
HAL Id: hal-00647789
https://hal.science/hal-00647789

Preprint submitted on 2 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A note on single-machine scheduling problems with
position-dependent processing times

Julien Moncel, Gerd Finke, Vincent Jost

To cite this version:
Julien Moncel, Gerd Finke, Vincent Jost. A note on single-machine scheduling problems with position-
dependent processing times. 2011. �hal-00647789�

https://hal.science/hal-00647789
https://hal.archives-ouvertes.fr

A note on single-machine scheduling problems

with position-dependent processing times

Julien Moncel∗ Gerd Finke† Vincent Jost‡

Abstract

The purpose of this note is two-fold. First, it answers an open prob-
lem about a single-machine scheduling problem with exponential position-
dependent processing times defined in [V. S. Gordon, C. N. Potts, V. A.
Strusevich, J. D. Whitehead, Single machine scheduling models with dete-
rioration and learning: Handling precedence constraints via priority gener-
ation, Journal of Scheduling 11 (2008), 357–370]. In this problem, the pro-
cessing time of job i when scheduled in rank r is equal to p(i, r) = piγ

r−1,
with γ a positive constant. Gordon et al show in the above-mentioned
paper with priority-generating techniques that the problem of minimizing
the total flow-time on one machine admits an O(n logn) algorithm when
γ ∈]0, 1[∪[2,+∞[, and leave the case γ ∈ [1, 2[open. We show that the
problem admits an O(n logn) algorithm also for γ ∈ [1, 2[. The second
purpose of this note is to provide a simple and general insight on why
and when position-dependent scheduling problems on one machine can be
solved in time O(n logn).

Corresponding author : Julien Moncel julien.moncel@iut-rodez.fr
Phone: +33(0)5 65 77 10 80 – Fax: +33(0)5 65 77 10 81

Keywords : Single-machine scheduling ; position-dependent processing times ; learn-

ing effects ; deteriorating jobs

1 Scheduling with position-dependent process-
ing times

There is a growing literature dealing with scheduling problems where the ac-
tual processing time of a job depends on its position in the schedule, and/or its
starting processing time (see for instance the recent monography [4] for a sur-
vey on time-dependent scheduling). This enables in particular one to model the
so-called learning and deteriorating effects. Practical applications include oper-
ators becoming more efficient while getting used to a new procedure (learning
effect), and forest fires that take longer to extinct as time flows (deteriorating
effect).

∗CNRS – LAAS Université de Toulouse, UPS, INSA, INP, ISAE ; UT1, UTM, LAAS, 7
avenue du Colonel Roche, 31077 Toulouse Cédex 4 (France), also with Fédération de recherche
Maths à Modeler, and also with Université Toulouse 1 Capitole, IUT Rodez

†Laboratoire G-SCOP, 46 avenue Félix Viallet, 38031 Grenoble Cédex (France)
‡École polytechnique, Laboratoire d’informatique (LIX), 91128 Palaiseau Cédex (France)

1

In this paper we focus on position-dependent processing times, where the
processing time of job i when scheduled in rank r is equal to p(i, r). Hence
processing times of jobs are defined by a function p : i, r 7→ p(i, r). For a general
function p it is known that problems 1 | p(i, r) | Cmax and 1 | p(i, r) |

∑
Ci can

be modelled as assignment problems and thus admit O(n3) algorithms [1, 2] (n
being the number of jobs).

But for most practical purposes we do not need processing times in such
a general form as p(i, r), and the problem can be solved with simpler methods
than solving an assignment problem. Let us assume that the function p(i, r) can
be written as p(i, r) = f(r)pi. In this case, we say that the position-dependent
scheduling times are decomposable, pi being the normal processing time of job i,
and p(i, r) its actual processing time if scheduled in position r. This is the case
for many scheduling problems of the literature, such as the model of Biskup [2]
p(i, r) = pir

a (with a < 0 a constant “learning index”), the model of Wang
and Xia [11] p(i, r) = pi(a − br) (with a ≥ 0 integer, b ≥ 0 rational, and
a− (n+1)b > 0), or the model of Gordon et al [5] p(i, r) = piγ

r−1 (with γ > 0).
For this last model, it is shown with priority-generating techniques in [5] that
the problem 1 | p(i, r) = piγ

r−1 |
∑

Ci can be solved in time O(n log n) for
γ ∈]0, 1[∪[2,+∞[, the case γ ∈ [1, 2[being left open. In the next section we
prove that this last problem admits an O(n log n) algorithm for every γ > 0.

