
HAL Id: hal-00647827
https://hal.science/hal-00647827

Submitted on 17 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A pseudo-spectral method with volume penalisation for
magnetohydrodynamic turbulence in confined domains

Kai Schneider, Salah Neffaa, Wouter J.T. Bos

To cite this version:
Kai Schneider, Salah Neffaa, Wouter J.T. Bos. A pseudo-spectral method with volume penalisation
for magnetohydrodynamic turbulence in confined domains. Computer Physics Communications, 2011,
182 (1), pp.2-7. �10.1016/j.cpc.2010.05.019�. �hal-00647827�

https://hal.science/hal-00647827
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


A pseudo-spectral method with volume penalisation for magnetohydrodynamic

turbulence in confined domains

Kai Schneider a,∗, Salah Neffaa a, Wouter J.T. Bos b

a M2P2–CNRS & CMI, Aix-Marseille University, Marseille, France
b LMFA–CNRS, Ecole Centrale de Lyon – Université de Lyon, Ecully, France

We present a Fourier pseudo-spectral method for solving the resistive magnetohydrodynamic equations of incompressible flow in confined domains. A 

volume penalisation method allows to take into account boundary conditions and the geometry of the domain. A code validation is presented for the z-pinch 

test case. Numerical simulations of decaying MHD turbulence in two space dimensions show spontaneous spin-up of the flow in non-axisymmetric 

geometries, which is reflected by the generation of angular momentum. First results of decaying MHD turbulence in a cylinder illustrate the potential of the 

new method for three-dimensional simulations.

1. Introduction

In magnetohydrodynamic (MHD) as in hydrodynamic turbu-

lence (HD), the main challenge in direct numerical simulation

(DNS) is to take into account boundary conditions imposed by the

physics of the problem without compromising the stability and

precision of the numerical scheme. For homogeneous turbulence,

either HD or MHD, for which periodic boundary conditions can

be used, pseudo-spectral methods using Fast Fourier transforms

are still the most precise and efficient schemes [8,12] which are

now available since many decades. However, non-periodic bound-

ary conditions and complexly shaped geometries require more ad-

vanced numerical schemes. Spectral methods become more com-

plicated for nonperiodic boundary conditions, because of the use

of, e.g., Tchebycheff or Bessel functions and they are still limited to

simple geometries.

Boundary conditions in confined HD turbulence are typically of

no-slip or of slip type. In MHD turbulence the situation is more

delicate as the boundary conditions for the magnetic field depend

on the surrounding domain of the electrically conducting fluid. In

the case of a perfect conductor the magnetic field simply vanishes

outside, however special care has to be taken for the current den-

sity. One physically motivated type of boundary conditions consists

in supposing that the perfect conductor is coated inside with a

thin layer of insulant, such that the current density cannot pen-
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etrate into the solid [13]. In the case of surrounding vacuum the

magnetic field has to be prolongated outside the fluid domain and

matched with the magnetic field in the fluid region [15].

An efficient method to compute HD flows in the presence of

solid obstacles and walls is the volume penalisation approach

which was introduced by Angot et al. [1] for the Navier–Stokes

equations and applied to hydrodynamic turbulence in [16,17]. This

method was extended to MHD turbulence in a recent work [2,14].

Using this method, efficient pseudo-spectral solvers can be used to

compute flows which contain solid walls and obstacles, which may

even move in time [10].

In the present paper we describe the volume penalisation

method in combination with a pseudospectral method for resis-

tive MHD equations of incompressible flow in confined domains.

The governing equations are modified by adding penalisation terms

which contain a mask function which describes the geometry

of the domain. The therewith imposed boundary conditions are

vanishing velocity and no penetration of magnetic field into the

solid domain which is hence considered as a perfect conductor,

coated inside with a thin layer of insulant, which guarantees that

the current density cannot penetrate into the solid. The govern-

ing penalised MHD equations and their numerical space and time

discretization are presented in a concise way. Therewith we per-

form pseudo-spectral simulations of 2D MHD flows in bounded

domains. A code validation is presented together with a conver-

gence study for the z-pinch. Then we investigate decaying 2D MHD

turbulence in two different confined domains and show that spon-

taneous spin-up takes place in the considered non-axisymmetric

geometries. This phenomenon, observed in [2] at low Reynolds

number (Re), persists at higher Re and becomes more pronounced.
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We also show some preliminary computations of 3D decaying

MHD turbulence in a cylinder, which illustrates the potential of

the new method for three-dimensional MHD.

