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The influence of solid walls on the Lagrangian statistics of statistically stationary two-dimensional

turbulence is investigated by comparing the flow in a circular wall-bounded and in an unbounded

periodic domain. A Fourier pseudo-spectral method is used, which is combined in the wall

bounded case with a volume penalization technique to impose no-slip conditions. A particular

emphasis is put on the acceleration of fluid particles. It is investigated to what extent the impact of

the boundaries influences the shape of the probability density functions of Lagrangian velocity

increments. It is shown that the influence of walls is not confined to a small near-wall region but

alters the statistics in the entire flow domain. This can be explained by the vorticity generation in

the turbulent boundary layer which destabilizes and leads to the formation of vortices that

subsequently detach and travel into the bulk flow. The enstrophy level is thus increased with

respect to the one in the unbounded periodic domain. VC 2011 American Institute of Physics.

[doi:10.1063/1.3623273]

I. INTRODUCTION

The small scale universality of high Reynolds number

turbulence is a cornerstone of a large number of theories and

engineering models.1 Even though at a crude level this uni-

versality approximately holds since the energy cascade tends

to gradually erase the large-scale anisotropy and inhomoge-

neity of turbulent flows, it becomes increasingly clear that

fine statistics carry almost always a footprint of the non-uni-

versal large scales, see e.g., Ref. 2. This observation holds

not only for Eulerian statistics but seems also to be true for

Lagrangian fine-scale statistics. The study of the latter has

known a revival of interest by the use of direct numerical

simulation (DNS)3 and more recently, new experimental

techniques.4,5 For a review on Lagrangian studies in three-

dimensional turbulence, the reader is referred to Refs. 6 and

7. Studies on the Lagrangian statistics in two-dimensional

turbulence are reported in Refs. 8–11. In particular, the fluid

particle acceleration has received a tremendous amount of

attention. Indeed, whereas the velocity (both in the Eulerian

and Lagrangian framework) displays near Gaussian statistics,

the Lagrangian acceleration shows a more intermittent

behavior than the velocity, reflected by heavy tails in the

probability density functions (PDFs). Even though the results

of different numerical and physical experiments show com-

mon features, closer inspection shows small but significant

differences between the PDFs for the Lagrangian accelera-

tion, possible stemming from the flow geometry.12–15 A first

study assessing the influence of walls on Lagrangian statis-

tics was recently carried out in the framework of two-dimen-

sional turbulence.16 In this work, a freely decaying two-

dimensional flow in a double-periodic domain was compared

to a flow bounded by circular walls. Clear differences were

found between the two cases, in particular with respect to the

PDF of the Lagrangian acceleration. The interpretation of

the results was however non-trivial, since the energy-decay

of the flow is accelerated in wall-bounded flows through the

vorticity generation at the walls leading to increased dissipa-

tion.17 In order to obtain converged PDFs in Ref. 16, quanti-

ties were averaged over a long time-interval, in which the

influence of the energy decay was compensated by normaliz-

ing the velocity by the global root mean square velocity.

This approach improves the convergence of the statistics but

makes the comparison of the statistics between the two types

of flows questionable. This motivates to carry out a study in

which the turbulence is kept statistically stationary by inject-

ing energy in the large flow scales. This is the main objective

of the present study: completing and reassessing the results

obtained in Ref. 16, but in the case of a statistically station-

ary flow.

The remainder of the paper is organized as follows. In

Sec. II, we will describe the numerical method and the physi-

cal parameters which characterize the different flows. Then,

in Sec. III, we will study the Lagrangian statistics. This sec-

tion is decomposed into three parts: in the first part, we will

characterize the effects of no-slip boundary conditions onto

Lagrangian statistics; the second part will focus on the ques-

tion if this influence is confined to a region of the flow or

that it influences the complete flow; and in the third part, we

assess the influence of the level of enstrophy on the standard

deviation of the Lagrangian acceleration. Finally, several

conclusions and perspectives are given.

