us to screen effects which
lead to large deviations from GR at large distances. This
mechanism was also shown to be present in the DGP brane
model [1] as well as its decoupling limit [9]. It was later
generalized and shown to apply to a large class of scalar-
tensor models, called in [10] ‘‘k-mouflage’’ gravitymodels,
with a nonlinear kinetic self-interaction of a scalar field
providing a self-screening of the scalar force à laVainshtein
(hence the name k-mouflage). This class contains, in par-
ticular, the Galileon model [11], and its covariantized ver-
sions [12–15]. Many applications of the Galileon model

and its extensions to the late-time acceleration, including
minimally coupled [16–19] as well as nonminimally
coupled models [20–22], have been considered, while vari-
ous constraints coming from cosmology as well as from
local observations have been studied [17,19,23–25].
In this Letter, we point out that in spite of the fact that

the Vainshtein screening indeed allows us to pass most of
the constraints coming from local observations by cutting
off the spatial variation of the scalar field near massive
bodies, the tests on the constancy of the Newton constant
may easily rule out many models. Indeed, we show that in
many shift-symmetric models, the evolution with time of
the scalar field is (approximately) the same everywhere and
it follows its cosmological behavior. If the scalar is directly
coupled to matter, this induces a variation of the Newton
constant G, which is tightly constrained by a number of
observations (see, e.g., the review [26]). The most stringent
bounds come from binary-pulsar data [27] and above all
Lunar Laser Ranging experiments [28], the latter giving
j _G=Gj< 1:3� 10�12 yr�1, or in terms of the Hubble
value today, H0, j _G=Gj< 0:02H0. As we will see below,
the time variation of the scalar field is generically of order
of the Hubble scale H0 (unless it is in the ‘‘cosmological’’
screening regime with a tiny energy scale M � H0). This,
whenever the direct coupling of the scalar field to matter is
of order 1, induces a too large variation of Newton’s
constant, j _G=Gj �H0.
We consider the following general action,

S¼M2
P

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ðRþLsþLNLÞþSm½~g��;c m�; (1)

where R is the Ricci scalar of the metric g��, Ls ¼
�ð@’Þ2 is the standard kinetic term of a scalar field ’
(normalized to be dimensionless), LNL describes some
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generic nonlinear self-interaction of ’, and the matter
fields (collectively denoted as c m) are minimally coupled
to the physical metric ~g�� ¼ A2ð’Þg��. Because of this

coupling, gravity is modified at large distances through a
scalar exchange, while GR is supposed to be restored at
small distances thanks the Vainshtein screening effect
made possible by the self-interaction LNL. This screening
occurs for rather generic nonlinear interaction terms LNL

[10] and we do not specify a precise from of it. We however
assume thatLNL is shift symmetric; i.e., it does not change
under the transformation ’ ! ’þ const. For example,
we can choose LNL to be in the Galileon or k-essence
families. For dimensional reasons LNL must contain a
mass scale M. We will assume that this is the only addi-
tional scale entering our action. In general, this scale is
fixed by phenomenological requirements, e.g., to get
present day acceleration of the Universe from Galileons,
M should be of order of the Hubble scale H0.

Note that by a conformal transformation, action (1) can
always be rewritten in a form where matter is only mini-
mally coupled to one metric ~g��, going to the so-called

Jordan frame. Here we will work rather in the Einstein
frame (1), with the understanding that our results would
apply to any theory whose action can be put in the form (1)
by a suitable field redefinition. We will also not consider
effects that can arise, even in theories with minimal cou-
pling to gravity in the Einstein frame, due to the nonlinear
kinetic coupling of the graviton to the scalar field (called
‘‘kinetic braiding’’ in [16]).