We get this result as a consequence of a more general result on scheduling
jobs on one machine with position-dependent processing times. Let us say that
an objective function γ is decomposable if it can be written as γ =

∑
νrp[r],

where p[r] denotes the actual processing time of job scheduled in position r, and
ν1, . . . , νn are parameters that depend on the number of jobs of the problem
but not on the processing time of the jobs. Many classical objective functions
are decomposable. Trivially, Cmax =

∑
p[r] is decomposable (we have νr = 1

for all r). Similarly, since
∑

Ci can be rewritten as
∑

(n + 1 − r)p[r], then it
is a decomposable objective function with νr = (n + 1 − r) for all r. Other
functions are decomposable, such as for instance the total absolute differences
in completion times (TADC), defined as TADC =

∑
i<j |Ci − Cj |. Indeed, it is

easy to see that TADC can be rewritten as
∑

νrp[r] with νr =
∑

j≥r(2j−(n+1))
for all r.

In the next section, we show that, if both the objective function γ and the
scheduling times p(i, r) are decomposable, then the single-machine scheduling
problem 1 | p(i, r) | γ admits an O(n log n) algorithm, that consists essentially
in sorting two series of numbers. Some consequences of this result are discussed
in Section 3. We then provide in Section 4 a characterization of the processing
times for which an optimal schedule can be found by a sorting algorithm.

2 A general result on decomposable objective
functions and position-dependent processing-
times

We start by a well-known lemma of Hardy et al [6] on minimizing the scalar
product of the permutation of two sequences of numbers.

Lemma 1 (Hardy et al) Let x1, . . . , xn and y1, . . . , yn be two sequences of
numbers, and let us assume that x1 ≤ x2 ≤ . . . ≤ xn. Let π denote a per-

2

mutation on {1, . . . , n}. Then the the minimum of
∑

xiyπ(i), taken over all
permutations of {1, . . . , n}, is attained for any π∗ satisfying yπ∗(1) ≥ yπ∗(2) ≥
. . . ≥ yπ∗(n). �

The proof of this lemma is easy, since it suffices to notice that if x1 ≤ x2 and
y1 ≤ y2, then x1y2 + x2y1 ≤ x1y1 + x2y2. The next theorems are consequences
of this result.

Theorem 1 Let γ be a decomposable objective function. Then any single-
machine scheduling problem 1 | p(i, r) | γ can be modelled by an assignment
problem, and thus solved in time O(n3), where n is the number of jobs.

Proof: The result is immediate. Indeed, by definition, if γ is decomposable,
then it can be written as γ =

∑
νrp[r], where p[r] denotes the (actual) processing

time of job scheduled in position r. This can be seen as an assignment problem,
where the weight from job i to position r is νrpi. �

If the processing times are also decomposable then we get the following
stronger result.

Theorem 2 Let γ be a decomposable objective function, and let us assume that
the position-dependent processing times of jobs are also decomposable. Then any
single-machine scheduling problem 1 | p(i, r) = f(r)pi | γ can be solved in time
O(n log n), where n is the number of jobs.

Proof: By definition, if γ is decomposable, then it can be written as γ =∑
νrp[r], where p[r] denotes the (actual) processing time of job scheduled in

position r. Let us assume that the schedule is described by a permutation π,
such that π(r) = i if and only if job i is scheduled in position r. Now, we clearly
have p[r] = p(π(r), r) = f(r)pπ(r), such that γ =

∑
νrp[r] =

∑
νrf(r)pπ(r). By

Lemma 1, it suffices to sort the parameters νrf(r) in non-decreasing order, and
sort the jobs in non-increasing order of their normal processing times in order
to minimize the objective function γ. To terminate the proof it then suffices to
notice that sorting two sequences of n numbers can be made in time O(n log n).
�

This last theorem shows that, if both the objective function and the pro-
cessing times are decomposable, an optimal schedule can be found by running
a sorting algorithm. Indeed, assuming that the jobs are sorted in an SPT order
(that is to say p1 ≤ p2 ≤ . . . ≤ pn), there exists a fixed permutation π (that
depends only on the function f and on γ) such that the schedule defined by “i
is scheduled at rank r if and only if π(r) = i” is optimal. This permutation π
is defined by νπ−1(1)f(π

−1(1)) ≥ νπ−1(2)f(π
−1(2)) ≥ . . . ≥ νπ−1(n)f(π

−1(n)).

3 Some consequences of the general result in the
decomposable case

Theorem 2 generalizes and unifies in a single framework many results of the
literature, including those described in Table 1.