II. NUMERICAL METHOD AND PHYSICAL
PARAMETERS

In order to assess the influence of solid walls on the

Lagrangian flow statistics, we consider two distinct geome-

tries in this study: a square domain with periodic boundary

conditions and a circular domain with no-slip boundary con-

ditions. Two-dimensional incompressible turbulent flow with

unit density is considered, governed by the Navier-Stokes
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equations written in dimensionless form in vorticity-velocity

formulation

@x

@t
þ u � rxÿ �r2xÿr� F ¼ ÿ 1

g
r� ðvuÞ; (1)

where u¼ (u1, u2) is the velocity, x ¼ r� u is the vorticity,

� is the kinematic viscosity, and F is an external force. The

velocity field is assumed to be incompressible, i.e.,

r � u ¼ 0 and thus the velocity can be obtained from the vor-

ticity by using the Biot-Savart operator. The term on the

right hand side is the volume penalization term, which is re-

sponsible for imposing the boundary conditions18,19 and

which is absent in the periodic case. The mask function v is

1 outside the flow-domain, where no-slip walls are imposed

and 0 inside the flow, where the Navier-Stokes equations are

recovered. The permeability g is chosen sufficiently small

for given � in order to ensure the convergence of the volume

penalization method.19

The turbulence is kept statistically stationary by a ran-

dom isotropic stirring. In three-dimensional turbulence, the

choice of the forcing scale is trivial in the sense that the only

conserved quantity is energy (in the absence of viscosity and

considering non-helical flows), which will be transferred to

small scales. In general, therefore, if an external forcing is

applied, it is applied to the largest scales of the domain in

order to observe the largest possible range of interacting

scales. In two-dimensional turbulence, however, two quanti-

ties are conserved by the nonlinear interaction and these

quantities cascade in opposite directions. The energy cas-

cades from the forcing scale to larger scales and the enstro-

phy to smaller scales. In analogy with three-dimensional

turbulence, we will here inject energy in the large scales (in

wavenumber k¼ 8 in the present study). A study of the

Lagrangian dynamics of wall-bounded turbulence forced at

small scales is by itself also interesting, but this will not be

attempted in the present study. The inverse cascade of

energy will lead to a pile-up of energy at the large scales. To

avoid this, we added a Rayleigh friction term to the above

equation. In principle, in the wall-bounded geometry, we do

not need a friction to avoid a pile up of energy, since the

walls act as an enstrophy source and thereby as an energy

sink. However, in order to perform a comparison between

the two geometries to assess the influence of walls on the sta-

tistics, we used the friction in both geometries. We also per-

formed simulations in the wall-bounded case without friction

and these results will be presented at the end of the results

section. Here and in the following, we will group both

energy-injection and Rayleigh friction into the external forc-

ing term

r� F ¼ Fr ÿ aw; (2)

with Fr a random forcing, w the streamfunction such that

r2w ¼ x and a a parameter, taken unity for each simulation.

For reasons of numerical stability, the energy injection is

time-correlated according to a Markov chain process intro-

duced by Ref. 20 and used in Ref. 21. The forcing term Fr is

constructed in physical space using a linear combination of

cosine functions. The forcing is limited to wavenumber

kf ¼ 8, is isotropic, and its phase is random. In both cases,

the time-correlation of the forcing term is smaller than the

viscous time-scale, which is the smallest relevant time-scale

for the turbulent flow. Particular care was given to the forc-

ing to avoid the injection of angular momentum in the flow.

This could lead to the appearance of a large scale structure,

completely due to the forcing which would influence the sta-

tistics. In order not to inject energy into the solid domain, the

forcing term is multiplied by a mask function which

smoothly varies from one to zero in the vicinity of the wall.

An instantaneous plot of the force Fr is shown in Fig. 1.

Since the phase rapidly changes in a random way, the

observed structure is not imposed on the flow, but the forcing

only determines the scale at which the energy is injected.