The variation of Eq. (1) with respect to the metric g��

gives the (modified) Einstein equations,

M2
PG�� ¼ TðstÞ

�� þ TðNLÞ
�� þ TðmÞ

�� ; (2)

where TðstÞ
�� , T

ðNLÞ
�� and TðmÞ

�� are, respectively, the energy-
momentum tensors for the standard scalar kinetic term, its
nonlinear term, and the matter contribution. The equation
of motion for the scalar field is

r�ðr�’þ J
�
NLÞ ¼ ��ð’ÞM�2

P TðmÞ; (3)

where �ð’Þ � d lnðAÞ=d’, the nonlinear current J�NL is
obtained by variation ofLNL with respect to the gradient of

the scalar field, J�NL � � 1
2�LNL=�’;�, and TðmÞ is the

trace of the matter energy-momentum tensor in the
Einstein frame. Note that the field equations (3) can always
be written as the divergence of a current, because of shift
symmetry. We also rescale the Planck mass so that
Að’Þ ¼ 1 at present. We stress that the trace of the matter
energy-momentum tensor defined in the Einstein frame,

TðmÞ
�� , differs by the factor A4ð’Þ from the trace of the

(conserved) Jordan-frame energy-momentum tensor.
However, as we will see below, the time variation of ’ is
small (of order of the Hubble scale or less), so that the
change of ’ with time can be neglected in the right-hand
side of (3), giving only small corrections. For instance, if

Að’Þ ¼ e’, the approximation A4ð’Þ � 1 is valid for
j’j � 1, i.e., for j�tj � H�1.
The cosmological evolution of the scalar field, ’cosmðtÞ

can be easily read from (3),

€’cosm þ 3H _’cosm �r0ðJ0NLÞ ¼ �ð’ÞM�2
P TðmÞ: (4)

Three different cosmological regimes can be identified.
In a regime where the cosmological energy density of the
scalar field, �’, is subdominant compared to the matter

energy density, �m, �’ � �m, the scalar field equation

(4) is decoupled from the metric equation (2). Then from
the Einstein equations it follows that �m ¼ 3M2

PH
2; thus

the right-hand side of (4) is ��H2. If the scalar field is
away from the cosmological Vainshtein regime (i.e., when
the nonlinear term in the left-hand side of (4) is negligible),
then fromEq. (4) one can see that a particular solution to (4)
is j _’cosmj � �H. Notice that the general solution also con-
tains a homogeneous decaying solution C0 expð�3

R
dtHÞ

with an arbitrary constant C0, however unless this constant
(or, equivalently, the initial condition) is fine tuned, the
time variation of ’ remains of order of �H.
In the second regimematter is again dominant,�’��m,

but the scalar field is in the cosmological Vainshtein regime.
Then Eq. (4) contains, in addition to H, also the ‘‘non-
linear’’ scale M. Therefore the solution to (4) generically
contains a combination of scalesH andM. When this scale
is small with respect to H0, the time evolution of ’cosm

may thus be suppressed, j _’cosmj � H0. This is the cosmo-
logical analog of the original Vainshtein mechanism.
The third regime is realized in the case when the scalar

field is dominant, �’ � �m, and, in particular, when the

late-time acceleration of the Universe is driven by the
scalar field. In this case, both the metric and the scalar
field equations depend only on one dimensionful parame-
ter, M, which is of order of H0. We thus conclude that the
typical value of the present variation of the scalar field is
the Hubble scale, j _’cosmj �H0.
Let us consider now the local effects caused by

the conformal coupling of the scalar field. For a slow
time evolution, ’cosmðtÞ can be written as the linear
approximation,

’cosmðtÞ ¼ ’cosmðt0Þ þ _’cosmðt0Þt: (5)

Note that (5) imposes the boundary value of the field far
from localized sources. The solution to the full equation of
motion (3) at any point of space-time (including the re-
gions close to massive bodies, in particular, inside the
Vainshtein radius) depends on both time and space coor-
dinates. The key observation here is that thanks to the shift
symmetry of the equation of motion, the PDE (3) allows
separation of variables in the following way,

’ðt; rÞ ¼ ’ðrÞ þ _’cosmðt0Þtþ ’cosmðt0Þ; (6)