The remainder of the paper is organized as follows. In the

following section the governing equations are presented together

with the volume penalisation to impose the boundary conditions.

In Section 3 the numerical method, a pseudospectral method with

semi-implicit time discretization is exposed. Section 4 presents a

couple of numerical results in two and three space dimensions to

illustrate the numerical scheme. Finally, conclusions are drawn in

Section 5.

2. MHDmeets volume penalisation

The velocity field u and the magnetic field B of an electrically

conducting incompressible fluid in a domain Ω f are governed by

the following dimensionless equations,

∂u

∂t
+ u · ∇u = −∇p + j × B + ν∇2u −

1

ǫ
χ(u − u0) (1)

∂B

∂t
= ∇ × (u × B) + η∇2B −

1

ǫ
χ(B − B0) (2)

∇ · u = ∇ · B = 0 (3)

where ν is the kinematic viscosity, η the magnetic diffusivity,

p the pressure and j = ∇ × B the current density. The above equa-

tions are considered in a computational domain Ω = Ω f ∪ Ωs in

which the fluid domain Ω f is embedded. The solid domain Ωs

encloses Ω f and the mask function χ(x) entirely determines the

geometry of the domain.

The mask function is given by

χΩs (x) =

{

1 for x ∈ Ω̄s

0 elsewhere
(4)

The last term in the evolution equations for u and B , is the penali-

sation term which allows to impose the solid boundary conditions.

Thus both the fluid-domain and the confining walls are embed-

ded in a 2π -periodic square domain (after suitable rescaling), as

proposed in [14].

The mask function χ is equal to 0 inside the fluid domain, thus

the penalisation terms disappear and the unpenalised MHD equa-

tions are recovered. The physical idea is to model the solid part as

a porous medium whose permeability ǫ tends to zero [1,16], hence

the porous medium tends towards a solid. For ǫ → 0, the velocity

u tends to u0 and the magnetic field B tends to B0 in the solid

domain.

The quantities u0 and B0 correspond to the values imposed in

the solid part of the numerical domain. In previous studies [14,2]

we chose u0 = 0 and B0 = B‖ , where B‖ is the tangential compo-

nent of B at the wall which is not being fixed at a constant value

but being re-computed at each time-step. The imposed boundary

conditions are thus vanishing velocity and no penetration of mag-

netic field into the solid domain. The latter is hence considered

as a perfect conductor, coated inside with a thin layer of insu-

lant, which guarantees that the current density cannot penetrate

into the solid. This type of boundary condition is particularly im-

portant when a mean current flows through the domain. In the

present work this is not the case and for convenience we assume

that B0 = 0. In tests in two space dimensions it was observed that

in the absence of mean currents this choice did not influence the

results significantly.

In the case of two-dimensional flow (here in the x–y plane) it

is convenient to take the curl of Eqs. (1), (2) to obtain after simpli-

fication equations for the vorticity and the current density, which

become scalar-valued (in the z-plane) and are perpendicular to the

velocity and the magnetic field, respectively.

The vorticity is defined by ωez = ∇ × u and jez = ∇ × B

denotes the current density, where ez is the unit vector in the

z-direction.

∂ω

∂t
+ u · ∇ω = B · ∇ j + ν∇2ω −

1

ǫ
∇ ×

[

χ(u − u0)
]

(5)

∂ j

∂t
+ ∇2(u × B) = η∇2 j −

1

ǫ
∇ ×

[

χ(B − B0)
]

(6)

Furthermore we can define the vector potential a = aez as B =

∇ ×a and the stream function ψ as u = ∇⊥ψ = (−∂ψ/∂ y, ∂ψ/∂x).