The numerical scheme is based on a classical pseudo-

spectral method with a resolution of N¼ 5122 gridpoints and

a semi-implicit time integration with Dt ¼ 1� 10ÿ4.17,19

The Lagrangian quantities are calculated by interpolating the

Eulerian quantities and integrated in time using a second

order Runge-Kutta scheme. The Lagrangian acceleration is

computed as the sum of the pressure gradient, viscous diffu-

sion, and external forcing

aL � @u

@t
þ u � ru

¼ ÿrpþ �r2
uþ F: (3)

We compute the Lagrangian statistics averaged over 104 tra-

jectories for each geometry. The viscosity is �¼ 5 � 10ÿ4 and

the permeability is g¼ 10ÿ4. During the statistically statio-

narity state, the enstrophy fluctuates around a mean value

Zp ¼ 1
2
hx2ix ¼ 136:3 for the periodic geometry (.p) and

Zc¼ 230 for the confined geometry (.c). h:ix denotes the spa-
tial average over the computational domain. The eddy turn-

over-time is Tep ¼ 1=
ffiffiffiffiffiffiffi

2Zp
p

¼ 0:06 and Tec¼ 0.05, and the

Taylor microscale is kp ¼
ffiffiffiffiffiffiffiffiffi

E=Z
p

¼ 0:179, where

Ep ¼ 1
2
hu2ix ¼ 4:39 is the kinetic energy and kc¼ 0.15 with

Ec¼ 4.8. For the periodic geometry, the Reynolds number is

Rep ¼ S
ffiffiffi

E
p

=� ¼ 2:6 � 104, where S¼ 2p corresponds to

the domain size. For the circular geometry, the mean

FIG. 1. (Color online) Instantaneous plot of the forcing term Fr using the

same color table as in Fig. 3.
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Reynolds number is Rec ¼ 2R
ffiffiffi

E
p

=� ¼ 2:4� 104, where

R¼ 2.8 is the radius of the circle. The Reynolds number

based on the Taylor microscale is for the periodic geometry

Rkp ¼ k
ffiffiffi

E
p

=� ¼ 751 and for the circular geometry

Rkc¼ 633. These physical parameters for both configurations

are similar, so the flows in the different geometries are

comparable with respect to these quantities. Details on the

Eulerian properties of a similar decaying flow can be found

in Ref. 19. The integration is done for 5 � 105 timesteps

which corresponds to 800Tep and 1000Tec.

III. RESULTS

A. Comparison of Lagrangian statistics in periodic
and wall-bounded domains

In this section, we present results of Lagrangian quanti-

ties in the statistically stationary state, i.e., the energy and

enstrophy are fluctuating around a constant value as shown

in Fig. 2. For the circular geometry, the mean energy is

slightly stronger than for the periodic geometry, and the ens-

trophy exhibits stronger fluctuations.

In Fig. 3 (top), the visualization of vorticity fields shows

for both geometries the presence of coherent structures

which have approximately the same maximum length scale

in the periodic case and in the center of the confined case.

Moreover, in the circular geometry, the no-slip boundary

conditions generate a thin turbulent boundary layer which

destabilizes and detaches, ejecting coherent vortices into the

bulk-flow, which can explain the stronger fluctuation of the

enstrophy observed in Fig. 2. For each geometry, one typical

particle trajectory is plotted and is colored by the amplitude

of the Lagrangian acceleration in Fig. 3 (bottom).

The PDFs of the Eulerian vorticity, shown in Fig. 4, are

symmetric and exhibit heavier tails in the circular domain

due to the intermittent creation of vorticity at the walls.

A first statistical measure which can quantify the influ-

ence of confinement is the single particle dispersion. This

quantity yields some information on the correlation time of

the turbulence and on the time at which the confinement

starts to limit the distance between the current and the initial

positions. The studied quantity is the mean of the square dis-

tance between the current and the initial position

hðXðtÞ ÿ Xð0ÞÞ2in; (4)

which is shown in Fig. 5. Here, h�in corresponds to the en-

semble average (average over the particles) and X denotes

the x-coordinate of the tracer. The dispersion follows a t2

behavior for short times which is characteristic for a ballistic

regime. For long times, we observe a Brownian regime (/ t

slope) in the periodic case which is consistent with theory22

and a plateau in the confined case. The latter is due to the

limited size of the domain. We note that the dispersion does

not present a Brownian regime in the circle. It is expected

that if the domain size would be larger while keeping the in-

tegral length scale of the turbulence unchanged, a Brownian

regime would be recovered for intermediate times. Note that

almost identical results are obtained for the y-coordinate Y,

which gives evidence for sufficient statistical sampling.