where r is the distance to the source. It is not difficult to see
that the above ansatz (which has also been used in other
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contexts [29]) ‘‘passes through’’ the full equation of mo-
tion (3), giving an ordinary differential equation of the
second-order on ’ðrÞ, with possible remnants from the
time-dependence in a form of a constant, _’cosmðt0Þ.
The last two terms in the above ansatz give the boundary
condition for the PDE imposed by the cosmological evo-
lution (5), provided we choose the radial-dependent part of
(5), ’ðrÞ, to vanish at infinity. Now, the ODE on ’ðrÞ is of
the second order, and supplied with two boundary condi-
tions, ’ðr ¼ 1Þ ¼ 0 and ’0ðr ¼ 0Þ ¼ 0 (the last one
comes from the regularity at the origin), which is in general
sufficient to find a unique solution. Provided that this
solution is non singular (which is in some cases a strong
mathematical requirement), and assuming that (5) is a good
approximation for the time-dependent cosmological evo-
lution of ’, our ansatz gives a solution for all times to the
field equation (3) for a spherical source centered at r ¼ 0.
The key point of this Letter is that the time derivative of
’ðt; rÞ is found to be independent of r; i.e., it is set by the
cosmological evolution even inside the regions where the
Vainshtein screening operates.

It is worth mentioning that our ansatz (6) and boundary
conditions are in fact selecting a particular class of solu-
tions. Indeed, if formulated in terms of a Cauchy problem,
they implies ’ðt¼0;rÞ¼’ðrÞ and _’ðt¼0;rÞ¼ _’cosmðt0Þ.
In principle, there is no reason not to choose some radially
dependent initial velocity, _’ðrÞ ¼ CðrÞ. In contrast to (6),
such solutions, however, are not stationary, and they should
relax to the stationary one, assuming that the latter is
stable. A numerical check of this relaxation, as required
by the nature of the field equations, goes however far
beyond the scope of this Letter.

Let us consider a couple of illustrative examples. First,
as the nonlinear term, we take one of the Galileon
Lagrangians, namely,

LNL ¼ �M�2h’ð@’Þ2; (7)

and the coupling to matter Að’Þ ¼ e’. It is not difficult
to find that the evolution of ’cosm in two different cosmo-
logical regimes is in accord to our general findings (we
assume here a vanishing cosmological constant): (i) when
�’ � �m and the nonlinear term is subdominant in (4)

then _’cosm ¼ �2H; (ii) when �’ � �m and the nonlinear

term is dominant in (4) then _’2
cosm ¼ 2M2=3. The time-

dependent solution for the scalar field around a body of
mass m is then given by (6) with,

’0ðrÞ ¼ rM2

4

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16Gm

M2r3

�
1þ _’2

cosm

2M2

�s �
: (8)

Note that the last piece inside the parentheses is due to the
cosmological time evolution of’. As a second example we
consider a scalar field Lagrangian with the signs of the
scalar field kinetic terms flipped with respect to the pre-
vious example, and the coupling to matter Að’Þ ¼ e�’.
This Lagrangian allows self-accelerating solution [16],

with H2 ¼ M2=ð3 ffiffiffi
6

p Þ and _’ ¼ ffiffiffi
6

p
H, while the time-

dependent stationary solution for the scalar field is still
given by (6) with the same radial-dependent part (8).
The time dependence of ’ leads to a variation of the

effective Newton constant with time. This can be seen by
making the conformal transformation to the Jordan (physi-
cal) frame, with the metric ~g��. Generically, there are two

effects, which enter the final result for the evolution of
Newton’s constant: the exchange of helicity-0 modes and
the rescaling of the coordinates via the conformal trans-
formation of the metric. It should be noted that in standard
scalar-tensor theories (without screening mechanisms),
these effects are of the same order, so that they even can
compensate each others (as in Barker’s theory [30]) giving
no change of G. In our case, however, the exchange of ’ is
screened by the Vainshtein mechanism, so that only one
effect—the stretching of coordinates—is important. As a
result, the effective Planck mass in the action gains a
dependence on ’cosmðtÞ, ~MP ¼ A�1ð’cosmÞMP. Thus,
the observed Newton constant evolves with time as

j _G=Gj � 2� _’cosmðtÞ: (9)

Aswe have seen before, depending on the regime, j _’cosmj �
�H (in the matter domination regime) or j _’cosmj �H
(when the scalar field is dominant). Therefore, presently
one has j _G=Gj � �2H0 if the scalar field is subdominant
and away from the cosmological screening, and j _G=Gj �
�H0 when the scalar field is dominant, in particular, when
it drives the late-time acceleration of the universe. This
applies, in particular, for a constant �, i.e., a conformal
coupling ~g�� ¼ e2�’g��.