3. Numerical method

3.1. Space discretization

The evolution equations of the vorticity and the current density

(5), (6) are transformed into Fourier space in order to compute the

spatial derivatives. Hence, the vorticity, the current density and the

other variables are represented as truncated Fourier series

ω(x, t) =
∑

k∈Z2

ω̂(k, t)exp(ik · x) (7)

j(x, t) =
∑

k∈Z2

ĵ(k, t)exp(ik · x) (8)

where the Fourier transforms of ω and j are defined as

ω̂(k, t) =
1

4π2

∫

Ω

ω(x, t)exp(−ik · x)dx (9)

ĵ(k, t) =
1

4π2

∫

Ω

j(x, t)exp(−ik · x)dx (10)

with the wavevector k = (kx,ky). The Fourier discretization is uni-

form in space and is truncated at kx = −Nx/2 and kx = Nx/2 + 1,

ky = −N y/2 and ky = N y/2+1, where Nx and N y are the number

of grid points in x and y direction, respectively.

The derivatives of ω and j are computed by multiplying ω̂ and

ĵ with ik, respectively, the Laplacian by multiplying with |k|2 . The

velocity u and the magnetic field B induced by the vorticity ω
and the current density j are reconstructed in Fourier space using

Biot–Savart’s law

u(x, t) =
∑

k∈Z2,k 	=0

ik⊥

|k|2
ω̂(k, t)exp(ik · x) (11)

B(x, t) =
∑

k∈Z2,k 	=0

ik⊥

|k|2
ĵ(k, t)exp(ik · x) (12)

where k⊥ = (−ky,kx).

Terms containing products and the penalisation terms, are eval-

uated by the pseudospectral technique [4] using collocation in

physical space. To avoid aliasing errors, i.e. the production of small

scales due to the nonlinear terms which are not resolved on the

grid, we de-aliase at each time step, by truncating the Fourier co-

efficients of ω (and similarly for j) using the 2/3 rule,

ω̂(k) =

⎧

⎨

⎩

ω̂(k) for
(

3kx
2Nx

)2
+

( 3ky

2N y

)2
< 1

0 for
(

3kx
2Nx

)2
+

( 3ky

2N y

)2
� 1

(13)
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3.2. Time discretization

For time integration we use a semi-implicit scheme of second

order, an Euler–Backward scheme for the linear viscous term and

an Adams–Bashforth scheme for the nonlinear terms, see e.g. [16].

The time discretized equations thus read,

σ

(

ω̂n+1 −
4

3
ω̂n +

1

3
ω̂n−1

)

+ ν|k|2ω̂n+1 = ̂Nω

(

ω⋆
)

(14)

σ

(

ĵn+1 −
4

3
ĵn +

1

3
ĵn−1

)

+ η|k|2 ĵn+1 = ̂N j

(

j⋆
)

(15)

where σ = 3/(2
t) with 
t the time step, and ω⋆ = 2ωn − ωn−1

and j⋆ = 2 jn − jn−1 . The unknown Fourier coefficients ω̂n+1 and

ĵn+1 can be obtained by simple division with σ + ν|k|2 and σ +

η|k|2 , respectively. The explicitely discretized nonlinear terms Nω

and N j correspond to

Nω(ω) = −u · ∇ω + B · ∇ j −
1

ǫ
∇ ×

[

χ(u − u0)
]

(16)

N j( j) = −∇2(u × B) −
1

ǫ
∇ ×

[

χ(B − B0)
]

(17)

Due to stability reasons the time step 
t is limited by the penali-

sation parameter, i.e. 
t < ǫ and the CFL condition 
t < 
x/urms ,

with 
x being the spatial grid size and urms the root mean square

velocity.

3.3. Discretisation in three space dimensions

In three space dimensions the numerical scheme is based on

the velocity-magnetic field formulation (Eqs. (1), (2)) rather than

on the vorticity-current density formulation (Eqs. (5), (6)) as the

latter are not scalar-valued quantities anymore.

For spatial discretization we use, as in two space dimensions,

a Fourier pseudo-spectral method. For time discretization we use

a second order Adams–Bashforth scheme for the nonlinear and

penalisation terms, while the linear diffusive term is integrated ex-

actly in time.