The PDFs of the Lagrangian velocity, shown in Fig. 6

(top) and in Fig. 7 (top), show a close to Gaussian behavior

except around zero for the circular geometry where a small

cusp appears. This is explained by the no-slip condition at

the wall which induces an enhanced probability to find par-

ticles with a velocity close to zero, leading to a higher proba-

bility of zero velocity. Moreover, these PDFs are very

similar to the ones obtained in decaying turbulence.16 In Fig.

6 (bottom), the PDFs of the time-averaged Lagrangian veloc-

ity increments, defined by

DuLðsÞ ¼ huLðtþ sÞ ÿ uLðtÞi; (5)

are shown, h�i is the ensemble average, averaged in time.

The PDFs are symmetric for both cases. For small s, the

PDFs of the Lagrangian velocity increments tend to the ones

of the Lagrangian acceleration, shown in Fig. 6 (bottom),

and they present similar extreme values when the Lagrangian

acceleration is normalized, see Fig. 7 (center). For large s,

the PDFs of the Lagrangian velocity increments tend to the

PDF of the Lagrangian velocity. The difference between the

two configurations is highlighted in Fig. 7 (center) where the

PDFs of the Lagrangian acceleration for both cases are

superposed. For both cases, the tails of the PDFs are close to

exponential. The PDFs almost collapse, apart from the tails,

corresponding to rare events with a magnitude larger than 10

times the standard deviation. The PDFs are normalized so

that all information on the variance of the acceleration is

removed from the PDFs. These are reported in Table I. The

standard deviation of the Lagrangian acceleration is

raLp ¼ 24 for the periodic geometry and raLc ¼ 47 for the

FIG. 2. (Color online) Top: time evolution of the energy E(t) for periodic

and circular geometry. Bottom: time evolution of the enstrophy Z(t) for peri-

odic and circular geometry.
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confined case. The standard deviation of the Lagrangian

acceleration is hence 2 times stronger in the circular geome-

try while the mean values of the energy are similar for both

geometries. The mean value of the enstrophy is not equal in

the two flows and we will come back to this issue later. The

resulting difference in the variance of the Lagrangian accel-

eration is illustrated by plotting non normalized PDFs in Fig.

7 (bottom).

We note that in Table I also all the different contribu-

tions to the acceleration are shown. This analysis is inspired

by the work of Ref. 23. It is observed that the variance of the

pressure gradient is approximately identical to the variance

of the acceleration. In comparison, the viscous term is very

small.

The flatness of the Lagrangian velocity increments is

shown in Fig. 8. At small s, the flatness of the components

tends to a value of 20 for both geometries. At larger s, a steep

descent is observed, approaching the Gaussian value 3

rapidly, which corresponds to the flatness of the Lagrangian

velocity. Also shown is the flatness of the norm of the velo-

city increments. This flatness tends to 2 for large s. This is a

logical consequence of the Gaussianity of the velocity. If a

quantity is Gaussian distributed, then its norm is v-distributed.

The flatness of a D-dimensional v-distribution is (Dþ 2)=D,
so 2 for two dimensions.

The autocorrelation functions of the Lagrangian velocity

and acceleration are plotted in Figs. 9 and 10. Qualitatively,

the correlations are similar to autocorrelations obtained in

three-dimensional homogeneous isotropic turbulence.5 In the

inset of Fig. 9 (top), we fit the autocorrelation of the Lagran-

gian velocity to an exponential function, exp(ÿt=TL), where
TL is a Lagrangian time scale which is equal to 0.18 and 0.11

for periodic and circular geometries, respectively. The
FIG. 4. (Color online) PDFs of the Eulerian vorticity normalized by their

standard deviation for the periodic and circular domain.