The observational constraints from Lunar Laser Ranging
give j _G=Gj< 0:02H0 which is enough to rule out theories
of the kind considered here with a scalar coupling to matter
of the order of the gravitational one (i.e., � � 1). In order
for a theory to explain the accelerated expansion of the
universe at present days, and pass the constraints on
the variation of G, one should assume �< 0:01. It is
interesting to note that a similar constraint on the matter-
scalar coupling constant was obtained for the covariant
Galileon theory from a combined analysis of supernovae,
baryonic acoustic oscillations and cosmic microwave
background [22].
Let us now briefly discuss the case of non shift-

symmetric theories. There is a class of such theories which
can be put in the form (1) by suitable field redefinitions, in
which case our conclusions apply. When this is not the
case, the situation must be carefully reanalyzed. Indeed,
the fact that the ansatz (6) leads to a mere ODE to solve for
’ðrÞ is a direct consequence of the shift symmetry and it
might be that some screening of the time variation of G
occurs when this symmetry is lost. For example, we may
introduce a mass term in the action,m2’2, which explicitly
breaks the shift symmetry. If the mass is big enough (say,
much bigger than the present Hubble scale, H0), then the
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cosmological evolution of ’ is suppressed, because the
scalar follows the minimum of the effective potential,
_’min � �H _H=m2. However, such theories do not possess
either an interesting self-accelerating scenario driven by
the kinetic term.

We also stress that even in the shift-symmetric case, it
might be that the ODE obeyed by ’ðrÞ does not possess
regular solutions, or that it leads to a stationary solution (6)
which happens to be unstable as a solution of the PDE (3).
If so, it may open a way out of our conclusions, necessitat-
ing the use of a more general ansatz than (6) to solve the
field equations, which could in turn result in a Vainshtein
suppression of the time variation of G in the solar system.

It is also interesting to mention another possibility of
avoiding any significant time evolution of G, namely, to
violate our assumption of a conformal matter-scalar cou-
pling. In particular, in the relativistic MOND theory, called
TeVeS [31], where the physical metric is related to the
Einstein one in a disformal way, the time variation of the
Newton constant is strictly zero [32]. This is a consequence
of the different scalings of time and space coordinates with
Að’cosmÞ when one imposes that the physical metric ~g��

tends to the Minkowski metric at spatial infinity. This
absence of time variation ofG also applies to other theories
with disformal coupling, in particular, to the improved
relativistic MOND [33], where the k-mouflage screening
has been used to pass solar-system and binary-pulsar
constraints.

Let us finally underline that the DGP brane model,
although equivalent to a scalar-tensor theory of the
Galileon type in the UV (in particular in the decoupling
limit [9]), is not fully described by such a theory at cos-
mological scales (IR limit). Therefore our analysis does not
apply to the DGP model, and this explains why Ref. [34]
did not find any local time variation of G.

To conclude, we have shown that a generic scalar-tensor
theory with conformal coupling of a scalar field to matter,
and with a shift symmetry of the scalar Lagrangian, is
tightly constrained by the bounds on time variation of the
Newton constant. The models which fall into this category
are not only standard (massless) Brans-Dicke-like theories,
but also those featuring a Vainshtein screening mechanism
due to the kinetic self-coupling, in particular, nonmini-
mally coupled Galileon models. We argued that the local
time evolution of the scalar field is set by its cosmological
evolution and not screened by the Vainshtein effect, which
is only able to suppress the ‘‘fifth force’’ due to the ex-
change of helicity-0 degree of freedom. The time deriva-
tive of the scalar field is of order of the Hubble scale, unless
the whole universe is in the screening regime (cosmologi-
cal Vainshtein effect with M � H0). This induces a time
evolution of Newton’s constant of the same order. This
result applies for both the matter domination and the
scalar field domination cosmological regimes. It also
does not depend on a particular form of the nonlinear

self-interaction term, provided it is shift-symmetric.
The key point is that the time dependence in (6),
which is crucial in (9), is the same irrespective of the
precise structure of LNL. The evolution of the Newton
constant is, however, tightly constrained by observations,
j _G=Gj & 0:02H0; therefore the conformal coupling on
such theories is constrained too. For example, if the non-
minimal coupling is of the form expð2�’Þ, then j�j should
be less than 10�2.
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