The divergence constraint of the velocity is imposed by solving

a Poisson equation for the pressure p. To impose the incompress-

ibility of the magnetic field we add a magnetic pressure gradient

∇Π to the induction equation (2) and solve again a Poisson equa-

tion for Π . Note that the solution of the Poisson equation becomes

trivial in the present case, a simple division by |k|2 in Fourier

space, as periodic boundary conditions are applied in the compu-

tational domain Ω .

For periodic boundary conditions (without penalisation terms)

the code has been validated by computing the three-dimensional

Orszag–Tang vortex, cf. [12].

4. Numerical results

In the following we first present a validation of the code in two

space dimensions for the z-pinch configuration, and then we show

two-dimensional simulations of decaying MHD turbulence inside

an ovoid and in a D-shaped geometry, the latter is motivated by

the cross section of a tokamak. Then we also show some prelimi-

nary results of three-dimensional decaying MHD turbulence inside

a cylinder.

4.1. Z -pinch

In order to check the volume penalisation on the magnetic field,

we choose a steady flow problem which has an analytical solution.

The z-pinch is a configuration, illustrated in Fig. 1, with a purely

Fig. 1. Configuration of the z-pinch.

Fig. 2. z-pinch. Decay of the L2 and L∞ errors of the vector potential a between the

exact and the numerical solution versus the number of grid points.

poloidal magnetic field B = (0, Bθ ) in plane polar coordinates (r, θ)

which consists entirely of the self-induced field by the axial cur-

rent j [7]. It is well known in the fusion context that the z-pinch

represents the radial pressure balance of several interesting fusion

concepts, e.g. tokamaks, but its stability properties remain poor if

it is not combined with other equilibrium configurations, e.g. the

θ -pinch. The analytical steady solution of this problem is given by

Bθ (r) = j0r/R (18)

j(r) =

{

j0 for |r| < R

0 for |r| > R
(19)

We consider a cylindrical two-dimensional geometry. The com-

putational domain is a periodic square of side length Lx = L y = 5,

in which the circle with radius R = 1 is imbedded. The fluid do-

main is thus defined by Ω f = {x, |x|2 < R} and the solid domain

by Ωs = Ω \ Ω f , with Ω = [−2.5,2.5]2 . The penalisation param-

eter is ǫ = 5 · 10−4 . We impose a constant poloidal value of the

magnetic field, B0 = Bθ
0 = 0.1, in an annular domain of thickness

δ = 4
x inside the solid domain Ωs . The viscosity and magnetic

diffusivities are ν = η = 10−2 .

We perform a series of numerical simulations with fixed time

step 
t = 4 · 10−4 varying the spatial solution, i.e. N = 32, 40, 64,

128, 256, 512, until a steady solution has been obtained.

The decay of the L2 and L∞ errors of the vector potential a be-

tween the exact and the numerical solution as a function of the

number of grid points is plotted in Fig. 2. We observe that the

errors decay with a slope around −2 which indicates a second or-

der convergence of the scheme for the vector potential. For smaller
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Fig. 3. Two-dimensional magnetized plasma: stream function (left) and vorticity

(right). The visualizations correspond to the time-instants at which the absolute

value of the angular momentum reaches its maximum.

grid sizes we find a saturation of the errors, which is due to the

choice of the penalisation parameter. Smaller values of ǫ will allow

for a further decrease of the errors.

4.2. Spontaneous spin-up in non-axisymmetric geometries

Quasi-2D laboratory experiments [11] and two-dimensional nu-

merical simulations of Navier–Stokes flows [5] have revealed the

crucial role of the boundaries with no-slip conditions for the ve-

locity on the evolution of the flow inside a container. Indeed, in

non-axisymmetric domains (e.g. a square domain [5] or an ellip-

tical domain [9]), boundaries may exert a torque on the fluid and

thus increase in short time the kinetic angular momentum of the

fluid leading to a spontaneous rotation, called spin-up. This phe-

nomenon implies that a space-filling vorticity structure emerges in

the fluid. For a recent review we refer to [6].