FIG. 3. (Color online) Top: snapshots of vorticity fields at t¼ 50. Bottom: one trajectory colored by the Lagrangian acceleration amplitude divided by its max-

imum value (periodic: max¼ 115, circle: max¼ 434). a and b correspond to the periodic and circular domains, respectively.
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difference between the two configurations is that in the circle

the autocorrelation of the Lagrangian velocity exhibits at

short increment time negative values. This might be related

to the more dominant spiraling motion of the trajectories in

the wall-bounded flow as observed in Figure 3.

The autocorrelation of the Lagrangian acceleration

decays faster than the one of the Lagrangian velocity and is

again very similar for both geometries. For large values of s,

the autocorrelation of the Lagrangian acceleration tends to

zero and becomes completely uncorrelated. Note that a small

negative bias at long times has been corrected, similar to

what was done in the work by Yeung and Pope,3 and attrib-

uted there to the statistical fluctuations of the considered

quantity. As observed in, e.g., Ref. 24, the time-correlation

of the norm of the acceleration is an order of magnitude

larger than the time-correlation of the components. The

explanation is the dominating circular motion of fluid par-

ticles. Indeed, during a circular motion, the norm of the

acceleration is constant, whereas its components change

constantly.

Fig. 11 shows spectra of the Lagrangian velocity as a

function of frequency w. In both spectra, no clear inertial

zone can be identified. If arguments à la Kolmogorov are

applied to Lagrangian spectra, the scaling of the spectrum in

3D would be proportional to wÿ2.25 The same would also be

the case in the inverse cascade regime in two-dimensions.

Here, we consider the forward enstrophy cascade and it is

not known which scaling should be expected. For compari-

son, we indicate in the figures the wÿ2 power law. However,

FIG. 5. (Color online) Single particle dispersion for periodic and circular

geometry. a and b correspond to the periodic and circular domains,

respectively.

FIG. 6. (Color online) Top: PDFs of normalized Lagrangian velocities uL=ruL , where ruL ¼ hu2Li
1=2

. Bottom: PDFs of normalized Lagrangian velocity incre-

ments DuL(s)=r(s), where rðsÞ ¼ hðDuLðsÞÞ2i1=2. a and b correspond to the periodic and circular domains, respectively.
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if a power-law is to be observed, it would be closer to wÿ1,

in particular in the circular geometry. The Lagrangian veloc-

ity spectrum for the periodic geometry presents a plateau for

lower frequencies, w< 20, while for the circular geometry,

the Lagrangian velocity spectrum exhibits a bump.

B. Is the influence of the walls localized in a small
region?

In this subsection, we will investigate if the influence of

the walls is localized in the near-wall region or if it is affect-

ing the complete domain. Indeed, in the foregoing analysis,

the quantities were averaged over all trajectories, sampling

thereby the complete domain. In this section, we will focus

separately on the near-wall region and the center-region of

the circular domain. We proceed as follows: we choose an

arbitrary radius rc�R and separate the statistics into two

parts, inside and outside the selected radius. A single trajec-

tory can thus contribute to both regions. The flatness of the

conditional Lagrangian acceleration aLr>rc
ðtÞ is defined as

FEXTðaL; rcÞ ¼
haLðrÞ4ir>rc

haLðrÞ2i2r>rc

; (6)

where h�ir>rc denotes the ensemble average, averaged in

time, for the particles confined to the annular subdomain

defined by the radius r> rc. For rc=R¼ 0, we thus consider

the whole domain, and approaching rc=R¼ 1, the subdomain

is confined to the near wall region. Analogously, we define

the flatness of the internal sub-domain

FINTðaL; rcÞ ¼
haLðrÞ4ir<rc

haLðrÞ2i2r<rc

: (7)

FIG. 7. (Color online) Top: PDFs of normalized Lagrangian velocities

uL=ruL . Center: PDFs of the normalized Lagrangian acceleration aL=raL .
Bottom: PDFs of the non-normalized Lagrangian acceleration.