3

Reference Problem

[2] 1 | p(i, r) = pir
a |

∑
Ci (with a < 0)

[7] 1 | p(i, r) = pir
a | Cmax (with a < 0)

[8] 1 | p(i, r) = pir
a | Cmax (with a > 0)

[10] 1 | p(i, r) = pi(M + (1−M)ra) | Cmax (with a ≤ 0 and M ∈ [0, 1])

[11] 1 | p(i, r) = pi(a− br) |
∑

Ci and 1 | p(i, r) = pi(a− br) | Cmax

(with a ≥ 0 integer, b ≥ 0 rational, and a− (n+ 1)b > 0)

[5] 1 | p(i, r) = piγ
r−1 |

∑
Ci (with γ ∈]0, 1[∪[2,+∞[)

[12] 1 | p(i, r) = pir
a | TADC (with a < 0)

[9] 1 | p(i, r) = f(r)pi | Cmax (with f increasing or decreasing)

Table 1: Sample of existing results of the literature that are generalized by
Theorem 2. These results are sorted chronologically. Most of them use an inter-
change argument, and some explicitly use Lemma 1 (for instance [12] and [9]).

Mosheiov shows in [8] that there always exists a so-called “V-shaped” optimal
schedule for problem 1 | p(i, r) = pir

a |
∑

Ci (with a > 0). Recall that
a schedule is said “V-shaped” if it consists of a subset of jobs arranged in a
non-increasing order of processing times, followed by the remaining jobs in non-
decreasing order of their processing times. This result can also be seen as a
consequence of Theorem 2. Indeed, in this case we have

∑
Ci =

∑
(n + 1 −

r)p[r] =
∑

(n+1− r)rap[r]. The result follows from the fact that g : r 7→ g(r) =
(n+1− r)ra is ∧-shaped (that is to say it is impossible to have simultaneously
g(r) < g(r − 1) and g(r) < g(r + 1) for 1 < r < n).

Whereas most of the results listed in Table 1 use an interchange argument,
the result of Gordon et al [5] is based on priority-generating techniques and
is rather involved. This in particular explains why they get a proof only for
γ ∈]0, 1[∪[2,+∞[. Indeed, they show that for γ ∈]1, 2[there does not exist
1-priority functions for the problem (we refer the interested reader to [5] for the
definition of priority functions). As an immediate consequence of Theorem 2,
we get the following.

Corollary 1 The problem 1 | p(i, r) = piγ
r−1 |

∑
Ci (with γ > 0) admits an

O(n log n) algorithm. �

4 Characterisation of sortable processing times

Let us consider a decomposable objective function γ =
∑

νrp[r]. We now show
that decomposability of processing times is not necessary for the existence of a
fixed permutation yielding an optimal schedule provided the processing times
are sorted. Let P ⊆ R+ be the set of all the possible normal processing times
of the jobs, and let us assume now that p(i, r) can be seen as fr(pi). In this
framework, each fr is a function fr : P → R+. For all r, set gr = νrfr, and
define G as the set {g1, . . . , gn}. We say that gr � gs if

gr(p)− gr(q) ≥ gs(p)− gs(q) ∀(p, q) ∈ P2 with p ≥ q (1)

Clearly, � defines a preorder on G (that is to say, � is reflexive and transi-
tive). We say that gr and gs are comparable if either gr � gs or gs � gr.

4

The justification of this definition of comparability of processing times is
two-fold. One is Theorem 3 below stating somehow that comparability is the
essential property for the double-sorting algorithm of Theorem 2 to work. The
other is the variety of examples of comparable processing times, including for
instance if γ = Cmax:

• fr(pi) := krpi for P ⊆ R+ and kr ∈ R+

• fr(pi) := pkr
i for P ⊆ [1,+∞[and kr ∈ R+

• fr(pi) := kpi
r for P ⊆ R+ and kr ∈ R+

Note also that fr � fs and f ′
r � f ′

s implies fr + f ′
r � fs + f ′

s.
The following theorem states that, provided the processing times are sorted

in an SPT order, there exists a fixed permutation yielding an optimal schedule
if and only if the functions gr are all pairwise comparable.

Theorem 3 Let γ =
∑

νrp[r] be a decomposable objective function. Let n be
any number of jobs, P be any set of admissible processing times, and f1, . . . , fn
be n functions from P to R+. Let G = {gr | 1 ≤ r ≤ n}, where for all r the
function gr is defined as νrfr. Then (G,�) is a totally preordered set if and
only if there exists a permutation π on {1, . . . , n} such that, for any instance
(p1, . . . , pn) ∈ Pn of 1 | fr(pi) | γ such that p1 ≤ p2 ≤ . . . ≤ pn, assigning job i
to rank r if and only if π(r) = i leads to an optimal schedule.