In the context of decaying MHD turbulence we have shown that

the non-axisymmetry of the domain also produces a spin-up phe-

nomenon [2]. In [2] we considered square and circular domains for

relatively low Reynolds numbers. In [3] we studied in addition to

square and circular also elliptical domains and showed also that

spin-up becomes more pronounced for higher Reynolds numbers.

Here we perform simulations of two-dimensional decaying

MHD turbulence inside an ovoid and in a D-shaped geometry start-

ing with random initial conditions. For both geometries we observe

that the two-dimensional magnetized plasma self-organizes into

a state containing large-scale flow structures, illustrated by the

stream function in Fig. 3(left) and vorticity Fig. 3(right).

To quantify the spin-up we consider the angular momentum

defined as

Lu =

∫

Ω f

ez · (r × u)ds = 2

∫

Ω f

ψ ds (20)

Fig. 4. Time evolution of the angular momentum Lu(t) for the ovoid and the

D-shaped geometry.

The surface integral of the vector-product of velocity u with a vec-

tor r, starting from the center of the flow domain, which is equal

to twice the integrated stream function over the fluid domain. Lu
quantifies to what amount the fluid is rotating. The maximum an-

gular momentum is obtained for a fluid in solid body rotation. In

this particular realization we find that the generation of angular

momentum is stronger in the ovoid, than in the D-shaped geome-

try as shown in Fig. 4.

4.3. Preliminary results in 3D

In this section we present some first, preliminary results of

simulations of three-dimensional decaying MHD flows in wall-

bounded domains using the volume penalisation method. In the

test we present here we impose homogeneous Dirichlet conditions

at the wall for both the velocity and the magnetic field, i.e. u0 = 0

and B0 = 0.

One simulation is performed in a cylinder using 803 Fourier

modes. The cylinder is contained in a periodic cubic box of size

Lx = L y = Lz = 2π . The diameter of the cylinder is equal to 5.8 and

the flow is periodic in the z-direction. The diffusivity η and the

viscosity ν are equal to 10−2 and the permeability parameter, ǫ , is
set equal to 10−3 . The initial condition consists of divergence-free

correlated Gaussian random fields for the velocity and magnetic

fields. At the initial state, the kinetic energy is Eu(0) = 1
2

∫

u2 dx =

1.5 and the magnetic energy is EB(0) = 1
2

∫

B2 dx = 1.6 leading to

an initial Reynolds number around 1100.

Visualizations of vorticity and current density at the time t = 4

are presented in Figs. 5 and 6, respectively. We observe regions of

coincidence between the maxima of the vorticity and the current

density, as observed in the two-dimensional case [14] and regions

(see the cross sections in Figs. 5 and 6) with on one hand intense

current density and on the other hand vanishing vorticity. In the

vicinity of these regions of strong alignment, nonlinear terms will

be weak which may thus stabilize the structures. One can also see

sheet-like structures of vorticity and current density. In Fig. 7 the

time evolution of the L∞-norm of the divergence of velocity and

of the magnetic field are plotted. We observe that the values re-

main below 10−6 . This confirms that the incompressibility of the

numerical scheme for both velocity and magnetic field is satisfied.

5. Conclusions

We presented a Fourier pseudo-spectral method in combination

with a volume penalisation approach for the resistive MHD equa-

tions in two and three space dimensions. Therewith incompress-

ible electrically conducting flows can be computed efficiently in

confined domains of arbitrary shape. Different kinds of boundary
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Fig. 5. Decaying MHD turbulence in a cylinder. Volume visualization of modulus of

vorticity (top), horizontal cut (bottom).

conditions can be imposed while still using a Fourier discretiza-

tion.

We presented a code validation in two space dimensions for

the z-pinch configuration and confirmed previous work by show-

ing that spontaneous spin-up of two-dimensional decaying MHD

turbulence takes place in non-axisymmetric geometries. First re-

sults of a computation of decaying MHD turbulence in a cylinder

are promising and show the potential of the method for three-

dimensional simulations.

The pseudospectral method is essentially based on the fast

Fourier transforms and thus it can be parallelized efficiently.

This will allow to compute three-dimensional MHD turbulence in

bounded domains for high Reynolds numbers on massively parallel

computers.
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