TABLE I. Standard deviation of the Lagrangian quantities, showing only

the x-component. The y-components, which should by symmetry-considera-

tions converge to the same value, are all within 1% of the x-values and are

thus omitted. uLX corresponds to the Lagrangian velocity, aLX is the Lagran-

gian acceleration, arpX is the pressure gradient, a�r2uLX is the viscous term,

aFX
is the forcing term, auL �ruLX is the advective term and a@uL

@t X

is the time

derivative of the velocity.

Periodic Circle

uLX 1.891 2.461

aLX 23.93 46.53

arpX 21.95 44.92

a�r2uLX 0.11 0.38

aFX
9.77 12.85

auL �ruLX 25.59 52.15

a@uL
@t X

16.33 29.61

FIG. 8. (Color online) Flatness as function of increments s for periodic and

circular geometry. a and b correspond to the periodic and circular domains,

respectively.
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This quantity thus gives the flatness of the Lagrangian-accelera-

tion confined to a circular domain with radius rc. The condi-

tional flatnesses are plotted in Fig. 12 for the case of the

circular geometry. The value in the periodic domain, which due

to the flow homogeneity does not depend on r, is also indicated.

For a radius rc=R< 0.6, the flatness FEXT is nearly con-

stant with a value of about 16. Then, for rc=R> 0.6, the con-

ditional flatness strongly increases. Since the flatness is

constant for rc=R< 0.6, it is tempting to state that no signifi-

cant influence of the wall can be found for the acceleration

in the center of the domain. However, if we compare with

the value in the periodic domain, we see that the flatness is

significantly changed by the presence of walls. This non-neg-

ligible influence becomes constant in the center of the do-

main but does not vanish. In the region rc=R> 0.6, the

influence of the walls becomes increasingly stronger. Note

that for the largest radius, the value of the conditional flat-

ness may not be converged since the domains become too

small and the statistical sampling is no longer sufficient.

These results enable us to reassess the conditional flat-

ness in Ref. 16. We do not observe the sharp transition of the

flatness for rc=R> 0.3 as was observed in Ref. 16. Indeed

closer inspection of the results in Ref. 16 showed that the

sharp increase was caused by a problem of statistical conver-

gence and an inhomogeous initial distribution of the par-

ticles. In the present study, the particles are spread initially

homogeneously, and the statistically stationary flow allows

to obtain better converged statistics. A further difficulty with

Ref. 16 was that during the computation, the enstrophy

strongly decayed, leading to statistics averaged over strongly

varying flow-conditions. The stationarization used allows to

compensate for the energy decay but not for this enstrophy

decay. However, also in the present study, we observe a

strong increase of the conditional flatness for rc=R> 0.7

FIG. 9. (Color online) Lagrangian velocity autocorrelation for periodic and

circular geometry. a and b correspond to the periodic and circular domains,

respectively.

FIG. 10. (Color online) Lagrangian acceleration autocorrelation for periodic

and circular geometry. a and b correspond to the periodic and circular

domains, respectively.

FIG. 11. (Color online) Lagrangian velocity spectra for periodic and circu-

lar geometry.
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which indicates the presence of a Lagrangian boundary layer,

be it smaller and less sharp than the one found in Ref. 16.

The PDFs corresponding to these subdomains are shown

in Figure 13 which confirms that the extreme values of the

Lagrangian acceleration appear for regions close to the wall.

For completeness, we also show in Figure 14, the enstrophy

as a function of the radius r. It is observed that the value of

the enstrophy increases rapidly in the vicinity of the wall.

We will focus on the influence of the value of the enstrophy

on the Lagrangian statistics in the next paragraph.