Proof: Let us first assume that (G,�) is a totally preordered set, that is to
say the functions gr are all pairwise comparable. In this case, there exists a
permutation π such that gπ−1(1) � gπ−1(2) � . . . � gπ−1(n). Consider now any
instance (p1, . . . , pn) ∈ Pn of 1 | fr(pi) | γ such that p1 ≤ p2 ≤ . . . ≤ pn. Then
an interchange argument shows that assigning job i to rank r if and only if
π(r) = i leads to an optimal schedule. Indeed, if two jobs i and j such that
pi ≤ pj are scheduled i at a rank r, and j at a rank s, with gs � gr, then
exchanging jobs i and j can only improve γ.

Now let us assume that there exist two functions gr and gs that are not com-
parable. This implies that there exist p ≥ q and p′ ≥ q′ such that gr(p)−gr(q) >
gs(p) − gs(q) and gr(p

′) − gr(q
′) < gs(p

′) − gs(q
′). As a consequence, there

can not exist a fixed permutation π on {1, . . . , n} such that, for any instance
(p1, . . . , pn) ∈ Pn of 1 | fr(pi) | γ such that p1 ≤ p2 ≤ . . . ≤ pn, assigning
job i to rank r if and only if π(r) = i leads to an optimal schedule. Indeed,
let us consider one instance such that p1 = q and p2 = p, and another in-
stance such that p1 = q′ and p2 = p′. Since gr(p) − gr(q) > gs(p) − gs(q) and
gr(p

′)−gr(q
′) < gs(p

′)−gs(q
′), then for one of these instances job 1 is scheduled

before job 2 in all optimal schedules, and for the other one job 2 is scheduled
before job 1 in all optimal schedules. �

5 Conclusion

In this note we presented general results on decomposable objective functions
and position-dependent processing-times. These results cover in particular the

5

classical objective functions Cmax,
∑

Ci, and TADC. They also generalize sev-
eral existing results of the literature. In particular, Theorem 2 states that any
problem of the form 1 | p(i, r) = f(r)pi | γ can be optimally solved by a sorting
algorithm if γ is decomposable. This theorem simplifies a result of Gordon et
al on a single-machine scheduling problem with exponential position-dependent
processing times [5], and enables one to extend this result.

Furthermore, Theorem 3 provides a characterization of processing times for
which there exists a sorting algorithm that optimally solves any problem of the
form 1 | p(i, r) = fr(pi) | γ in the case where γ is decomposable. This result
uses a notion of comparability between functions, which in some sense is an
extension of so-called Monge properties for matrices (see e.g the survey [3]).

References

[1] A. Bachman, A. Janiak, Scheduling jobs with position-dependent processing
times, Journal of the Operational Research Society 55(3) (2004), 257–264.

[2] D. Biskup, Single-machine scheduling with learning considerations, Euro-
pean Journal of Operational Research 115 (1999), 173–178.

[3] R. E. Burkard, B. Klinz, R. Rudolf, Perspectives of Monge properties in
optimization, Discrete Applied Mathematics 70 (1996), 95–161.

[4] S. Gawiejnowicz, Time-Dependent Scheduling, Monographs in Theoretical
Computer Science – An EATCS Series, Springer (2008).

[5] V. S. Gordon, C. N. Potts, V. A. Strusevich, J. D. Whitehead, Single ma-
chine scheduling models with deterioration and learning: Handling prece-
dence constraints via priority generation, Journal of Scheduling 11 (2008),
357–370.

[6] G. Hardy, J. E. Littlewood, G. Pólya, Inequalities, 2nd edition, Cambridge
University Press (1988).

[7] G. Mosheiov, Scheduling problems with a learning effect, European Journal
of Operational Research 132 (2001), 687–693.

[8] G. Mosheiov, A note on scheduling deteriorating jobs, Mathematical and
Computer Modelling 41 (2005), 883–886.

[9] K. Rustogi, V. A. Strusevich, Single Machine Scheduling with General Po-
sitional Deterioration and Rate-Modifying Maintenance, Technical Report
SORG-03/2011, University of Greenwich (2011).

[10] J.-B. Wang, M.-Z. Wang, Z.-Q. Xia, Single-machine scheduling with a gen-
eral learning effect, Journal of Mathematical Research and Exposition 25
(2005), 642–646.

[11] J.-B. Wang, Z.-Q. Xia, Flow-shop scheduling with a learning effect, Journal
of the Operations Research Society 56 (2005), 1325–1330.

[12] D. L. Yang, W.-H. Kuo, Some scheduling problems with deteriorating jobs
and learning effects, Computers and Industrial Engineering 58 (2010), 25–
28.

6