C. The influence of the level of enstrophy
on the Lagrangian acceleration

Comparing the PDFs in Figure 7, we observe that the

shape of the PDF of the Lagrangian acceleration is very

similar for the two geometries, but that the standard devia-

tion changes considerably. In both geometries, the kinetic

energy is maintained on the same level, but this implies a

higher level of enstrophy in the circular geometry, as is

observed in Figure 2. The reason for this is that the solid

FIG. 12. (Color online) Conditional statistics as a function of radius rc=R for

the circular geometry. The lines for FEXT and FINT are shown with a solid

line where we trust the statistics and by dashed line in the remaining bits.

FIG. 13. (Color online) PDFs of the acceleration in the subdomain defined

by r> rc (top) and r< rc (bottom) for the circular geometry, compared to the

PDF in the periodic domain.

FIG. 14. (Color online) Enstrophy as function of the radius in the circular

geometry.

FIG. 15. (Color online) The PDFs of the Lagrangian acceleration for the

case in which both the enstrophy and the energy are maintained at the same

level in both geometries. Top: normalized PDFs, bottom: non-normalized

PDFs.
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boundaries in the circular domain act as an energy sink by

producing enstrophy. In order to obtain the same level of

energy, the forcing strength has to be increased in the circu-

lar domain. The resulting flow has a higher level of enstro-

phy at equal energy. A question which can be asked at this

point is how the flow statistics would change if both the

energy and the enstrophy level are the same in both flows.

We managed to create such a flow by removing the Rayleigh

friction in the circular domain and adapting the forcing

strength. Both the energy and enstrophy level are comparable

in the resulting flow, with some strong enstrophy fluctuations

around the mean value in the circular geometry. For this

flow, we show the PDFs of the Lagrangian acceleration in

Figure 15. The striking difference with Figure 7 is the ap-

proximate collapse of the non-normalized PDFs, while the

standard deviation of the Lagrangian acceleration is 1.5

times stronger in the circular geometry. This is an indication

that the standard deviation of the Lagrangian acceleration is

intimately related to the level of enstrophy of the flow.

Indeed the presence of stronger enstrophy fluctuations, due

to intermittent vorticity generation at the wall, probably

explains the stronger standard deviation in the circular do-

main, although the mean values of enstrophy are similar for

both geometries. Moreover, the normalized PDFs do not col-

lapse as well as those in Figure 7. Clearly, the presence of a

large-scale friction influences the shape of the PDF of the

Lagrangian acceleration, since we need more enstrophy to

obtain similar energy for both cases.

The present observations infer, therefore, that the main

influence of the walls on the PDFs of the Lagrangian accelera-

tion is the enhancement of the level of enstrophy, which leads

to a higher standard deviation of the Lagrangian acceleration.

IV. CONCLUSION

In this study, we showed the influence of no-slip condi-

tions on the Lagrangian statistics of passive tracers. For that,

we performed direct numerical simulations of two-dimen-

sional statistically stationary incompressible turbulent flow in

periodic and circular domains, for the latter with no-slip

boundary conditions. The influence of the wall was assessed

by analyzing the Lagrangian statistics. As found in Ref. 16,

the presence of solid boundaries influences in particular the

behavior of the Lagrangian acceleration. When considering

subdomains including or not the near-wall region, we observe

that the influence of the walls becomes approximately con-

stant in a central region, which allows to define a Lagrangian

boundary layer, be it less pronounced than in Ref. 16. How-

ever, comparing this center region with fully periodic flows, a

difference remains. This difference is traced back to the ens-

trophy which is produced at the walls and diffuses into the do-

main. In the periodic domain, no enstrophy production exists,

except for the homogeneous force term. The influence of

walls is thus not confined to a small near-wall region but influ-

ences the entire domain. As in Ref. 16, we can conclude that,

since a large number of experiments on Lagrangian tracers

are carried out in wall-bounded geometry, the universality of

these experimental results can be questioned. However, it is

possible that the effects in three-dimensional turbulence are

decaying faster as a function of the distance to the wall since

enstrophy is no conserved quantity in three dimensions. In

order to answer this question, a three dimensional extension

of the present study constitutes an important perspective.
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